Units in astrophysics

(Read Chapters 1, 2, and 3 of "Fundamentals of Astrophysics" by Stan Owocki)

Angles:There are 360 degrees in a circle.
There are 60 arcminutes in one degree $(60' = 1^{\circ})$.
There are 60 arcseconds in one arcminute (60''=1'). ("The Babylonian's Revenge")

The Moon covers about half a degree, or about 30 arcminutes. The resolution limit (the smallest detail) the unaided human eye can see is about 1'. The resolution limit of the Campus Observatory's telescope is about 2-3". This is set by turbulence in Earth's atmosphere, called *seeing*.

The best ground-based telescopes (on Earth's surface) get 0.25" resolution 25% of the time, although computer-controlled adaptive optics can do better.

The resolution limit of *Hubble Space Telescope* is 0.07". This is because it is above Earth's atmosphere, so the seeing is perfect. It's still limited by diffraction, because light has wave properties (see Chapter 2).

One arcsecond is a *tiny* angle. It's only $1/3600^{\text{th}}$ of one degree. If I were 2 miles from you and I held up a dime, you would see it cover one arcsecond (1").

Astronomers now routinely measure angles of less than 1". The state-of-the-art is now milliarcseconds, or 1/1000th of 1". This is the angle covered by a dime 2000 miles from you (in Chicago, from Fresno). CGS units (centimeters-grams-seconds) (cm-g-s) (which really shouldn't be a big deal):

The original definition of the gram (during the French Revolution, when the metric system was created) was that one gram of water at room temperature and at atmospheric pressure has a volume of 1 cm³.

Density:	1 g cm ⁻³ for liquid H ₂ O 7 g cm ⁻³ for solid Fe 14 g cm ⁻³ for solid Pb 22.6 g cm ⁻³ for solid osmium (element 76) 10^6 g cm ⁻³ = 1 metric Tonne/cm ³ for white dwarf material 10^{14} g cm ⁻³ = 10^8 T/cm ³ for neutron star material
Force: Energy:	1 dyne = 1 g cm s ⁻² = 10^{-5} Newtons 1 erg = 1 g cm ² s ⁻² = 10^{-7} Joules 1 erg \approx the kinetic energy of a mosquito landing on you, pronounced "ergs" (not "urges").
Power (also called luminosity): Magnetic field:	1 erg s ⁻¹ = 10^{-7} Watts 1 gauss = 10^{-4} Tesla
	Earth's B field ~ 0.5 G (Gauss) The Sun's global B field ~ 1 G In a big sunspot, B ~ 2000-6000 G Highest B fields known (in magnetars) ~ 10^{15} G = 10^{11} T Highest B field generated in a lab on Earth = 1200 T = 1.2×10^{7} G

Owocki's book uses both CGS units and physics-standard MKS (meters-kg-s) (SI) units. The Astrophysical Journal no longer changes MKS units into cgs units in papers they publish. Are things changing?

Hybrid, or "canonical" units (scaled for what's to be measured):

1 solar mass = 1 $\Re l_{\odot} = 2 \times 10^{33} \text{ g} = 2 \times 10^{30} \text{ kg}$ 1 Jupiter mass = $2 \times 10^{27} \text{ kg} = (1/1047.57) \Re l_{\odot} \approx 10^{-3} \text{ solar masses}$ 1 Earth mass = $6 \times 10^{24} \text{ kg} = 1/317.8$ Jupiter masses

1 solar luminosity = $1 L_{\odot} = 3.8 \times 10^{33} \text{ erg s}^{-1} = 3.8 \times 10^{26} \text{ W} \approx 4 \times 10^{33} \text{ erg s}^{-1}$ It's easy to memorize $2 \times 10^{33} \text{ g and } 4 \times 10^{33} \text{ erg s}^{-1}$, which may be why astronomers still use cgs units.

 $1~solar~radius = 1~R_{\odot}~= 7\times 10^{10}~cm = 7\times 10^8~m = 7\times 10^5~km$ Speeds are often given in km/s.

1 Astronomical Unit = 1 A.U. = the average distance between Earth and Sun = 93 million miles = 1.5×10^8 km = 150 million km = 1.5×10^{13} cm 1 light-year = the <u>distance</u> light travels in one year = 6 trillion miles = 9.46×10^{12} km 1 parsec = 3.26 light-years = 3.086×10^{13} km = 3.086×10^{18} cm = 3.086×10^{16} m

1 parsec is defined to be the distance corresponding to an annual trigonometric parallax of 1".

Astronomers prefer to use **parsecs** over light-years, since parallax is something astronomers measure.