Units in astrophysics

(Read Chapters 1, 2, and 3 of "Fundamentals of Astrophysics" by Stan Owocki)

Angles: There are 360 degrees in a circle.
There are 60 arcminutes in one degree $\left(60^{\prime}=1^{\circ}\right)$.
There are 60 arcseconds in one arcminute ($60 "=1$ '). ("The Babylonian's Revenge")
The Moon covers about half a degree, or about 30 arcminutes.
The resolution limit (the smallest detail) the unaided human eye can see is about 1^{\prime}.
The resolution limit of the Campus Observatory's telescope is about 2-3".
This is set by turbulence in Earth's atmosphere, called seeing.
The best ground-based telescopes (on Earth's surface) get 0.25 " resolution 25% of the time, although computer-controlled adaptive optics can do better.

The resolution limit of Hubble Space Telescope is 0.07 ". This is because it is above Earth's atmosphere, so the seeing is perfect. It's still limited by diffraction, because light has wave properties (see Chapter 2).

One arcsecond is a tiny angle. It's only $1 / 3600^{\text {th }}$ of one degree. If I were 2 miles from you and I held up a dime, you would see it cover one arcsecond (1").

Astronomers now routinely measure angles of less than $1^{\prime \prime}$.
The state-of-the-art is now milliarcseconds, or $1 / 1000^{\text {th }}$ of $1^{1 \prime}$.
This is the angle covered by a dime 2000 miles from you (in Chicago, from Fresno).

CGS units (centimeters-grams-seconds) (cm-g-s) (which really shouldn't be a big deal):
The original definition of the gram (during the French Revolution, when the metric system was created) was that one gram of water at room temperature and at atmospheric pressure has a volume of $1 \mathrm{~cm}^{3}$.

Density:	$1 \mathrm{~g} \mathrm{~cm}^{-3}$ for liquid $\mathrm{H}_{2} \mathrm{O}$ $7 \mathrm{~g} \mathrm{~cm}^{-3}$ for solid Fe $14 \mathrm{~g} \mathrm{~cm}^{-3}$ for solid Pb $22.6 \mathrm{~g} \mathrm{~cm}^{-3}$ for solid osmium (element 76) $10^{6} \mathrm{~g} \mathrm{~cm}^{-3}=1$ metric Tonne $/ \mathrm{cm}^{3}$ for white dwarf material $10^{14} \mathrm{~g} \mathrm{~cm}^{-3}=10^{8} \mathrm{~T} / \mathrm{cm}^{3}$ for neutron star material
Force: Energy:	$\begin{aligned} & 1 \text { dyne }=1 \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-2}=10^{-5} \text { Newtons } \\ & 1 \mathrm{erg}=1 \mathrm{~g} \mathrm{~cm}^{2} \mathrm{~s}^{-2}=10^{-7} \text { Joules } \\ & 1 \mathrm{erg} \approx \text { the kinetic energy of a mosquito landing on you, } \\ & \text { pronounced "ergs" (not "urges"). } \end{aligned}$
Power (also called luminosity)	$1 \mathrm{erg} \mathrm{s}^{-1}=10^{-7}$ Watts
Magnetic field:	1 gauss $=10^{-4} \mathrm{Tesla}$
	Earth's B field ~ 0.5 G (Gauss) The Sun's global B field ~ 1 G In a big sunspot, B $\sim 2000-6000 \mathrm{G}$ Highest B fields known (in magnetars) $\sim 10^{15} \mathrm{G}=10^{11} \mathrm{~T}$ Highest B field generated in a lab on Earth $=1200 \mathrm{~T}=1.2 \times 10$

Owocki's book uses both CGS units and physics-standard MKS (meters-kg-s) (SI) units.
The Astrophysical Journal no longer changes MKS units into cgs units in papers they publish.
Are things changing?
Hybrid, or "canonical" units (scaled for what's to be measured):
1 solar mass $=1 \mathfrak{A l}_{\odot}=2 \times 10^{33} \mathrm{~g}=2 \times 10^{30} \mathrm{~kg}$
1 Jupiter mass $=2 \times 10^{27} \mathrm{~kg}=(1 / 1047.57) \mathfrak{f t}_{\mathrm{O}} \approx 10^{-3}$ solar masses
1 Earth mass $=6 \times 10^{24} \mathrm{~kg}=1 / 317.8$ Jupiter masses
1 solar luminosity $=1 \mathrm{~L}_{\odot}=3.8 \times 10^{33} \mathrm{erg} \mathrm{s}^{-1}=3.8 \times 10^{26} \mathrm{~W} \approx 4 \times 10^{33} \mathrm{erg} \mathrm{s}^{-1}$
It's easy to memorize $2 \times 10^{33} \mathrm{~g}$ and $4 \times 10^{33} \mathrm{erg} \mathrm{s}^{-1}$, which may be why astronomers still use cgs units.
1 solar radius $=1 \mathrm{R}_{\odot}=7 \times 10^{10} \mathrm{~cm}=7 \times 10^{8} \mathrm{~m}=7 \times 10^{5} \mathrm{~km}$
Speeds are often given in km / s.
1 Astronomical Unit = 1 A.U. $=$ the average distance between Earth and Sun
$=93$ million miles $=1.5 \times 10^{8} \mathrm{~km}=150$ million $\mathrm{km}=1.5 \times 10^{13} \mathrm{~cm}$
1 light-year $=$ the distance light travels in one year $=6$ trillion miles $=9.46 \times 10^{12} \mathrm{~km}$
1 parsec $=3.26$ light-years $=3.086 \times 10^{13} \mathrm{~km}=3.086 \times 10^{18} \mathrm{~cm}=3.086 \times 10^{16} \mathrm{~m}$
1 parsec is defined to be the distance corresponding to an annual trigonometric parallax of 1 ".
Astronomers prefer to use parsecs over light-years, since parallax is something astronomers measure.

