Finding the n-th term of a sequence - Section 11.1

To develop a formula for the n-th term of a sequence $\left\{a_{n}\right\}$, look for the following patterns:

(a) The Arithmetic Pattern.

If the terms count up by the same number each time, then the n-th term will look like that number times n, plus or minus some correction term.

Example. $\{-4,-1,2,5,8,11, \ldots\}$.
Notice that each term in the sequence is 3 more than the one before. Therefore the n-th term is $3 n \pm \xi$, where the ξ depends on where the sequence starts. If the first term is a_{1}, then the n-th term is $a_{n}=3 n-7$, since a_{1} must be -4 . If the first term is a_{0}, then the n-th term is $a_{n}=3 n-4$, since a_{0} must be -4 .
The following are all correct representations of the above sequence:

- $\{3 n-7\}_{n=1}^{\infty}$
- $\{3 n-4\}_{n=0}^{\infty}$
- $\{3 n+2\}_{n=-2}^{\infty}$

(b) The Power Pattern.

If the terms are obtained by taking powers of successive integers, then the n-th term will look like $(n \pm \xi)^{\boldsymbol{d}}$, where the ξ depends on where the sequence starts.

Example. $\{4,9,16,25, \ldots\}$.
Notice that each term in the sequence is a perfect square, starting with 2^{2}. Therefore the n-th term is $(n \pm \xi)^{2}$ for some ξ. If the first term is a_{2}, then the n-th term is simply $a_{n}=n^{2}$, since a_{2} must be 4 . If the first term is a_{1}, then the n-th term is $a_{n}=(n+1)^{2}$, since $\mathrm{k} a_{1}$ must be 4 .
The following are all correct representations of the above sequence:

- $\left\{n^{2}\right\}_{n=2}^{\infty}$
- $\left\{(n+1)^{2}\right\}_{n=1}^{\infty}$
- $\left\{(n+2)^{2}\right\}_{n=0}^{\infty}$

(c) The Geometric (Exponential) Pattern.

If the terms are obtained by multiplying by the same number each time, then the n-th term will look like that number to the $(n \pm \xi)$-th power, where the ξ depends on where the sequence starts.

Example. $\left\{\frac{1}{2}, 1,2,4,8,16, \ldots\right\}$.
Notice that each term in the sequence is twice the one before. Therefore the n-th term is $2^{n \pm \xi}$ for some ξ. If the first term is a_{-1}, then the n-th term is simply $a_{n}=2^{n}$, since a_{-1} must be $\frac{1}{2}$. If the first term is a_{1}, then the n-th term is $a_{n}=2^{n-2}$, since a_{1} must be $\frac{1}{2}$.
The following are all correct representations of the above sequence:

- $\left\{2^{n-2}\right\}_{n=1}^{\infty}$
- $\left\{2^{n+1}\right\}_{n=-2}^{\infty}$
- $\left\{2^{n}\right\}_{n=-1}^{\infty}$

(d) The Alternating Pattern.

If the terms alternate, i.e. switch from positive to negative every term, then the pattern contains a multiple of $(-1)^{n \pm \xi}$ for some ξ. If $n \pm \xi$ is even, then the n-th term will be positive, so adjust ξ so that the correct terms are positive.

Example. $\left\{\frac{2}{3},-\frac{2}{3}, \frac{2}{3},-\frac{2}{3}, \ldots\right\}$.
The following are all correct representations of the above sequence:

- $\left\{(-1)^{n-1} \frac{2}{3}\right\}_{n=1}^{\infty}$
- $\left\{(-1)^{n+1} \frac{2}{3}\right\}_{n=1}^{\infty}$
- $\left\{(-1)^{n} \frac{2}{3}\right\}_{n=0}^{\infty}$

(e) A Combination of Patterns.

Combine the above techniques, but be careful to adjust everything so that the patterns all start correctly.
Example. $\left\{0, \frac{2}{3},-\frac{4}{9}, \frac{6}{27},-\frac{8}{81}, \ldots\right\}$.
Observe the following patterns:
(i) Counting by 2's in the numerators
(ii) Powers of 3 in the denominators
(iii) Alternating terms, starting with a negative

Therefore our n-th term will look something like

$$
(-1)^{\star \cdot} \frac{2 n \pm \rho}{3} .
$$

Choose an n to begin with. I'll pick $n=0$. Then adjust everything so that plugging in $n=0$ gives $a_{0}=0$:

$$
a_{n}=(-1)^{n+1} \frac{2 n}{3^{n}} .
$$

Alternate solution: start with $n=1$. Then the sequence is

$$
\left\{(-1)^{n} \frac{2 n-2}{3^{n-1}}\right\}_{n=1}^{\infty}
$$

Notice the following convenient trick:
Convenient Trick. To start the sequence from $n=1$ instead of $n=0$, I replaced all the n 's in the n-th term formula by $n-1$. Similarly, if I had wanted to begin with $n=-43$, I could have replaced all the n 's in the n-th term formula by $n+43$:

$$
\left\{(-1)^{n+44} \frac{2 n+86}{3^{n+43}}\right\}_{n=-43}^{\infty}
$$

Practice Problems.

For each problem, find a formula for a_{n}. If your first term is not a_{1}, be sure to make it clear what your first term is by writing the sequence in the form $\left\{a_{n}\right\}_{n=\text { ? }}^{\infty}$.

1. $\{1 \cdot 4,4 \cdot 8,7 \cdot 16,10 \cdot 32, \ldots\}$
2. $\{-8,-1,0,1,8,27,64, \ldots\}$
3. $\left\{-\frac{1}{6}, \frac{4}{7},-2, \frac{64}{9},-\frac{256}{10}, \ldots\right\}$
