1. Prove Proposition 1.18(d)(e)(f).

2. This exercise why we consider series with a countable number of terms.

 So let I be an uncountable index set and let $x_i > 0$ for all $i \in I$.

 We define

 $$ \sum_{i \in I} x_i = \sup_{J \subseteq I, \text{finite}} \sum_{j \in J} x_j $$

 Prove that $\sum_{i \in I} x_i = +\infty$.

 Hint: Show that $I = \bigcup_{n=1}^{\infty} \{ i \in I : x_i > \frac{1}{n} \}$.

3. Let $x \in (0,1)$ and $p \in \mathbb{N}$ with $p \geq 2$. In this exercise, you will prove that there exists a sequence of integers

 $\{a_n\}_{n \geq 1}$ such that $0 \leq a_n \leq p - 1$ for all $n \geq 1$ and $x = \sum_{n=1}^{+\infty} \frac{a_n}{p^n}$. So in base p, $x = 0.a_1a_2a_3\ldots$

 First, you have to come up with a recursive definition of a_n. To make your definitions look nicer, define $a_0 = 0$.

 Recall the following definition:

 The integral part of a real number t (notation: $[t]$) is the largest integer smaller than or equal to t.

 Then we have:

 If $t \in \mathbb{R}$ and $a \in \mathbb{Z}$ then $a = [t] \iff a \leq t < a + 1$.

 To come up with a formula for a_n, consider this: if (in decimal form) $x = 0.7\ldots$ then we have/expect

 $$ \frac{7}{10} \leq x < \frac{8}{10} $$

 We can rewrite this as $7 \leq 10x < 8$.

 So in general (in decimal form), if $x = 0.a_1a_2\ldots$ then (it seems) we get that

 $$ \frac{a_1}{10} \leq x < \frac{a_1 + 1}{10} $$

 and so $a_1 \leq 10x < a_1 + 1$. This should allow you to find a ‘formula’ for a_1 in terms of x (or x and a_0 since we put $a_0 = 0$) (and yes, it will involve the integral part function).

 Now we can do something similar to define a_2 in terms of x, a_0 and a_1.

 (a) Give a recursive definition for a_n for $n \geq 1$.

 (b) Prove that $0 \leq a_n \leq p - 1$ and $0 \leq x - \frac{a_1}{p} - \frac{a_2}{p^2} - \cdots - \frac{a_n}{p^n} < \frac{1}{p^n}$ for all $n \in \mathbb{N}$.

 (c) Prove that $x = \sum_{n=1}^{+\infty} \frac{a_n}{p^n}$.