Multiple Choice. Circle the letter of the best answer.

1. A description for the function $f(x)=\sqrt{3 x}+2$ is
(a) Take 3 times a number and then add 2
(b) Take 3 times a number, add 2, and then take the square root of the result
(c) Take 3 times a number, take the square root of the result, then add 2
(d) Take $\sqrt{3}$ times a number and then add 2
$3 x$ is under the square root, so we are taking the input and multiplying it by 3 , then taking the square root of the result. Finally, we add 2.
2. The range of the function $g(x)=-x^{2}+6 x+5$ is
(a) \mathbb{R} (all real numbers)
(b) $[14, \infty)$
(c) $[-\infty, 14)$
(d) $(-\infty, 14]$
$g(x)$ is a parabola opening down, so the range (outputs) must be from $-\infty$ to the y coordinate of the vertex. The vertex is at $(3,14)$. Since 14 is in the range, and $-\infty$ is not $(-\infty$ is not a real number!), the range is $(-\infty, 14]$.
3. The graph of the function $g(t)=\sqrt{9-t^{2}}$ is
(a) A circle of radius 9 centered at the origin
(b) A circle of radius 3 centered at the origin
(c) The upper half of a circle of radius 9 centered at the origin
(d) The upper half of a circle of radius 3 centered at the origin
$y=\sqrt{r^{2}-t^{2}}$ always represents the upper half of a circle of radius r centered at the origin, since if we square both sides we get $y^{2}=r^{2}-t^{2}$, or $t^{2}+y^{2}=r^{2}$, which is the equation of a circle of radius r. We get only the upper half because $\sqrt{r^{2}-t^{2}}$ cannot be negative for any input t.

Fill-In. If $f(x)=3 x-5$ and $g(x)=x^{3}$, then

1. $(g \circ f)(1)=\underline{-8}$
2. $(g-f)(0)=\underline{5}$
3. $(f \circ f)(2)=-2$
4. $(f \circ g)(-1)=$ \qquad
First compute the formulas for $(g \circ f)(x),(f \circ f)(x)$, and $(f \circ g)(x)$:

$$
\begin{gathered}
(g \circ f)(x)=g(f(x))=g(3 x-5)=(3 x-5)^{3} \\
(f \circ f)(x)=f(f(x))=f(3 x-5)=3(3 x-5)-5=9 x-15-5=9 x-20 \\
(f \circ g)(x)=f(g(x))=f\left(x^{3}\right)=3 x^{3}-5
\end{gathered}
$$

Using the first formula we get $(g \circ f)(1)=(3(1)-5)^{3}=(-2)^{3}=-8$.
Using the second formula we get $(f \circ f)(2)=9(2)-20=18-20=-2$.
Using the third formula we get $(f \circ g)(-1)=3(-1)^{3}-5=-3-5=-8$.
To get $(g-f)(0)$, remember that $(g-f)(x)=g(x)-f(x)$. So

$$
\begin{aligned}
(g-f)(0) & =g(0)-f(0) \\
& =0^{3}-(3(0)-5) \quad \text { (remember the parentheses here!) } \\
& =0-(-5)=5 .
\end{aligned}
$$

Graphs.

1. On the axes below, sketch the graph of $f(x)=\frac{2 x^{2}+6 x-8}{x-1}$.

$$
\begin{aligned}
f(x) & =\frac{2 x^{2}+6 x-8}{x-1} \\
& =\frac{2\left(x^{2}+3 x-4\right)}{x-1} \\
& =\frac{2(x-1)(x+4))}{x-1} \\
& =2(x+4)=2 x+8
\end{aligned}
$$

with $x \neq 1$. So the graph of $f(x)$ is identical to the graph of $y=2 x+8$, except that there is a hole at $x=1$. Therefore the graph looks like \longrightarrow

2. On the axes below, sketch the graph of $h(x)=2|x-1|+3$.

There are two ways to do this problem:
(1) Transformations of $|x|$. Notice that if we perform the following transformations, we will get $h(x)$:

$$
|x| \xrightarrow[\text { right } 1]{\text { shift }}|x-1| \xrightarrow[\text { vertically }]{\text { stretch }} 2|x-1| \xrightarrow[\text { up } 3]{\text { shift }} 2|x-1|+3 .
$$

Therefore the graph looks like the picture on the next page.
(2) Piecewise function.

$$
\begin{aligned}
h(x)= & \begin{cases}2(x-1)+3 & \text { if } x-1 \geq 0 \\
-2(x-1)+3 & \text { if } x-1<0\end{cases} \\
& = \begin{cases}2 x+1 & \text { if } x \geq 1 \\
-2 x+5 & \text { if } x<1\end{cases}
\end{aligned}
$$

$h(1)=2(1)+1=3$, so the vertex is at $(1,3)$, and we get the graph shown.

3. The graph of $f(x)$ is shown at right.

On the same axes, sketch the graph of $f(-x)$.
The graph of $f(-x)$ is shown with dashed lines. Notice that it is the (horizontal) reflection of $f(x)$ about the y-axis.

Work and Answer. You must show all relevant work to receive full credit.

1. Write $f(x)=\frac{|3 x-6|}{x-2}$ as a picewise function and graph the function. What is the domain of $f(x)$?

$$
\begin{aligned}
f(x) & = \begin{cases}\frac{3 x-6}{x-2} & \text { if } 3 x-6>0 \\
\frac{-(3 x-6)}{x-2} & \text { if } 3 x-6<0\end{cases} \\
& = \begin{cases}\frac{3(x-2)}{x-2} & \text { if } 3 x>6 \\
\frac{-3(x-2)}{x-2} & \text { if } 3 x<6\end{cases} \\
& = \begin{cases}3 & \text { if } x>2 \\
-3 & \text { if } x<2 .\end{cases}
\end{aligned}
$$

Notice that the first case says " $>$ " rather than " \geq " since
 $f(x)$ is undefined at $x=2$. In fact, the domain of $f(x)$ is $\{x \mid x \neq 2\}$.
From the piecewise function, we can see that the graph looks like the one shown.
2. Let $f(x)=\sqrt{x+1}$.
(a) Find the slope of the secant line to the graph of $f(x)$ from the point $(x, \sqrt{x+1})$ to the point $(a, \sqrt{a+1})$, where $x \neq a$. Simplify.

The slope is

$$
\begin{aligned}
\frac{\sqrt{x+1}-\sqrt{a+1}}{x-a} & =\frac{\sqrt{x+1}-\sqrt{a+1}}{x-a} \cdot \frac{\sqrt{x+1}+\sqrt{a+1}}{\sqrt{x+1}+\sqrt{a+1}} \\
& =\frac{(x+1)-(a+1)}{(x-a)(\sqrt{x+1}+\sqrt{a+1})} \\
& =\frac{x-a}{(x-a)(\sqrt{x+1}+\sqrt{a+1})} \\
& =\frac{1}{\sqrt{x+1}+\sqrt{a+1}} .
\end{aligned}
$$

(b) Using your answer to part (2a), find the slopes of the secant lines
i. between the points $(1, \sqrt{2})$ and $(3,2)$

Here $x=1$ and $a=3$, so the slope is $\frac{1}{\sqrt{1+1}+\sqrt{3+1}}=\sqrt{\frac{1}{\sqrt{2}+2}}$. Notice that $\sqrt{x+1}=$ $\sqrt{2}$ and $\sqrt{a+1}=2$, exactly the y-coordinates of the points given. So in this case we can just use the y-coordinates in the denominator.
ii. between the points $(-1,0)$ and $(8,3)$

Here $x=-1$ and $a=8$, so the slope is $\frac{1}{0+3}=\frac{1}{3}$.
iii. between the points $(-1,0)$ and $(0,1)$

Here $x=-1$ and $a=0$, so the slope is $\frac{1}{0+1}=1$.

