
Computation

Visualization

Programming

For Use with MATLAB®

Higher-Order Spectral
Analysis Toolbox

User’s Guide
Version 2

Ananthram Swami
Jerry M. Mendel

Chrysostomos L. (Max) Nikias

How to Contact the Authors

Please note that support and maintenance is provided by United Signals & Systems, Inc. (the
authors of the toolbox), and is no longer provided by The MathWorks.

a.swami@ieee.org Technical support and product enhancement suggestions
usands@pacbell.net Sales, pricing, and general information

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from United Signals & Systems, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of United Signals & Systems, Inc. Software License Agreement shall
pertain to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to United Signals & Systems, Inc.

Higher-Order Spectral Analysis Toolbox User’s Guide

 COPYRIGHT 1993 - 2001 by United Signals & Systems, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1993 First printing (The MathWorks)
September 1995 Second printing (The MathWorks)
January 1998 Third printing (The MathWorks)

i

Contents

About the Authors

1
Tutorial

Introduction . 1-2

Polyspectra and Linear Processes . 1-4
Introduction . 1-4
Definitions . 1-6
Why Do We Need Higher-Order Statistics? 1-10
Bias and Variance of an Estimator . 1-11
Estimating Cumulants . 1-12

Examples . 1-14
Estimating Polyspectra and Cross-polyspectra 1-15

Estimating the Power Spectrum . 1-15
Estimating Bispectra and Cross-Bispectra 1-16
Examples . 1-18
Examples . 1-19

Estimating Bicoherence . 1-20
Examples . 1-20

Testing for Linearity and Gaussianity 1-22
Examples . 1-24

ii Contents

Parametric Estimators, ARMA Models 1-26
MA Models . 1-29
Examples . 1-30
AR Models . 1-31
Examples . 1-32
ARMA Models . 1-32
Examples . 1-34
AR Order Determination . 1-34
Examples . 1-35
MA Order Determination . 1-36
Examples . 1-37

Linear Processes: Impulse Response Estimation 1-37
The Polycepstral Methods . 1-38
Examples . 1-39
Examples . 1-41
The Matsuoka-Ulrych Algorithm . 1-41
Examples . 1-42

Linear Processes: Theoretical Cumulants and Polyspectra . . 1-43
Examples . 1-43

Summary . 1-45

Linear Prediction Models . 1-47
Levinson Recursion . 1-47
Trench Recursion . 1-49

Examples . 1-50
Deterministic Formulation of FBLS . 1-53
Adaptive Linear Prediction . 1-54

RIV Algorithm: Transversal Form . 1-56
Examples . 1-57
RIV Algorithm: Double-Lattice Form 1-58
Examples . 1-60

Summary . 1-61

Harmonic Processes and DOA . 1-62
Resolution and Variance . 1-65
AR and ARMA Models . 1-66
Pisarenko’s Method . 1-67
Multiple Signal Classification (MUSIC) 1-68
Minimum-Norm Method . 1-69
ESPRIT . 1-70

iii

Criterion-Based Estimators . 1-72
Cumulant-Based Estimators . 1-74

Examples . 1-75
Examples . 1-77

Summary . 1-79

Nonlinear Processes . 1-80
Solution Using Cross-Bispectra . 1-80

Examples . 1-82
Solution Using FTs . 1-82

Examples . 1-83
Quadratic Phase Coupling . 1-84

Examples . 1-87
Summary . 1-88

Time-Frequency Distributions . 1-89
Wigner Spectrum . 1-90

Examples . 1-93
Examples . 1-94

Wigner Bispectrum . 1-94
Examples . 1-96
Examples . 1-97

Wigner Trispectrum . 1-98
Examples . 1-99
Examples . 1-100

Summary . 1-100

Time-Delay Estimation . 1-101
A Cross-Correlation Based Method . 1-101

Examples . 1-103
A Cross-Cumulant Based Method . 1-103

Examples . 1-105
A Hologram Based Method . 1-105

Examples . 1-107
Summary . 1-107

iv Contents

Case Studies . 1-108
Sunspot Data . 1-108
Canadian Lynx Data . 1-114

Examples . 1-114
A Classification Example . 1-120
Laughter Data . 1-122
Pitfalls and Tricks of the Trade . 1-131

Data Files . 1-134

References . 1-139

2
Reference

Function Tables . 2-2
Higher-Order Spectrum Estimation: Conventional Methods . . 2-2
Higher-Order Spectrum Estimation: Parametric Methods 2-3
Quadratic Phase Coupling (QPC) . 2-3
Second-Order Volterra Systems . 2-4
Harmonic Retrieval . 2-4
Time-Delay Estimation (TDE) . 2-4
Array Processing: Direction of Arrival (DOA) 2-4
Adaptive Linear Prediction . 2-5
Impulse Response (IR), Magnitude and
Phase Retrieval . 2-5
Time-Frequency Estimates . 2-5
Utilities . 2-6
Demo . 2-6

Miscellaneous . 2-7
Prompting . 2-7
Guided tour . 2-7
Addenda . 2-7

About the Authors

 About the Authors

vi

About the Authors

Ananthram Swami
Ananthram Swami received his B.Tech, M.S. and Ph.D. degrees in electrical
engineering from the Indian Institute of Technology at Bombay, Rice
University, and the University of Southern California, respectively. He has
held positions with Unocal, USC, CS-3 and Malgudi Systems. He is currently
a Research Scientist at the Army Research Lab, Adelphi, MD.

Dr. Swami has published over fifty journal and conference papers in the areas
of modeling and parameter estimation of non-Gaussian processes. He is
co-organizer and co-chair of the Eighth IEEE Signal Processing Workshop on
Statistical Signal and Array Processing, Corfu, Greece (June 1996).

Jerry M. Mendel
Jerry Mendel received his B.S. degree in Mechanical Engineering in 1959, his
M.S. in 1960, and his Ph.D. in 1963 in Electrical Engineering from the
Polytechnic Institute of Brooklyn, NY. Currently he is Professor of Electrical
Engineering at USC in Los Angeles.

Dr. Mendel is a Fellow of the IEEE, a Distinguished Member of the IEEE
Control Systems Society, a member of Tau Beta Pi, Pi Tau Sigma, and Sigma
Xi, and a registered Professional Control Systems Engineer in California. He
has authored more than 300 technical papers, three textbooks and four other
books related to his research in estimation theory, deconvolution, higher-order
statistics, neural networks and fuzzy logic.

Chrysostomos L. (Max) Nikias
Chrysostomos L. (Max) Nikias received his B.S. degree in Electrical and
Mechanical Engineering from the National Technical University of Athens,
Greece and his M.S. and Ph.D. degrees in Electrical Engineering from the State
University of New York at Buffalo in 1980 and 1982. Currently he is a
Professor of Electrical Engineering at USC in Los Angeles, where he is also
Director of CRASP and Associate Dean of Academic Research.

Dr. Nikias is a Fellow of the IEEE. He is the author of over 150 journal and
conference papers, two textbooks, a monograph, and four patents. He is
co-author of the textbook Higher-Order Spectral Analysis: A Nonlinear Signal
Processing Framework, Prentice-Hall, Inc. 1993.

1

Tutorial

Introduction . 2

Polyspectra and Linear Processes 4

Linear Prediction Models 47

Harmonic Processes and DOA 62

Nonlinear Processes 80

Time-Frequency Distributions89

Time-Delay Estimation 101

Case Studies . 108

Data Files . 134

References . 139

1 Tutorial

1-2

Introduction
This section of the User’s Guide describes how to begin using the Higher-Order
Spectral Analysis Toolbox for your signal processing applications. It assumes
familiarity with basic MATLAB

®, as well as a basic understanding of signals
and systems.

There is much more information in a stochastic non-Gaussian or deterministic
signal than is conveyed by its autocorrelation or power spectrum. Higher-order
spectra, which are defined in terms of the higher-order moments or cumulants
of a signal, contain this additional information. The Higher-Order Spectral
Analysis (HOSA) Toolbox provides comprehensive higher-order spectral
analysis capabilities for signal processing applications. The toolbox is an
excellent resource for the advanced researcher and the practicing engineer, as
well as the novice student who wants to learn about concepts and algorithms
in statistical signal processing.

The Higher-Order Spectral Analysis Toolbox is a collection of M-files that
implement a variety of advanced signal processing algorithms for spectral
estimation, polyspectral estimation, and computation of time-frequency
distributions, with applications such as parametric and nonparametric blind
system identification, time delay estimation, harmonic retrieval, direction of
arrival estimation, parameter estimation of Volterra (nonlinear) models, and
adaptive linear prediction. Other potential applications include acoustics,
biomedicine, econometrics, exploration seismology, nondestructive testing,
oceanography, plasma physics, radar, sonar, speech etc.

For the newcomer to the field of higher-order statistics (spectra), some
excellent starting places are:

[T2] Mendel, J.M., “Tutorial on higher-order statistics (spectra) in signal
processing and system theory: Theoretical results and some applications,”
Proc. IEEE, Vol. 79, pp. 278-305, 1991.

[T3] Nikias, C.L. and J.M. Mendel, “Signal processing with higher-order
spectra,” IEEE Signal Processing Magazine, Vol. 10, No 3, pp. 10-37, July 1993

[T4] Nikias, C.L. and A.P. Petropulu, Higher-Order Spectra Analysis: A
Nonlinear Signal Processing Framework, New Jersey: Prentice-Hall, 1993.

[T1] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.

Introduction

1-3

The field of higher-order statistics (spectra) and its applications to various
signal processing problems are relatively new. As such, there is no guarantee
that a particular Higher-Order Spectral Analysis Toolbox routine will work
well on your data. United Signals Systems, Inc., will be updating and
upgrading the Higher-Order Spectral Analysis Toolbox from time to time to
incorporate new routines and provide users with guidance on the applicability
of existing routines as more experience is obtained through their use.

The “Tutorial” has numerous examples that reinforce the theory and
demonstrate how to use the toolbox functions. All of the data files used by these
examples are included in your Higher-Order Spectral Analysis Toolbox
distribution diskette, and are described in the section on “Data Files.” We
encourage you to try out the examples yourself. Additional examples may be
found in the demo, which can be invoked via hosademo. A later section in the
“Tutorial” demonstrates how to deal with real data.

1 Tutorial

1-4

Polyspectra and Linear Processes
In this section, we will define cumulants, polyspectra, and various other
related statistics, such as bicepstra and bicoherence. We will discuss tests for
linearity and Gaussianity, and we will develop cumulant-based algorithms for
estimating the parameters of linear (e.g., ARMA) processes.

Introduction
The notion of decomposing a signal into its harmonic components dates back to
the analysis of the motion of planets (“the music of the spheres,” as the
Pythagorians called it), phases of the moon, laws of musical harmony, Newton’s
spectral decomposition of light (1677), Bernouilli (1738) and Euler’s (1755)
analysis of vibrating membranes, and Prony’s approximation for vibrating
mechanisms (1793). Modern Fourier Analysis, as we know it today, received its
foundations in the work of Fourier (1807), although the roots of the Fast
Fourier Transform (FFT) can be traced back to Gauss’s work on orbital
mechanics (1805).

We will assume, without loss of generality, that the processes or signals of
interest to us are zero mean. We will also assume that the processes are
discrete-time, with a sampling interval of T = 1, corresponding to a normalized
sampling frequency of 1 Hz, so that the Nyquist frequency is 0.5 Hz.

The power spectrum is the primary tool of signal processing, and algorithms for
estimating the power spectrum have found applications in areas such as radar,
sonar, seismic, biomedical, communications, and speech signal processing.
Analog equipment to estimate the spectrum, namely the spectrum analyzer,
has been around for more than five decades, and may be found in almost any
lab. Our toolbox not only offers a substitute for that equipment; it expands the
analyst’s toolkit to include algorithms more sophisticated than the simple
conventional spectral analysis techniques.

Polyspectra and Linear Processes

1-5

The usefulness of the power spectrum arises from an important theorem,
known as Wold’s decomposition, which states that any discrete-time stationary
random process can be expressed in the form,

x(n) = y(n)+ z(n)

such that:

1 Processes y(n) and z(n) are uncorrelated with one another;

2 Process y(n) has a causal linear process representation,

where and u(n) is a white-noise process; and,

3 z(n) is singular, that is, it can be predicted perfectly (with zero variance)
from its past.

An example of a singular process is the harmonic process,
. A process with z(n) ≡ 0 has a purely continuous

spectrum; additionally, a strictly band-limited process is also singular.

Since real world signals cannot be strictly band limited, we may think of the
Wold decomposition as decomposing a process into a linear process (which has
a continuous spectrum) and a harmonic process (which has a line spectrum).

It is also important to note that the theorem only states that u(t) is
uncorrelated; it does not state that u(t) is i.i.d., (higher-order white). For
example, u(n) might be the output of an all-pass system whose input is an i.i.d.
process. We need higher-order statistics to determine whether or not u(t) is
i.i.d., or merely uncorrelated. Other motivations for using higher-order
statistics (HOS) are discussed throughout this “Tutorial”.

y n() h k()u n k–()

k 0=

∞

∑=

h 0() 1= h2 k()
k 0=

∞∑ ∞<, ,

s n() α j2πfn()exp=

1 Tutorial

1-6

Definitions
The autocorrelation function or sequence of a stationary process, x(n), is
defined by,

(1-1)

where E{⋅} denotes the ensemble expectation operator. The power spectrum is
formally defined as the Fourier Transform (FT) of the autocorrelation sequence
(the Wiener-Khintchine theorem)

(1-2)

where ƒ denotes the frequency. An equivalent definition is given by

(1-3)

where X(ƒ) is the Fourier Transform of x(n)

(1-4)

A sufficient, but not necessary, condition for the existence of the power
spectrum is that the autocorrelation be absolutely summable. The power
spectrum is real valued and nonnegative, that is, Pxx(ƒ) ≥ 0; if x(n) is real
valued, then the power spectrum is also symmetric, that is, Pxx(ƒ) = Pxx(–ƒ).

As we shall see next, higher-order moments are natural generalizations of the
autocorrelation, and cumulants are specific nonlinear combinations of these
moments.

The first-order cumulant of a stationary process is the mean, C1x := E{x(t)} . The
higher-order cumulants are invariant to a shift of mean; hence, it is convenient
to define them under the assumption of zero mean; if the process has nonzero
mean, we subtract the mean, and then apply the following definitions to the
resulting process. The second-, third- and fourth-order cumulants of a
zero-mean stationary process are defined by [4],

Rxx m() := E x∗ n()x n m+(){ }

Pxx ƒ() Rxx m() j2πƒm–()exp

m ∞–=

∞

∑=

Pxx ƒ() := E X ƒ()X∗ ƒ(){ }

X ƒ() x n() j2πƒn–().exp

n ∞–=

∞

∑=

Polyspectra and Linear Processes

1-7

(1-5)

(1-6)

(1-7)

where M2x(m) = E{x(n) x(n + m)}, and equals C2x(m), for a real-valued process.
The first-order cumulant is the mean of the process; and the second-order
cumulant is the autocovariance sequence. Note that for complex processes,
there are several ways of defining cumulants depending upon which terms are
conjugated.

The zero-lag cumulants have special names: C2x(0) is the variance and is
usually denoted by ; C3x(0,0) and C4x(0,0,0) are usually denoted by γ3x and
γ4x. We will refer to the normalized quantities, as the skewness and

 as the kurtosis. These normalized quantities are both shift and scale
invariant. If x(n) is symmetric distributed, its skewness is necessarily zero (but
not vice versa); if x(n) is Gaussian distributed, its kurtosis is necessarily zero
(but not vice versa). Often the terms skewness and kurtosis are used to refer to
the unnormalized quantities, γ3x and γ4x.

If x(n) is an i.i.d. process, its cumulants are nonzero only at the origin. If x(n) is
statistically independent of y(n), and z(n) = x(n) + y(n), then

with similar relationships holding for cumulants of all orders. This additivity
property simplifies cumulant-based analysis.

C2x k() E x* n()x n k+(){ }=

C3x k l,() E x* n()x n k+()x n l+(){ }=

C2x k()C2x l m–()– C2x l()C2x k m–()–

C4x k l m, ,() E x* n()x n k+()x n l+()x* n m+(){ }=

M2x
* m()M2x k l–()–

σx
2

γ3x σ2x
3⁄

γ4x σ2x
4⁄

C4z k l m, ,() C4x k l m, ,() C4y k l m, ,(),+=

1 Tutorial

1-8

The cumulants of a stationary real-valued process are symmetric in their
arguments, that is,

Hence, the fundamental region of support is not the entire k-D plane. For
example, for k = 2, C2x(k), k ≥ 0, specifies C2x(k) everywhere. It is easily shown
that the nonredundant region for C3x(k,l) is the wedge

{(k,l) : 0 ≤ l ≤ k ≤ ∞},

 and for C4x(k,l,m), it is the cone,

{(k,l,m) : 0 ≤ m ≤ l ≤ k ≤ ∞}.

The kth-order polyspectrum is defined as the FTs of the corresponding
cumulant sequence:

(1-8)

(1-9)

(1-10)

which are respectively the power spectrum, the bispectrum, and the
trispectrum. Note that the bispectrum is a function of two frequencies, whereas
the trispectrum is a function of three frequencies. In contrast with the power
spectrum which is real valued and nonnegative, bispectra and trispectra are
complex valued.

C3x k l,() C3x l k,() C3x k– l k–,()= =

C2x k() C2x k–()=

C4x k l, m,() C4x l k m, ,() C4x k m l, ,() C4x k– l k m k–,–,()= = =

S2x ƒ() C2x k()e j2πƒκ–

k ∞–=

∞

∑=

S3x ƒ1 ƒ2,() C3x k l,()e
j2πƒ1k–

e
j2πƒ2l–

l ∞–=

∞

∑
k ∞–=

∞

∑=

S4x ƒ1 ƒ2 ƒ3, ,() C4x k l m, ,()e
j2π ƒ1(k– ƒ2l ƒ3m)+ +

k l m, , ∞–=

∞

∑=

Polyspectra and Linear Processes

1-9

For a real-valued process, symmetry properties of cumulants carry over to
symmetry properties of polyspectra. The power spectrum is symmetric:
S2x(ƒ) = S2x(–ƒ). The symmetry properties of the bispectrum are given by [56]:

(1-11)

Hence, a nonredundant region of support for the bispectrum is the triangle
with vertices (0,0), (1/3,1/3) and (1/2,0); recall that we have assumed a
normalized sampling frequency of 1 Hz.

Symmetry properties of the trispectrum include:

The literature is somewhat confusing both in the derivation, as well as in the
description of the nonredundant regions. The nonredundant region for a
continuous-time band-limited process, with a Nyquist frequency of 0.5 Hz, is
the triangle with vertices (0,0), (1/4,1/4), (1/2,0). A tutorial treatment of the
differences between the continuous-time and the discrete-time cases is given in
[47]; related discussions may be found in [63]. The nonredundant region of the
trispectrum is discussed in [6, 9, 47].

Similar to the cross-correlation, we can also define cross-cumulants; for
example,

(1-12)

The cross-bispectrum is defined by,

(1-13)

Note that the bispectrum S3x(ƒ1,ƒ2) is a special case of the cross-bispectrum
obtained when x = y = z.

The cross-bicoherence is another useful statistic which is defined as,

S3x ƒ1 ƒ2,() S3x ƒ2 ƒ1,() S3x ƒ1 ƒ1– ƒ2–,()= =

S3x ƒ– 1 ƒ2 ƒ2,–,() S3x
* ƒ– 1 ƒ– 2,().= =

S4x ƒ1 ƒ2 ƒ3,,() S4x ƒ1 ƒ3 ƒ2,,() S4x ƒ2 ƒ1 ƒ3,,()= =

S4x ƒ– 1 ƒ2 ƒ– 1 ƒ3 ƒ– 1,,() S4x
* ƒ– 1 ƒ– 2 ƒ– 3, ,().= =

Cxyz k l,() E x∗ n()y n(k)z n(l)+ +{ }=

Sxyz ƒ1 ƒ2,() Cxyz k l,()e
j2πƒ1k–

e
j2πƒ2l–

l ∞–=

∞

∑
k ∞–=

∞

∑=

1 Tutorial

1-10

(1-14)

The autobicoherence is obtained when x = y = z. M-file bicoherx can be used to
estimate the cross-bicoherence, and bicoher can be used to estimate the
bicoherence.

The cross-bicepstrum of three processes is defined by

(1-15)

and is well-defined only if Sxyz(ƒ1,ƒ2) is nonzero everywhere.

Why Do We Need Higher-Order Statistics?
Motivation to use cumulants and polyspectra of order k > 2 is given by the
following (mk = (m1 . . . , mk-1)):

• If z(n) = x(n) + y(n), and x(n) and y(n) are mutually independent processes,
then Ckz(mk) = Ckx(mk) + Cky(mk).

• If x(n) is Gaussian, then Ckz(mk) = 0, k > 2.

• Hence, if z(n) = x(n) + w(n), where w(n) is Gaussian and independent of x(n),
then, for k > 2, Ckz(mk) = Ckx(mk). Thus, we can recover the higher-order
cumulants of a non-Gaussian signal even in the presence of colored Gaussian
noise.

• Let x(n) be a linear process, that is, , where u(n) is
i.i.d. Then, it follows that:

(1-16)

(1-17)

(1-18)

bicxyz ƒ1 ƒ2,()
Sxyz ƒ1 ƒ2,()

S2x ƒ1 ƒ2+()S2y ƒ1()S2z ƒ2()
---=

bxyz m n,() Sxyz ƒ1 ƒ2,()()e
j2πƒ1m

e
j2πƒ2n

ln ƒ1 ƒ2dd∫∫=

x n() h
k∑ k()u n(k)–=

C2x k() γ2u h∗
n
∑ n()h n(k)+=

C3x k l,() γ3u h∗
n
∑ n()h n(k)h n l+()+=

C4x k l, m,() γ4u h∗
n
∑ n()h n(k)h n l+()h∗ n m+()+=

Polyspectra and Linear Processes

1-11

(1-19)

(1-20)

(1-21)

where γku = Cku(0). Note that the power spectrum does not carry any
information about the phase of H(ƒ). In contrast, if u(n) is non-Gaussian, this
phase information can be recovered from the higher-order polyspectra. Thus,
the standard minimum-phase assumption, which is necessary when the
process is Gaussian or only second-order statistics are used, may be dropped.

• Any process can always be considered to be a linear process with respect to
its second-order statistics; that is, given Ryy, we can always find {h(k)} and
an uncorrelated process u(n), such that, Ryy(m) = Rxx(m), where

. In other words, the autocorrelation sequence
cannot give any evidence of nonlinearity. In contrast, higher-order
cumulants can give evidence of nonlinearity.

• Processes of the form whose phase is a
polynomial in time t, are called polynomial phase processes; the FTs of such
processes tend to be flat, whereas suitably defined slices of higher-order
spectra reveal structure that permits estimation of p and the ak’s.

To summarize, cumulants are useful: (1) if the additive noise is Gaussian and
the signal is non-Gaussian, (2) the linear system is non-minimum phase (that
is, mixed-phase), or (3) the process is nonlinear.

Bias and Variance of an Estimator
In practice, we estimate cumulants and polyspectra from data. These estimates
are, themselves, random, and are characterized by their bias and variance.

Let x(n) denote a stationary process; we assume that all relevant statistics
exist and have finite values. Let s denote some statistic, defined on x(n). Let
denote an estimate of the statistic based on N observations, . Since
x(n) is a random process, the estimate is also random; clearly, will not

S2x ƒ() γ2u H ƒ() 2
=

S3x ƒ1 ƒ2,() γ3uH ƒ1()H ƒ2()H∗ ƒ1 ƒ2+()=

S4x ƒ1 ƒ2 ƒ3, ,() γ4uH ƒ1()H ƒ2()H ƒ3()H∗ ƒ1 ƒ2 ƒ3+ +()=

x n() h
k∑ k()u n(k)–=

x t() a t() j(exp aktk)
k 0=

p∑=

ŝN
x n(){ }n 0=

N 1–

ŝN ŝN

1 Tutorial

1-12

equal s. The estimate is a good estimate if it is “near” s. This notion is
clarified by introducing the ideas of bias and consistency.

The bias of an estimator is defined as E{ } – s; the estimate is said to be
unbiased if the bias is zero, that is,

E{ } = s.

Often this holds true only as , in which case the estimate is said to be
asymptotically unbiased.

The bias, by itself, does not completely characterize the estimate. If the
estimate is good, we expect that will take on values around the true
quantity s. The natural measure of the spread is the squared deviation around
the true quantity, s,

.

The estimate is said to be (asymptotically) consistent if the squared deviation
goes to zero, as . This condition is sometimes called mean-square
consistency. A consistent estimate is necessarily (asymptotically) unbiased.

Estimating Cumulants
In practice, we have a finite amount of data, , and we must obtain
consistent estimates of cumulants. The sample estimates are given by,

(1-22)

(1-23)

(1-24)

ŝN

ŝN

ŝN

N ∞→

ŝN

E ŝN s–
2

 
 
 

N ∞→

x n(){ }n 0=
N 1–

Ĉxy k() 1
N3
------- x∗

n N1=

N2

∑ n()y n k+()=

M̂xy k() 1
N3
------- x

n N1=

N2

∑ n()y n k+()=

Ĉxyz k l,() 1
N3
------- x∗

n N1=

N2

∑ n()y n k+()z n l+()=

Polyspectra and Linear Processes

1-13

(1-25)

where N1 and N2 are chosen such that the summations involve only x(n)’s with
; unbiased estimates are obtained if N3 is set equal to the actual

number of terms which are averaged; for example,

Usually we set N3 to N and obtain estimates that are asymptotically unbiased.
Autocumulants are obtained when w = x = y = z. These estimates are known to
be consistent provided the process x(n) satisfies some weak mixing conditions
[5]. For example, for large N, the variance of the sample estimate of the
third-order cross-cumulant is given by

where c is a finite constant that depends upon the auto- and cross-moments
(cumulants) of orders 1 through 6 of the processes x(n), y(n), and z(n).

These definitions assume that the processes are zero mean; in practice, the
sample mean is removed first. Routines cum2x, cum3x, and cum4x may be
used to estimate cross-cumulants of orders 2, 3, and 4; cumest may be used to
estimate the autocumulants.

Ĉwxyz k l m, ,() 1
N3
------- w∗

n N1=

N2

∑ n()x n k+()y n l+()z∗ n m+()=

Ĉwx k()Cyz l m–()– Ĉwy l()Cxz k m–()–

M̂wz
*

m()M̂xy l k–()–

n 0 N 1–,[]∈

E Ĉxyz
N

k l,(){ } Cxyz k l,()=

var Ĉxyz
N

k l,(){ } c N⁄=

1 Tutorial

1-14

Examples
We will simulate a non-Gaussian ARMA process, and then estimate its
cumulants:

rand('seed',0); randn('seed',0);
u=rpiid(1024,'exp'); n=25;
y=filter([1,–2], [1,–1.5,0.8], u);
for k=–n:n,
cmat(:,k+n+1)=cumest(y,3,n,128,0,'biased',k);
end
subplot(121), mesh(–n:n,–n:n, cmat)
subplot(122), contour(–n:n,–n:n,cmat,8)

Time-series y is segmented into records of 128 samples each, with no overlap;
biased estimates of the third-order cumulants are obtained from each segment
and then averaged; the (i,j) element of cmat will contain the estimate of
C3y(i – n – 1,j – n – 1), for i,j = 1, . . ., 2 * n + 1. You can use the function cumtrue
to compute and display the true cumulants.

The contour plot in Figure 1-1 reveals the basic symmetry of third-order
cumulants, namely C3y(τ1,τ2) = C3y(τ2,τ1). Other symmetry properties may be
verified by using cumtrue to estimate the true cumulants of a linear process.

Figure 1-1: Estimated Third-Order Cumulants of an ARMA(2,1) Process
(cumest)

−40
−20

0
20

40

−50

0

50
−20

−15

−10

−5

0

5

10

15

−20 −10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

Polyspectra and Linear Processes

1-15

Estimating Polyspectra and Cross-polyspectra
Estimators of polyspectra are natural extensions of estimators of the power
spectrum, with some important differences in the smoothing requirements.
Hence, it will be useful to review power spectrum estimation techniques first.

Estimating the Power Spectrum
Techniques for estimating the conventional power spectrum fall into three
broad categories: the nonparametric or conventional methods, the parametric
or model-based methods, and the criterion-based methods.

The first category includes two classes: the direct methods, which are based on
the FT of the observed data; and indirect methods, which are based on
computing the FT of the estimated autocorrelation sequence of the data. The
class of parametric methods includes algorithms such as MA, AR, and ARMA
modeling, and eigen-space based methods such as MUSIC, Min-Norm, etc.,
which are appropriate for harmonic models. Criterion-based methods include
Burg’s Maximum Entropy algorithm and Capon’s Maximum-Likelihood
algorithm.

The conventional estimators are easy to understand and easy to implement,
but are limited by their resolving power (the ability to separate two closely
spaced harmonics), particularly when the number of samples is small. For
random signals, these estimators typically require long observation intervals
in order to achieve acceptably low values for the variances of the estimate.

The natural estimator of the power spectrum is the FT of ,

This estimator, also known as the periodogram, can be computed as the
squared magnitude of an N-point FFT of the observed time series. Since

, the periodogram is an unbiased estimator of Pxx(ƒ).
However, the periodogram is not a consistent estimator, because

; that is, its variance does not go to zero as . [56]

R̂xx
N

m()

Ixx
N ƒ() R̂xx

N
m()e j2πƒm–

m N– 1–=

N 1–

∑ 1
N
---- x k()e j2πƒk–

k 0=

N 1–

∑
2

.= =

E R̂xx
N

m(){ } Rxx m()=

var Pxx
N ƒ()() Pxx

2 ƒ()= N ∞→

1 Tutorial

1-16

If x(n) is Gaussian white noise with variance σ2, its power spectrum should be
flat, Pxx(ƒ) = σ2; the variance of the periodogram estimate, , is given by,

Note that the variance does not go to zero as , that is, the estimate is not
consistent. The covariance between estimates at frequencies ƒ1 = k/N and
ƒ2 = m/N is zero; thus, on the one hand as N increases, the variance at any ƒ
does not go to zero; however, the spacing between estimates that are
uncorrelated decreases as 1/N; as a consequence, the fluctuations in the
periodogram become more rapid as N increases. As an example, try
semilogy(abs(fft(rpiid(n,‘nor')))) for increasing values of n. Proper
smoothing smooths out the fluctuations and yields consistent estimates.

It should be emphasized that the variance expressions are meaningful only in
the context of random processes; the FT, itself, is a very useful tool for
analyzing deterministic signals.

The periodogram estimate can be made consistent in several ways, by:

• Smoothing (filtering) in the frequency domain;

• Multiplying the autocorrelation sequence by a lag window function;

• Multiplying the time-domain data by a window function; or,

• Averaging several periodogram estimates.

These observations carry over to bispectral estimates as we see next.

Estimating Bispectra and Cross-Bispectra
The natural estimate of the cross-bispectrum is the FT of the third-order
cumulant sequence, that is,

(1-26)

Pxx
N ƒ()

var Pxx
N ƒ()() σ4 1 2π(sin ƒN)

N 2π(sin ƒ)
------------------------------ 

  2
+ .=

N ∞→

Ixyz
N ƒ() Ĉxyz k l,()e

j2πƒ1k–
e

j2πƒ2l–

l N– 1–=

N 1–

∑
k N– 1–=

N 1–

∑=

1

N2
-------XN

* ƒ1 ƒ2+()YN ƒ1()ZN ƒ2()=

Polyspectra and Linear Processes

1-17

where XN(ƒ) is the FT of . This estimate, known as the
cross-biperiodogram, is not a consistent estimate. As in the case of the power
spectrum, the estimate can be made consistent by suitable smoothing. The
bispectrum and the biperiodograms are special cases obtained when x = y = z.

Smoothing can be accomplished by multiplying the third-order cumulant
estimates by a lag window function. Let w(t,s) be a 2-D window function, whose
2-D FT is bounded and nonnegative; further, assume

The window function, w(t,s), must also satisfy the symmetry properties of
third-order cumulants. For example, 2-D lag windows may be derived from 1-D
lag windows as follows,

w(t,s) = w(t)w(s)w(t – s)

which satisfies the symmetry conditions of C3x(m,n).

Consider the scaled-parameter window, wM(t,s) = w(t/M,s/M), and the
smoothed estimate,

(1-27)

Under the assumption that the cross-bispectrum Sxyz(ƒ1,ƒ2) is sufficiently
smooth, the smoothed estimate is known to be consistent, with variance given
by,

(1-28)

for 0 < ƒ1 < ƒ2 < π. Note the implied consistency condition is and
M2/ , as , and ∫ ∫w2(t,s)dt ds < ∞. The estimator in (1-27), for x = y
= z, is implemented in routine bispeci.

An alternative approach is to perform the smoothing in the frequency domain.
As in the case of power spectra, we may segment the data into K records of

x n(){ }n 0=
N 1–

w 0 0,() 1;= w2 t s,() td sd ∞< ;∫∫
 ƒi

2W ƒ1 ƒ2,() ƒ1d ƒ2d ∞< ;∫∫ ƒiW ƒ1 ƒ2,() ƒ1d ƒ2d 0= ;∫∫

Ŝxyz ƒ1 ƒ2,() Ĉxyz k l,()wM k l,()e
j2πƒ1k–

e
j2πƒ2l–

l N– 1–=

N 1–

∑
k N– 1–=

N 1–

∑=

var Ŝxyz ƒ1 ƒ2,()() M2

N
--------S2x ƒ1 ƒ2+()S2y ƒ1()S2z ƒ2() w2 t s,() td sd∫∫=

M ∞→
N ∞→ N ∞→

1 Tutorial

1-18

length L = N/K, compute and average the biperiodograms, and then perform
the frequency smoothing, using the frequency-domain filter, WM(ƒ1,ƒ2), the FT
of wM(t,s). In this case,

(1-29)

for 0 < ƒ1 < ƒ2 < π. Windowing is not required in this case provided K is large;
however, this does not ensure that the bias will go to zero. Rao and Gabr [56,
Sec. 2.4] have derived a bispectral window which is optimum in terms of bias
and variance; windows satisfying other optimality criteria are discussed in [56,
40]. The Rao-Gabr window is available as an option in routine bispeci.
Routine bispecdx computes estimates of the cross-bispectrum.

Examples
load qpc
bspec=bispeci(zmat,21,64,0,'unbiased',128,1);
dbspec=bispecdx(zmat,zmat,zmat,128,3,64,0);

The contour plots of the two estimates of the bispectrum are shown in Figure
1-2 and Figure 1-3.

Figure 1-2 Indirect Estimate of the Bispectrum (bispeci)

var Ŝxyz ƒ1 ƒ2,()() M2

LK
--------S2x ƒ1 ƒ2+()S2y ƒ1()S2z ƒ2() w2 t s,() td sd∫∫=

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Bispectrum estimated via the indirect method

f1

f2

Polyspectra and Linear Processes

1-19

Figure 1-3 Direct Estimate of the Bispectrum (bispecdx)

Both the direct and the indirect estimates reveal peaks at (0.10, 0.15) and the
11 other symmetric locations as indicated by (1.11). The data used in this
example consist of quadratically phase-coupled harmonics with frequencies at
0.10, 0.15, and 0.25 Hz, and an uncoupled harmonic at 0.40 Hz; quadratic
phase-coupling is discussed further in the section on “Nonlinear Processes,”
where we will see that the presence of pronounced peaks in the bispectrum is
indicative of nonlinear phenomena.

Let x(n) be a (zero mean) white Gaussian process, with variance ; let
y(n) = x2(n). It is easy to show that the cross-bispectrum of (x,x,y) should be a
constant, equal to . This follows by noting that if a,b,c,d are zero mean and
jointly Gaussian, then,

E{abcd} = cum(a,b)cum(c,d) + cum(a,d)cum(b,c) + cum(a,c)cum(b,d).

Examples
randn('seed',0);
x=randn(64,64); y=x.*x;
dbic=bispecdx(x,x,y,128,5);

Notice that an apparent structure along the axes (which is an artifact due to
the removal of the mean), consistent estimates along the axes, and the

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Cross−Bispectrum

f1

f2

σx
2

2σx
4

1 Tutorial

1-20

anti-diagonal can be obtained only by sufficient smoothing; a smoothing
window of size 5 is inadequate. The lines ω1 = 0, ω2 = 0, and ω1 + ω2 = 0, are
called the principal submanifolds, [4, 6]. This example also illustrates that
passing a Gaussian process through a nonlinearity makes it non-Gaussian.

Estimating Bicoherence
Given estimates of the power spectra and the cross-bispectrum, we can
estimate the cross-bicoherence as indicated in (1-14). It has been shown that
consistent estimates of the power spectrum and the bispectrum lead to
consistent estimates of the bicoherence.

Routines bicoher and bicoherx may be used to estimate the autobicoherence
and the cross-bicoherence.

Examples
load qpc
dbspec=bicoher(zmat,128);

Figure 1-4 Bicoherence Estimate (bicoher)

A contour plot of the estimated bicoherence is shown in Figure 1-4. The data
consists of quadratically phase-coupled harmonics with frequencies at 0.10,

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Bicoherence estimated via the direct (FFT) method

f1

f2

Polyspectra and Linear Processes

1-21

0.15, and 0.25 Hz, and an uncoupled harmonic at 0.40 Hz. The maximum value
of the bicoherence is 0.6442; the value is less than unity because of the additive
noise, which affects the power spectrum estimate.

load nl1
bicx=bicoherx(x,x,y);

You should see the display in Figure 1-5. The cross-bicoherence is significantly
nonzero, and nonconstant, indicating a nonlinear relationship between x and
y. The nonsharpness of the peaks, as well as the presence of structure around
the origin, indicates that the nonlinear relationship is not purely of the form
y(n) = x2(n), and that x,y are not narrow-band processes. From the description
of nl1.mat, we see that y is the output of a second-order Volterra system whose
input, x, is Gaussian.

Figure 1-5 Cross-Bicoherence Estimate (bicoherx)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Cross−Bicoherence

f1

f2

1 Tutorial

1-22

Testing for Linearity and Gaussianity
In subsequent sections we discuss algorithms for the estimation of parameters
of non-Gaussian linear processes; of course, these routines assume that the
data are linear and non-Gaussian. We call a process, y(n), linear, if it can be
represented by

where u(n) is assumed to be i.i.d. If u(n) is Gaussian (non-Gaussian), we say
that y(n) is linear Gaussian (non-Gaussian). How do we know that the data are
non-Gaussian, and that they are additionally linear?

Hinich [24] has developed algorithms to test for non-skewness (loosely called
Gaussianity) and linearity. The basic idea is that if the third-order cumulants
of a process are zero, then its bispectrum is zero, and hence its bicoherence is
also zero. If the bispectrum is not zero, then the process is non-Gaussian; if the
process is linear and non-Gaussian, then the bicoherence is a nonzero constant:
see (1-19), (1-20), and (1-14) with x = y = z. Thus, we have a hypothesis testing
problem for non-Gaussianity (non-zero bispectrum):

H1: the bispectrum of y(n) is nonzero;

H0: the bispectrum of y(n) is zero.

If hypothesis H1 holds, we can test for linearity, that is, we have a second
hypothesis testing problem,

H1’: the bicoherence of y(n) is not constant;

H0’: the bicoherence of y(n) is a constant.

If hypothesis H0’ holds, the process is linear.

Assume that we have good (perfect) estimates of the power spectrum, and
consider the sample estimate of the squared bicoherence,

(1-30)

y n() h k()u n k–() ,
k
∑=

bicˆ xxx ƒ1 ƒ2,()
2 Ŝxxx ƒ1 ƒ2,()

2

S2x ƒ1 ƒ2+()S2x ƒ1()S2x ƒ2()
---=

Polyspectra and Linear Processes

1-23

It has been established in [6] that sample estimates of the bispectrum using
conventional methods are asymptotically (complex) Gaussian; additionally, the
estimates at different frequencies are uncorrelated, provided the frequency
separation is greater than the reciprocal of the effective window length. If
is Gaussian distributed, we know that is chi-squared distributed with
two degrees of freedom.

If ≡ 0, then the statistic in(1-30) is a central chi-squared r.v. with
two degrees of freedom. The squared bicoherence is summed over the P points
in the nonredundant region; details are given in [24]. The resulting statistic S
is χ2 distributed, with 2P degrees of freedom. Hence it is easy to devise a
statistical test to determine whether the observed S is consistent with a central
chi-squared distribution; this “consistency” is reported as probability-of-false
alarm value, that is, the probability that we will be wrong in assuming that the
data have a nonzero bispectrum. If this probability is small, say 0.95, we accept
the assumption of zero bispectrum, that is, we cannot reject the Gaussianity
assumption. This test is implemented in routine glstat.

Let us assume that we have estimated S and are confident that the data is
non-Gaussian. Now if the data are also linear, we expect the squared
bicoherence to be constant for all ƒ1 and ƒ2. In practice, the estimated
bicoherence will not be flat: we can obtain an estimate of the constant value by
computing the mean value of the bicoherence over the points in the
nonredundant region; let λ denote this mean value. The squared bicoherence is
chi-squared distributed with two degrees of freedom and noncentrality
parameter λ. The sample interquartile range, R, of the squared bicoherence can
be estimated, and compared with the theoretical interquartile range of a
chi-squared distribution with two degrees of freedom and noncentrality
parameter λ. If the estimated interquartile range is much larger or much
smaller than the theoretical value, then we should reject the linearity
hypothesis. This test is implemented in routine glstat.

Note that a zero bispectrum is not proof of Gaussianity, since the higher-order
cumulants and polyspectra need not be identically zero. The bispectrum of a
time-reversible process is identically equal to zero. For example, consider the
linear process , where u(n) is an i.i.d. process. If u(n)
is symmetrically distributed, then the bispectrum of x(n) is zero. If u(n) is
Gaussian, the bispectrum as well as all higher-order polyspectra of x(n) are
identically zero. If u(n) is Laplace distributed, the bispectrum and all
odd-ordered polyspectra of x(n) are zero, but the even-ordered polyspectra
(such as the trispectrum) are not identically equal to zero.

Ŝxxx
Ŝxxx

2

Ŝxxx ƒ1 ƒ2,()

x n() h k()u n k–()
k∑=

1 Tutorial

1-24

Note also that univariate symmetry or zero skewness does not mean zero
bispectrum. In the above example, suppose that , and ;
then, C3x(0,0) = , so that process x(n) has zero skewness.
This does not imply that C3x(τ1,τ2) ≡ 0 or S3x(ω1,ω2) ≡ 0. In particular, let
h(0) = –h(1) = 1, h(k) = 0, ∀k > 1; then, x(n) = u(n) – u(n – 1) is easily seen to be
symmetrically distributed around zero, but the bispectrum of x(n) is not
identically zero.

In general, we use notions of skew and symmetry in the context of random
variables (or univariate pdfs); bispectra and trispectra relate to random
processes (multivariate pdfs).

Examples
load gldat
glstat(g,0.51,256);

Test statistic for Gaussianity is 22.179 with df = 48, Pfa = 0.9995.

Linearity test: R (estimated) = 0.88819, lambda = 0.6982, R (theory) = 2.9288,
N = 14.

The data in g are Gaussian distributed. Since the Pfa is high, we cannot reject
the Gaussian hypothesis; but if the Gaussian hypothesis holds, the bispectrum
must be zero, and we cannot conclude, on the basis of the bispectrum alone,
whether or not the process is linear; hence, the results of the linearity test
should be ignored in this case. In this case, the data are Gaussian, hence, also
linear.

glstat(u,0.51,256);

Test statistic for Gaussianity is 17.4885 with df = 48, Pfa = 1.

Linearity test: R (estimated) = 0.72383, lambda = 0.51704, R (theory) = 2.7453,
N = 14.

The data in u are uniformly distributed. Since the Pfa is high, we cannot reject
the Gaussian hypothesis; but if the Gaussian hypothesis holds, the bispectrum
must be zero, and we cannot conclude, on the basis of the bispectrum alone,
whether or not the process is linear; hence, the results of the linearity test
should be ignored in this case.

glstat(e,0.51,256);

γ3u 0≠ h3 k()
k∑ 0=

γ3u h3 k()
k∑ 0=

Polyspectra and Linear Processes

1-25

Test statistic for Gaussianity is 253.3529 with df = 48, Pfa = 0.

Linearity test: R (estimated) = 7.8894, lambda = 9.4555, R (theory) = 8.4655,
N = 14.

The data in e obey the single-sided exponential distribution. The Pfa in
rejecting the Gaussian hypothesis is very small; hence, we are comfortable in
accepting the hypothesis of non-Gaussianity. The estimated and theoretical
interquartile ranges (the R’s) are fairly close to one another; hence, we accept
the linearity hypothesis. The estimate of the interquartile range was based on
N=14 samples.

glstat(x,0.51,256);

Test statistic for Gaussianity is 277.5194 with df = 48, Pfa = 0.

Linearity test: R (estimated) = 6.7513, lambda = 10.6519, R (theory) = 8.968,
N = 14.

x was obtained by passing through a linear filter; hence, it is linear and
non-Gaussian. We reject the Gaussianity assumption since the Pfa is small; we
accept the linearity hypothesis since the estimated and theoretical
interquartile ranges are close to one another.

glstat(z,0.51,256);

Test statistic for Gaussianity is 12640.0657 with df = 48, Pfa = 0.

Linearity test: R (estimated) = 606.9323, lambda = 492.5759, R (theory) =
59.9088, N = 14.

z was obtained by passing x through a nonlinearity, z(n) = x3(n): hence, z is
non-Gaussian (and nonsymmetric). We reject the Gaussianity assumption
since the Pfa is small; we cannot accept the linearity hypothesis since the
estimated interquartile ranges is much larger than the theoretical value.

glstat(l,0.51,256);

Test statistic for Gaussianity is 49.931 with df = 48, Pfa = 0.3965.

Linearity test: R (estimated) = 2.6047, lambda = 1.8124, R (theory) = 4.0038,
N = 14.

1 Tutorial

1-26

The data in l are i.i.d. and Laplace distributed (symmetric). Since the Pfa is
high, we cannot reject the Gaussian hypothesis; but if the Gaussian hypothesis
holds, the bispectrum must be zero, and we cannot conclude, on the basis of the
bispectrum alone, whether or not the process is linear; hence, the results of the
linearity test should be ignored in this case.

Parametric Estimators, ARMA Models
So far we have looked at nonparametric estimators. Parametric estimators are
often useful, either because they lead to parsimonious estimates, or because
the underlying physics of the problem suggest a parametric model.

The basic idea is that if x(n) depends upon a finite set of parameters, θ, then all
of its statistics can be expressed in terms of θ. For example, we obtain
parametric estimates of the power spectrum by first estimating θ, and then
evaluating Pxx(f|θ).

The specific form we postulate for the relationship between θ and the sequence
x(n) constitutes a model. A popular model in time-series analysis is the
Auto-Regressive Moving-Average (ARMA) model,

(1-31)

where u(n) is assumed to be an i.i.d. sequence, with variance . The
Auto-Regressive (AR) polynomial is defined by,

(1-32)

where a(0) = 1. A(z) is assumed to have all its roots inside the unit circle, that
is, A(zo) = 0 →|zo| < 1; this condition is also referred to as the minimum-phase
or causal and stable condition. In general, no restrictions need to be placed on
the zeros of the Moving-Average (MA) polynomial,

(1-33)

x n() a k()x n k–()

k 1=

p

∑– b k()u n k–()

k 0=

q

∑+=

σu
2

A z() a k()z k–

k 0=

p

∑=

B z() b k()z k–

k 0=

q

∑=

Polyspectra and Linear Processes

1-27

however, B(z) is usually assumed to be minimum-phase. The minimum-phase
assumption is usually not true for discrete-time processes which are obtained
by sampling a continuous-time process; algorithms based on HOS do not
require this assumption.

The power-spectrum of the ARMA process is given by,

(1-34)

Note that the power spectrum does not retain any phase information about the
transfer function H(z) = B(z)/A(z). Since we do not have access to the sequence
u(n), one either assumes that u(n) has unit variance, or that b(0) = 1. Instead
of estimating Pxx(ƒ)∀ƒ∈[–1/2,1/2], as in the nonparametric approach, we have
to estimate only (p + q + 1) parameters, namely, , , and

.

Let h(n) denote the impulse response of the model in (1-31); hence, H(z) = B(z)/
A(z). The AR and MA parameters are related to the impulse response (IR) via,

(1-35)

(1-36)

In practice, the observed process is noisy, that is,

(1-37)

where process w(n) is additive colored Gaussian noise; the color of the noise is
usually not known.

Given the noisy observed data, y(n), we want to estimate the a(k)’s and the
b(k)’s in (1-31). We assume that the model orders p and q are known.

The determination of the model orders p and q is an important issue, and is
discussed later (routines arorder and maorder implement AR and MA model
order determination techniques). In general, it is better to overestimate model

Pxx ƒ() σu
2 B z() 2

A z() 2
------------------ z ej2πƒ

==

a{ k() }k 1=
p b{ k() }k 1=

q

σu
2

a k()h n k–()

k 0=

n

∑ b n() n 0 q,[]∈,=

0 n 0 q,[]∉,=

y n() x n() w n()+=

1 Tutorial

1-28

orders rather than to underestimate them (however, specific implementations
or algorithms may suffer from zero-divided-by-zero type problems).

Motivation to use cumulants for the ARMA parameter estimation problem is
as follows:

• Correlation-based methods can be used successfully only if q = 0 (pure AR)
and the additive noise is white.

• Even in the noiseless case, correlation-based methods cannot identify
inherent all-pass factors, and cannot resolve the phase of the system.

• Non-Gaussian processes are not completely characterized by their
second-order statistics; by using higher-order statistics, we are exploiting
more of the information contained in the data.

A note of caution: for odd-ordered cumulants, γku ≠ 0 does not imply that the
kth order polyspectrum can be used to reconstruct H(ƒ). For example, even if
γ3u ≠ 0, S3x(ƒ1,ƒ2) in (1-20) may be identically equal to zero. This can happen
when H(ƒ) is a relatively narrow-band bandpass signal; explicit conditions are
given in [63]. An even more trivial example is γ1u = E{u(n)} ≠ 0, but H(0) = 0, in
which case γ1x = 0. For polyspectra of even order, say 2k,

cannot be identically zero if γ2,u ≠ 0 [63].

The transfer function H(z) = B(z)/A(z) is said to have an inherent all-pass factor,
if a root of B(z) lies at 1/zo, where zo is a root of A(z). The power spectrum is
blind to all-pass factors. If the data are noise free, and if the ARMA model does
not have any inherent all-pass factors, then techniques based on the
autocorrelation/power spectrum may be used to estimate the model
parameters.

Once the ARMA parameters have been estimated, MATLAB’s routine freqz can
be used to estimate the transfer function and theoretical spectrum;
Higher-Order Spectral Analysis Toolbox routines bispect and trispect can be
used to compute the theoretical bispectrum and slices of the theoretical
trispectrum corresponding to the ARMA model.

Synthetic ARMA processes can be generated via routine armasyn; routine
rpiid can be used to generate i.i.d. sequences with various probability density
functions (pdf’s).

S2k ƒ,(ƒ,ƒ,… ƒ,– ƒ),– γ2k u, S2x ƒ() k γ2 u,
k⁄=

Polyspectra and Linear Processes

1-29

MA Models
Let us consider the pure MA case, that is, p = 0, in (1-31) through (1-37). It was
established in [19] that the process y(n) satisfies the set of equations,

(1-38)

(1-39)

where n = –q, . . ., 2q; ε3 = γ3ub(q)/γ2u, and ε4 = γ4ub(q)/γ2u. Equations (1-38) and
(1-39) can be readily verified by using the impulse response summation
formulas in (1-16) through (1-18). These equations are sometimes referred to
as the GM equations in the literature [19].

Equations (1-38) and (1-39) represent a set of 3q + 1 linear equations in the 2q
+ 1 unknowns, εm+1b(k), k = 0, . . ., q and bm(k), k = 1, . . ., q, where m = 2 or m
= 3. In [19], MA parameters were estimated from (1-38) or (1-40) by
simultaneously solving for the εm+1b(k)’s and b2(k)’s or b3(k)’s. A disadvantage
of the method is that it is overparameterized, and does not take into account
the relationship between the εm+1b(k)’s and the b2(k)’s [or b3(k)’s].

Additive white noise may be permitted, provided we eliminate the equations
involving C2y(0); this eliminates q + 1 equations, leaving us only 2q equations
in the 2q + 1 unknowns. The Min-Norm solution is not useful in this case.

A modification developed by Tugnait [72] appends the following sets of
equations to the preceding set of 2q equations:

(1-40)

(1-41)

C2y n() ε3b k()C3y n k– n k–,()

k 0=

q

∑ b2 k()C2y n k–()

k 1=

q

∑–=

C2y n() ε4b k()C4y n k– n k– n k–, ,()

k 0=

q

∑ b3 k()C2y n k–()

k 1=

q

∑–=

ε3C2y n() b k()C3y k n– q,()

k 1=

q

∑– C3y n– q,()=

ε4C2y n() b k()C4y k n– q 0, ,()

k 1=

q

∑– C4y n– q 0, ,()=

1 Tutorial

1-30

where n = –q, . . ., q, n ≠ 0. Now, we have 4q equations in 2q + 1 unknowns;
hence, we can obtain the least-squares solution.

We solve either (1-38) and (1-40), or (1-39) and (1-41). Since both b(k) and b2(k)
or b3(k) are estimated, we need some method for combining the estimates.

Let b1(k) and b2(k) denote the estimates of b(k) and b2(k). If all of the estimated
b2(k)’s are nonnegative, then the final MA parameter estimate is obtained as,

otherwise, .

When fourth-order cumulants are used, the method estimates both b(k) and
b3(k). Let b1(k) and b3(k) denote the estimates of b(k) and b3(k). If all the
estimated b3(k)’s have the same sign as the corresponding b1(k)’s, then the final
MA parameter estimate is obtained as,

otherwise, .

This algorithm is implemented in routine maest. If the observed process is
z(n) = y(n) + g(n), where g(n) is additive noise, independent of y(n), then
C2z(n) = C2y(n) + C2g(n), ∀n. Ιf g(n) is white, C2g(n) = 0, n ≠ 0; hence,
C2z(n) = C2y(n), n ≠ 0. In (1-40) and (1-41), we use the autocorrelation
C2y(n), n = ±1, . . ., ±q, hence, the algorithm can handle additive white noise but
not colored noise.

Examples
load ma1
bvec = maest (y,3,3,128);

The estimated parameters should be [1, 0.9714, 0.3814, –0.7759]. The true
parameters are [1, 0.9, 0.385, –0.771], and the signal is contaminated with
white Gaussian noise.

bvec = maest (y,3,4,256);

The estimated parameters should be [1, 0.9608, 0.4482, –0.7343].

b̂ k() sign b1 k()[] * 0.5 b1
2 k() b2 k()+[];=

b̂ k() b1 k()=

b̂ k() sign b1 k()[] * b1 k() b3 k() 1 3⁄
+[] 2;⁄=

b̂ k() b1 k()=

Polyspectra and Linear Processes

1-31

AR Models
The cumulants of the noisy process satisfy the “normal” equations,

(1-42)

(1-43)

(1-44)

which can be verified by expressing the cumulants in terms of the IR, h(n),
using (1-16) through (1-18), and by noting that .

The relationship between linear prediction (LP) and AR models is discussed in
detail in the section titled “Polyspectra and Linear Processes.” Here, we will
just point out that the least squares solution to the LP problem is given by
(1-42), with m = 1, . . ., p; these equations are called the normal equations
because the resulting prediction-error sequence is orthogonal to the data.
However, when q > 0 or when additive noise is present in the data, the normal
equations yield inconsistent estimates of the AR parameters. Equations (1-42)
through (1-44) yield consistent estimates, and can also be derived by
demanding that the prediction error sequence be orthogonal to an
instrumental process derived from the data [59, 64]. We put normal in quotes
to emphasize these differences.

Identifiability of the AR parameters is guaranteed by choosing p = q – p, . . ., q,
and m = q + 1, . . ., q + p; we may use more slices (ρ) or more lags (m) [67]. In
practice, we use sample estimates of the cumulants. This algorithm is
implemented in routine armarts. The pure AR case corresponds to q = 0 and is
implemented in routine arrcest. In both routines, you can use cumulant
orders (2, 3, or 4). It is also possible to simultaneously solve for the normal
equations based on cumulant orders 2 and 3 or 2 and 4.

a k()C2y m k–()

k 0=

p

∑ 0 m q>=

a k()C3y m k– ρ,()

k 0=

p

∑ 0 , m q>=

a k()C4y m k– ρ τ, ,()

k 0=

p

∑ 0 , m q ,>=

a k()h n k–()
k 0=

p∑ b n()=

1 Tutorial

1-32

Examples
Try the following

load ar1
ar(:,1)=arrcest (y,2,0,2,12,128);
ar(:,2)=arrcest (y,2,0,3,12,128);
ar(:,3)=arrcest (y,2,0,4,12,128);
ar(:,4)=arrcest (y,2,0,–3,12,128);
ar(:,5)=arrcest (y,2,0,–4,12,128);
disp(ar)

1.0000 1.0000 1.0000 1.0000 1.0000
-1.4636 -1.5559 -1.4963 -1.4912 -1.4755
0.7664 0.8779 0.8917 0.7973 0.7927

The true parameters are [1, –1.5, 0.8]. The five columns correspond to AR
estimates based on: (1) second-order, (2) third-order, (3) fourth-order, (4)
combined second-order and third-order, and (5) combined second-order and
fourth-order cumulants. Note that combined use of autocorrelation and
cumulants may give better results when the signal-to-noise ratio (SNR) is high.
In the case of low or moderate SNR, the correlation-based estimates will be
biased; estimates based on third-order (fourth-order) cumulants will be
unbiased if the additive noise is symmetric (Gaussian).

ARMA Models
As discussed in the previous section, we can determine the AR parameters
easily. We will ignore the estimation errors, and assume that ,
k = 1, . . ., p; this is justified if the data lengths are long enough to ensure good
estimates of the cumulants. In practice, errors in estimating the a(k)’s will
show up as an additive non-Gaussian noise term on the right-hand side of
(1-46).

Consider the residual time series obtained via,

(1-45)

â k() a k()=

z n() a k()y n k–()

k 0=

p

∑=

Polyspectra and Linear Processes

1-33

(1-46)

Routine armarts uses the residual time series method to estimate the ARMA
parameters — it estimates the AR parameters first (via the “normal”
equations); it then computes the AR-compensated time series via (1-45), and
finally estimates the MA parameters via routine maest (see (1-46)). Since w(n)
was assumed to be Gaussian, w1(n) is also Gaussian; if w(n) is white, w1(n) is
MA(p) noise. Routine maest assumes that the additive noise is white, hence the
results of armarts are meaningful only at high SNR.

An alternative solution based on is implemented in routine armaqs, which is a
q-slice method. The AR parameters are estimated via the normal equations as
before. The impulse response is then estimated via,

(1-47)

or via,

(1-48)

These equations can be readily verified by using (1-16) through (1-18) and
(1-35). The MA parameters are then obtained via (1-35), which is repeated
here:

(1-49)

b k()u n k–()

k 0=

q

∑ a k()w n k–()

k 0=

p

∑+=

b k()u n k–()

k 0=

q

∑ w1 n()

k 0=

p

∑+=

h n()
a k()C3y q k n,–()

k 0=

p∑
a k()C3y q k 0,–()

k 0=

p∑
---, n 1 … q, ,==

h n()
a k()C4y q k n 0, ,–()

k 0=

p∑
a k()C4y q k 0 0, ,–()

k 0=

p∑
--, n 1 … q, ,==

b n() a k()h n k–()

k 0=

p

∑ , n 1 … q., ,==

1 Tutorial

1-34

An interesting point is that we can simultaneously solve for the AR and IR
parameters. This algorithm is implemented in routine armaqs.

Weighted versions of (1-42) through (1-44), and nonlinear cumulant-matching
algorithms for the simultaneous estimation of AR and MA parameters are
discussed in [16] and [71].

Examples
load arma1
[avec,bvec]=armaqs(y,2,1,3,10,128);

Here we used third-order cumulants and the q-slice algorithm to estimate the
parameters of a non-Gaussian ARMA process. The estimated parameters
should be avec = [1, –0.8057, 0.6910], and bvec = [1, –1.9116]. The true AR and
MA parameters were [1, –0.8, 0.65] and [1, –2], respectively.

[avec, bvec] = armarts(y,2,1,3,12,128);

Here we used third-order cumulants and the residual time-series algorithm to
estimate the parameters of a non-Gaussian ARMA process. The estimated
parameters should be avec = [1, –0.7540, 0.6465], and bvec = [1, –1.5665]. The
true AR and MA parameters were [1, –0.8, 0.65] and [1, –2], respectively.

AR Order Determination
Let and denote the maximum expected values of the AR and MA orders.
Let

(1-50)

(1-51)

(1-52)

Then, the singular values of the matrix,

where k = 2, k = 3, or k = 4 are computed.

p q

c2y m() := C2y m()

c3y m() := C3y m(p)– … C3y, , m(q,[]T

c4y m() := C4y m(p 0,)– … C4 3()y, , m(q 0, ,[]T

Polyspectra and Linear Processes

1-35

Let s(m) denote the singular values. If the cumulant estimates are perfect, we
expect that exactly p of the singular values will be nonzero; with sample

estimates, we expect p dominant singular values. The AR order p is then given
by the value of n, which maximizes s(n) – s(n + 1), that is, it corresponds to the
index at which the singular values show the maximum drop. This is a
nonstatistical test, and is based on the fact that for an ARMA(p,q) model, only
p of the singular values should be nonzero. This algorithm is implemented in
routine arorder.

Examples
load arma1
p=arorder(y,3);

You should see the display in Figure 1-6. The estimated AR order is 2.

The time-series y corresponds to a non-Gaussian ARMA(2,1) process,
contaminated by AWGN, with SNR of 20 dB. The order determination is based
on third-order cumulants.

Figure 1-6 Estimate of AR Order Using SVD Method (arorder)

Ck

cky q 1+() ... cky q p+()

cky q p 1+ +() ... cky q 2p 1–+()

= … …...

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6
difference in singular values, cumulant order=3

1 Tutorial

1-36

MA Order Determination
The basic idea is that for an MA(q) process, the true values of the cumulant
C3y(m,0) will be identically zero, if m > q. When the true cumulants are
replaced by sample estimates, the estimated values of C3y(q + i,0), i > 0 will not
be identically zero; a statistical test is used to determine whether the estimated
values are close to zero. This test is based on estimating the theoretical
variance of the sample estimates of C3y(m,0).

Sample estimates, , and their variances are estimated for m ranging
from qmin to qmax, which reflect our a priori knowledge of the bounds on the
true order q.

For an MA(q) process, the asymptotic variance of the sample estimate of
C3y(q + 1,0) can be estimated via [20]

where N is the length of the time series.

The sample estimates are asymptotically Gaussian and unbiased; hence, the
threshold tc in

is given by

where erfinv is the MATLAB inverse error function; in practice, we use the
sample estimate . Let mo denote the largest value of m in the range qmin to
qmax for which |c3y(m + 1,0)| > tc(m + 1) (so that the hypothesis of MA(mo)
model fails); then, the estimated order is q = mo + 1; if such an m does not exist,
the MA order is declared to be qmax + 1. This algorithm is implemented in
routine maorder.

This is a statistical test, and pƒa specifies the fraction of the time that the test
results will be wrong. In other words, in a Monte Carlo simulation of 1000
trials, one should expect the test results to be wrong 1000 * pƒa times.

Ĉ3y m 0,()

σ2ˆ q 1+() 1

N2
------- 1 j

N
----– 

 

j q–=

2q 1+

∑
i 1=

N

∑ y2 i()y i q 1+ +() ĉ3y– q 1 0,+()[]=

y2 i j+()y i(j q 1) ĉ3y q(– 1 0,)+ + + +[]×

Pr ĉ3y m 1 0,+() tc m 1+()≤{ } 1 pƒa–=

tc m 1+() erƒinv 1 pƒa–() 2σ2 m 1+()[]= ,

σ2̂

Polyspectra and Linear Processes

1-37

Examples
load ma1;
q=maorder(y,0,6);

The following table will be displayed:

The columns in the table correspond to the estimated variance of c3y(q,0), the
estimated value of c3y(q,0), the corresponding threshold, and whether or not
the absolute value of the estimated c3y(q,0) exceeded the threshold.

The time-series y corresponds to an MA(3) process, contaminated by AWGN,
with SNR of 20 dB.

Linear Processes: Impulse Response Estimation
The basic model here is,

(1-53)

(1-54)

where additive noise w(n) is assumed to be symmetric distributed (not
necessarily Gaussian). Process u(n) is i.i.d., non-Gaussian, independent of the
noise, and satisfies 0 < |C3u(0,0)| < ∞.

q var(cqk) cqk thres result

0 7.17383e–003 7.31541e–001 5.24957e–001 0

1 6.60864e–002 –1.37221e–001 1.59332e–001 1

2 3.76124e–002 –4.11813e–001 3.80114e–001 0

3 7.04832e–003 5.06864e–003 1.64547e–001 1

4 3.77757e–003 –3.31784e–002 1.20463e–001 1

5 1.31938e–003 –6.87545e–002 7.11923e–002 1

6 4.47359e–003 1.43717e–003 1.31092e–001 1

Estimated MA order is 3

x n() h k()u n k–()

k ∞–=

∞

∑=

y n() x n() w n()+=

1 Tutorial

1-38

We will discuss two algorithms, both based on the notion of the logarithm of the
bispectrum.

The Polycepstral Methods
It is assumed that H(z) has no zeros on the unit circle. In this case, the
cepstrum of H(z) is well defined and is given by [42]

(1-55)

The bicepstrum is also well defined [43] and is given by,

(1-56)

(1-57)

The complex cepstrum, , is the inverse FT (IFT) of the log of the FT of h(n);
hence, h(n) is the IFT of the exponential of the FT of the complex cepstrum;
other techniques to obtain h(n) from are described in [42]. Notice that for
a linear process, the bicepstrum is nonzero only along the axes, m = 0, n = 0,
and the diagonal line, m = n.

Direct implementation of (1-56) demands 2-D phase unwrapping. Pan and
Nikias [43] have developed an alternative method, based on the relationship,

(1-58)

which, taking into account (1-57), reduces to

The complex cepstrum is known to be exponentially bounded; hence, one may
replace the infinite summation over m by a finite summation, m = –q to m = +p,

ĥ k() d∫ ƒ j2πƒk()exp Hln ƒ()=

b̂ m n,() ƒd 1 ƒd 2e
j2πƒ1m

e
j2πƒ2n

S3xln ƒ1 ƒ2,()∫∫=

ĥ m()δ m() ĥ n()δ n() ĥ m–()δ m n–()+ +=

ϒ3uln δ m()δ n()+

ĥ k()

ĥ k()

mb̂ m(n)C3y k m– l n–,(),

n ∞–=

∞

∑
m ∞–=

∞

∑ kC3y k l,()=

mĥ m() C3y k m– n,() C3y k m+ l m+,()+[]

m ∞–=

∞

∑ kC3y k l,()=

Polyspectra and Linear Processes

1-39

where p and q may be based on some a priori knowledge; note that the p and q
have nothing to do with the orders of an ARMA(p,q) process. Now we have a set
of linear equations for estimating a finite set of p + q parameters.

(1-59)

Note that the above equation does not involve ; the cepstrum at the origin
is related to the overall gain of the system. Because of the inherent scalar
ambiguity in estimating H(z) from power spectra or cumulant spectra, we let

 = 1. In practice sample estimates of the third-order cumulants are used;
this algorithm is implemented in routine biceps, where |k| ≤ max(p,q) and
|l| ≤ max(p,q)/2, which are the recommended ranges in [43].

Examples
load ma1
[hest, ceps]=biceps(y,8,8,128);

You should see the display in Figure 1-7. Note that the complex cepstrum
decays rapidly to zero. The true MA parameters are [1, 0.9, 0.385, –0.771].

Figure 1-7 Cepstrum and IR Estimated by Biceps

mĥ m() C3y k m– n,() C3y k m+ l m+,()+[]

m q–=

p

∑ kC3y k l,()=

ĥ 0()

ĥ 0()

−8 −6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

1.5
complex cepstrum

sample number

−40 −30 −20 −10 0 10 20 30 40
−5

0

5

10
impulse response

sample number

1 Tutorial

1-40

An alternative approach is based on the FFT. We may rewrite (1-58) as [43]

(1-60)

where IFT denotes 2-D inverse Fourier transform. Then we make use of (1-57)
to obtain the ’s from . The FFT approach is useful if the
cepstrum has long support. This algorithm is implemented in routine
bicepsf.

More generally, the polycepstrum is defined as the inverse FT of the log of the
corresponding polyspectrum (assuming that it exists),

For a linear process, the polycepstrum is nonzero only along the k – 1 axes, and
the main diagonal,

Tekalp and Erdem [69] showed a process, whose polycepstrum exists, is linear
if and only if its polycepstrum has the above k-line region of support. Based on
this, they have also proposed measures of linearity.

mb̂ m n,() IFT
FT kC3y k l,()()
FT C3y k l,()()

-- 
 =

ĥ k() mb̂ m n,()
ĥ k()

b̂kx m1 … mk 1–,,() ƒd 1… ƒd∫ k 1–
e

j2πƒ1m1…ej2πƒk 1– mk 1=

∫=

Skxln ƒ1 … ƒk 1–, ,()

b̂kx m1 … mk 1–, ,() ĥ ml() δ mn()

n l≠ n 1=;

k 1–

∏
l 1=

k 1–

∑=

ĥ+ m– l() δ m1 ml–()

l 2=

k 1–

∏

γkuln+ δ ml()

l 2=

k 1–

∏

Polyspectra and Linear Processes

1-41

Examples
load ma1
[hest, ceps]=bicepsf(y, 8);

You should see the display in Figure 1-8. Note that the complex cepstrum
decays rapidly to zero. The true MA parameters are [1, 0.9, 0.385, –0.771]; note
the scale ambiguity (including sign) in the estimated impulse response.

Figure 1-8 Cepstrum and IR Estimated by bicepsf

The Matsuoka-Ulrych Algorithm
We can write the bispectrum in terms of its magnitude and phase as,

S3x(ƒ1,ƒ2) = M(ƒ1,ƒ2)exp(jΦ(ƒ1,ƒ2)).

Let H(ƒ) = |H(ƒ)|exp(jθ(ƒ)) so that

(1-61)

(1-62)

−80 −60 −40 −20 0 20 40 60 80
−0.5

0

0.5

1

1.5
complex cepstrum

−80 −60 −40 −20 0 20 40 60 80
−2

−1

0

1

2

3
impulse response

M ƒ1 ƒ2,()ln γ3uln H ƒ1()ln H ƒ2()ln H ƒ1 ƒ2+()ln+ + +=

Φ ƒ1 ƒ2,() θ ƒ1() θ ƒ2() θ ƒ1 ƒ2+() mod 2π–+=

1 Tutorial

1-42

where ƒ1,ƒ2 take on discretized values on a grid. The assumption that |γ3u| =
1 will only introduce an overall scalar ambiguity; hence, (1-61) represents a set
of linear equations in the log-magnitude ln|H(ƒ)|. It is shown in [36] that a full
rank set of linear equations can be obtained by appropriate choice of ƒ1 and ƒ2.
The phase relationship in (1-62) holds only modulo 2π. If the unwrapped 2-D
phase were available, then (1-62) yields a linear set of equations in the phase
of the transfer function, θ(ƒ). This algorithm is implemented in routine matul,
where we also incorporate the phase-unwrapping algorithms of [54]. Because
of the phase ambiguity, this routine is not recommended for routine use.

Examples
cmat=cumtrue([1 –3.5 1.5],[1],3,5);
bsp=fft2(flipud(cmat),64,64);
hest=matul(bsp);

You should see the display in Figure 1-9. Here we computed the true
bispectrum of a MA(2) process, by evaluating the FT of its true cumulant
sequence. We then used the Matsuoka-Ulrych algorithm to estimate the
impulse response. Note the scale ambiguity (including sign).

Figure 1-9 IR Estimated via the Matsuoka-Ulrych Algorithm (matul)

−40 −30 −20 −10 0 10 20 30 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Estimated impulse response

sample number

Polyspectra and Linear Processes

1-43

Linear Processes: Theoretical Cumulants and
Polyspectra
If x(n) is an ARMA process, that is,

then, its impulse response can be calculated via
, where h(n) = 0 for n < 0, h(0) = 1, and b(n) = 0,

if .

For a linear process x(n) (x(n) = , where u(n) is i.i.d.)
cumulants and polyspectra of orders 2,3,4 are given by (1-16) through (1-18)
and (1-19) through (1-21).

We can estimate the true cumulants using routine cumest, the theoretical
bispectrum via routine bispect, and slices of the theoretical trispectrum via
routine trispect.

Examples
First, we will compute the theoretical third-order cumulants of an ARMA(2,1)
process, with AR parameters, [1, –1.5, 0.8], and MA parameters, [1, –2]; we will
then display the estimates using MATLAB’s functions mesh or contour:

cmat=cumtrue([1,-2],[1,–1.5,0.8],3,25);
clf, subplot(121)
mesh(–25:25,–25:25,cmat), grid on
subplot(122), contour(–25:25,–25:25,cmat,8,),grid on

You should see the display in Figure 1-10.

x n() x n k–()

k 1=

p

∑ b k()u n k–()

k 0=

q

∑+= ,

h n() h n k–()
k 1=

p∑– b n()+=
n 0 q,[]∉

h k()u n k–()
k∑

1 Tutorial

1-44

Figure 1-10 True Third-Order Cumulants of an ARMA(2,1) Process (cumtrue)

Let us now compute the theoretical bispectrum of another ARMA(2,1) process.

ma=[1 –2]; ar=[1 –0.8 0.65];
bisp=bispect (ma,ar,128);

You should see the display on Figure 1-11. The 12 dotted lines emanating from
the origin divide the bifrequency domain of the bispectrum into 12 regions of
symmetry.

Figure 1-11 Bispectrum of an ARMA(2,1) Process (bispect)

−40
−20

0
20

40

−50

0

50
−15

−10

−5

0

5

10

−20 −10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

f1

f2

Polyspectra and Linear Processes

1-45

We will compute several slices of the trispectrum and then display them as a
movie:

clf,clear
ma=[1 –2]; ar=[1 –0.8 0.65]; nfft=64;
n=10; M=moviein(2*n+1);
for k=–n:n
 trispect(ma,ar,nfft,k/(2*n));
 M(:,k+n+1)=getframe;
end
movie (M)
clear M

We computed several slices of the theoretical trispectrum of an ARMA process;
the slices correspond to ƒ3 = –0.5, –0.45, . . ., 0.45, 0.5. Then we used MATLAB’s
movie command to display them; moviein and getframe are also MATLAB
commands. It is instructive to change the MA parameters to [1 –1], and to
compare the
ƒ3 = 0 slice with the theoretical bispectrum created by bispect.

NOTE: if you encounter “OUT OF MEMORY” problems in running the example,
clear the workspace and then try again. If the problem persists, decrease n to,
say, 5; or install more memory on your machine.

Summary
We have discussed various algorithms for estimating bispectra and trispectra,
as well as algorithms for the blind system identification problem.

Sample estimates of cross-cumulants of orders 2, 3 and 4 may be obtained via
cum2x, cum3x, and cum4x; autocumulants can be estimated via cumest.
Nonparametric estimates of the bispectrum can be obtained via routines
bispeci and bispecd, which implement the indirect and direct estimators. The
direct estimate of the cross-bispectrum can be obtained via routine bispecdx.
Auto- and cross-bicoherences can be estimated via bicoher and bicoherx. The
theoretical bispectrum of a linear process can be computed via bispect;
trispect computes slices of the theoretical trispectrum of a linear process.
M-file glstat implements tests for non-Gaussianity (actually nonzero
bispectrum) and for linearity.

1 Tutorial

1-46

Three routines are available for nonparametric estimation of the impulse
response of a linear non-Gaussian process: matul implements the
Matsuoka-Ulrych method; given the bispectrum of the data, it estimates the
amplitude and phase of the transfer function separately; biceps uses the
bicepstral method; it uses sample estimates of the third-order cumulant;
bicepsf is a frequency-domain implementation of biceps and is useful if the
cepstra do not decay fast enough.

Several algorithms are available for estimating the (ARMA) parameters of
non-Gaussian linear processes. The ARMA orders can be estimated via
arorder and maorder. Routine arrcest can be used to estimate the AR
parameters of AR or ARMA processes, based on second-, third-, and
fourth-order cumulants. The estimates, based on cumulants of different orders,
may not be the same, if the process is nonlinear or has inherent all-pass factors,
or is noisy. The parameters of an MA process, contaminated by white noise,
may be estimated via routine maest.

ARMA parameters can be estimated via the residual time-series algorithm in
armarts; the MA estimation part of this three-step algorithm works well only
under good SNR conditions. Routine armaqs implements the q-slice algorithm;
it estimates both AR and MA parameters.

In this section, we have given a quick overview of the area of higher-order
statistics; for more extended tutorial expositions, see [41, 37, 38].

Linear Prediction Models

1-47

Linear Prediction Models
The AR model is also obtained if one considers the problem of linear prediction
(LP). Depending upon whether one chooses forward-, backward- or
forward-backward prediction criteria, different solutions are obtained.

The Levinson algorithm enables efficient estimation of the parameters of an
AR process from its autocorrelation (AC) sequence. In the deterministic
context, AR modeling leads to the forward backwards least squares (FBLS)
solution. The RLS algorithm is a time-recursive solution to the LP problem,
whereas the lattice algorithm provides a time- and order-recursive solution.

Levinson Recursion
Consider the linear prediction problem for a stationary process, x(n). In the
forward-prediction problem, we want to choose to minimize the
forward prediction error variance, ,

(1-63)

(1-64)

where the subscript p denotes the order of the predictor. Similarly, in the
backward-prediction problem, we want to choose to minimize the
backward prediction error variance, ,

(1-65)

(1-66)

ap k(){ }k 1=
p

Pp
ƒ

Pp
ƒ E ep

ƒ n()
2

 
 
 

=

ep
ƒ n() ap

* k()x n k–()

k 0=

p

∑ ap 0() 1=,=

cp k(){ }k 1=
p

Pp
b

Pp
b E ep

b n()
2

 
 
 

=

ep
b n() cp

* k()x n k–()

k 0=

p

∑ cp p() 1=,=

1 Tutorial

1-48

This leads to the normal equations

(1-67)

(1-68)

where ℜ is the (p + 1) × (p + 1) autocorrelation matrix, with (m,n) entry,
Rxx(n – m). It follows immediately that

(1-69)

The Levinson-Durbin recursion implemented in routine trench provides an
efficient order-recursive solution of the normal equations: it recursively solves
(1-67), for p = 1,2,. . . .

The recursion is given by: for m = 1, . . ., p, [32]

(1-70)

(1-71)

(1-72)

(1-73)

with initial conditions P0 = Rxx(0), ∆0 = Rxx(−1), and a0(0) = 1. In practice, we
replace Rxx(k) by its (biased) sample estimate. The resulting solution is

ℜap
Pp

ƒ

0
=

ℜcp
0

Pp
b= ,

c k() a* p k–() k, 0 … p Pp
ƒ

;, , Pp
b.= = =

∆m 1– am 1– k()Rxx k m–()

k 0=

m 1–

∑=

Γm

∆m 1–

Pm 1–
---------------–=

Pm Pm 1– 1 Γm–
2()=

am k() am 1– k() Γm+ a*
m 1– m k–() k 0 … m, ,=, ,=

Linear Prediction Models

1-49

guaranteed to be stable if biased estimates are used. Necessary and sufficient
conditions for the stability of the estimate are |Γm| < 1 ∀m.

The recursion involves computation of the Γm’s, which are also called the
reflection coefficients; a necessary and sufficient condition for stability
is |Γm| < 1.

Trench Recursion
If the matrix ℜ is Toeplitz but not Hermitian symmetric, then (1-69) does not
hold; this, for example, is the case when the so-called higher-order Yule Walker
equations,

(1-74)

are used, or when the cumulant-based normal equations are used, for example,

(1-75)

In both cases the resulting matrix is Toeplitz but not symmetric. An efficient
order-recursive solution to the system of equations is given by the Trench
recursion [74].

Let ℜ denote the nonsymmetric Toeplitz matrix whose (i, j) entry is ρ(i – j). The
recursion is given by

(1-76)

(1-77)

ap k()Rxx m k–()

k 0=

p

∑ 0 m q 1+ … q p+, ,=,=

ap k()C3x m k ρ,–()

k 0=

p

∑ 0 m q 1+ … q p.+, ,=,=

∆m 1–
ƒ am 1– k()ρ m k–()

k 0=

m 1–

∑=

∆m 1–
b cm 1– k()ρ 1– k–()

k 0=

m 1–

∑=

1 Tutorial

1-50

(1-78)

(1-79)

(1-80)

(1-81)

(1-82)

(1-83)

(1-84)

with initial conditions P0 = ρ(0), a0(0) = 1, and c0(0) = 1.

The inversion algorithm requires that the matrix ℜ be strongly nonsingular,
that is, R, as well as all of its principal minors, are nonsingular. The condition
of nonsingularity is weaker than the usual assumption of positive-definiteness.

In the symmetric positive-definite case, the Γ’s are bounded by unity, and the
Pm’s are nonincreasing, and cm(k) = am(m – k), k = 0, . . ., m. In the
non-Hermitian case, the Γ’s are not bounded, and the Pm’s may increase or
decrease.

This algorithm is implemented in trench.

Examples
Let us compute the autocorrelation sequence for an AR(4) model, with AR
parameters [1,–0.3,–0.1,–0.39,0.72] , and then apply the Trench recursion.

ar=[1,–0.3,–0.1,–0.39,0.72]; ma=1; nlags=6;
rvec=cumtrue (ma,ar,2,nlags);
[a2,c2,p2,gf2,gb2]=trench(rvec(7:13), rvec(7:–1:1));

Γm
ƒ ∆m 1–

ƒ

Pm 1–
---------------–=

Γm
b ∆m 1–

b

Pm 1–
---------------–=

Pm Pm 1– 1 Γm
ƒ

– *Γm
b()=

am m() Γm
ƒ

=

c0 m() Γm
b

=

am k() am 1– k() Γm
ƒ cm 1– k 1–()+ k 1 … m 1–, ,=,=

cm k() cm 1– k 1–() Γm
b am 1– k()+ k 1 … m 1–, ,=,=

Linear Prediction Models

1-51

The AR matrix, a2, should be

Note that the AR vectors for orders greater than three are all essentially the
same. The prediction error variance, p2, should be

[2.4049, 2.3881, 2.0764, 1.0000, 1.0000, 1.0000]′

The forward reflection coefficients, gf2, should be

[–0.0764, –0.0834, –0.3613, 0.7200, 0.0000, 0.0000]′

Since the Toeplitz matrix in this example is symmetric, gb2=gb1, and
c2=flipud(a2). Since the autocorrelation sequence corresponds to an AR(4)
model, the reflection coefficients are zero for m > 4, and the pfe’s remain
constant for m ≥ 4.

Now let us repeat this example using third-order cumulants:

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

–0.0764 –0.0700 –0.0399 –0.0300 –0.3000 –0.3000

0 –0.0834 –0.0581 –0.1000 –0.1000 –0.1000

0 0 –0.3613 –0.3900 –0.3900 –0.3900

0 0 0 0.7200 0.7200 0.7200

0 0 0 0 0.0000 0.0000

0 0 0 0 0 0.0000

rvec=cumtrue (ma, ar, 3,
nlags);

% third-order cumulants

rvec=rvec(:,nlags+1); % the C(m,0) slice

c=rvec(nlags+1:2*nlags); % positive lags

r=rvec(nlags+1:–1:1); % negative lags

[a4, c4, p4, gf4, gb4]=trench(c,r);

1 Tutorial

1-52

The forward AR matrix, a4, should be

 The backward AR coefficient matrix, c4, should be

and the prediction-error variances, p4, should be

[0.8892, 0.8810, 0.8417, 1.0000, 1.0000]′

The forward reflection coefficients, gf4, are,

[–0.2278, –0.1163, –0.2757, 0.7200, 0.0000]′

and the backward reflection coefficients, gb4, are

 [–0.1956, –0.0786, –0.1620, –0.2612, –0.0045]′

Since the Toeplitz matrix is not symmetric, gf4≠gb4, and a≠4flipud(c4). Note
also that the prediction error variances may increase with the prediction order.
(One can find the AR parameters by minimizing the variance of the
AR-compensated process, but not by minimizing the skewness.) Although the
correlation and cumulant sequences are derived from the same AR model, the
lower-order AR model fits are quite different.

1.0000 1.0000 1.0000 1.0000 1.0000

–0.2278 –0.2050 –0.1834 –0.3000 –0.3000

0 –0.1163 –0.0673 –0.1000 –0.1000

0 0 –0.2757 –0.3900 –0.3900

0 0 0 0.7200 0.7200

0 0 0 0 0.0000

0 0 0 0 –0.0045

0 0 0 –0.2612 –0.2599

0 0 –0.1620 –0.1141 –0.1137

0 –0.0786 –0.0454 –0.0278 –0.0261

–0.1956 –0.1776 –0.1588 –0.0868 –0.0900

1.0000 1.0000 1.0000 1.0000 1.0000

Linear Prediction Models

1-53

Deterministic Formulation of FBLS
In the deterministic formulation of the linear prediction problem, rather than
minimize the variance of the prediction errors, we minimize the sum of squared
errors, that is,

(1-85)

(1-86)

This leads to the deterministic normal equation,

(1-87)

(1-88)

where the deterministic correlation matrix Φ is given by

(1-89)

(1-90)

Matrix Φ is Hermitian, but not Toeplitz, and the relationship in (1-69) is not
satisfied (for finite N).

Pp
b ep

b n()
2

n p 1+=

N

∑=

Pƒ
b ep

b n()
2

n p 1+=

N

∑=

Φap
Pp

ƒ

0
=

Φcp
0

Pp
b=

Φ x n()xH n()

n p 1+=

N

∑=

x n() x n() x n 1–() … x n p–(), , ,[]=
T

1 Tutorial

1-54

In the forward-backward least squares (FBLS) problem, we
minimize assuming . This leads to the
deterministic normal equations,

(1-91)

where is given by

(1-92)

where

(1-93)

If is nonsingular, we can solve (1-91) directly; if it is singular, then, the
Min-Norm solution is usually used.

The solution ap may be interpreted as providing an AR(p) model for the data;
hence, we can compute the spectrum of the process x(n) in terms of the
estimated AR parameters. Additional details may be found in [34, 35].

Adaptive Linear Prediction
The Burg algorithm provides a recursive solution to minimizing the
mean-square error over a time interval of length n, and is appropriate when the
data may be considered to be stationary over that time interval. Often, the data
are nonstationary; in this case, we can estimate power spectra over a sliding
window of fixed length; however, as we have seen before, the resulting estimate
will have poor resolution and high variance. An alternative is to fit a
parametric model, and to allow the model parameters to vary with time. For
example, we may fit a time-varying AR model, that is, we perform time-varying
linear prediction.

The deterministic normal equations at time n are given by (see (1-87) and
(1-88))

Pp Pp
ƒ Pƒ

b+= cp k() ap
* p k–()=

Φ̃ap
Pp

0
=

Φ̃

Φ̃ x n()xH n()

n p 1+=

N

∑ x̃ n()x̃H n()+=

x̃ n() x n p–() … x n(), ,[]=
H

Φ̃

Linear Prediction Models

1-55

(1-94)

(1-95)

where the deterministic correlation matrix Φ(n) is given by,

(1-96)

where λ, (0 < λ < 1), is the forgetting factor, which is introduced so that the
algorithm will be sensitive to the nonstationary environment.

We could solve (1-94) or (1-95) at each n, but the computational load is very
high.

Let the order p be fixed, and let ap(n) = [1, –w(n)]T. Then, a time-recursive
solution is given by,

(1-97)

(1-98)

(1-99)

(1-100)

with initial values, w(0) = 0 and P(0) = δ-1I, where δ is a small positive constant.

Φ n()ap n() Pp
ƒ n()

0
=

Φ n()cp n()
0

Pp
b n()

=

Φ n() x k()xH k()

k p 1+=

n

∑ λn k–
=

k n() λ 1– P n 1–()x n()

1 λ 1– xH n()P n 1–()x n()+
---=

α n() x n 1+() wH n 1–()x n()–=

w n() w n 1–() k n()α*
n()+=

P n() λ 1– P n 1–() λ 1– k n()xH n()P n 1–()–=

1 Tutorial

1-56

k(n) is the gain vector, α(n) is the a priori prediction error, and P(n) = Φ-1(n).
This algorithm is known as the Recursive Least Squares Algorithm (RLS), and
is a special case of the Recursive Instrumental Variable Algorithm (RIV),
which is discussed next.

RIV Algorithm: Transversal Form
Consider the noisy AR process,

where u(n) is assumed to be zero mean i.i.d., and independent of additive noise
w(n), which may be colored. The “normal” equations, with m = 1, . . ., p,

(1-101)

where z(n) = y(n), lead to inconsistent estimates because of the noise w(n). If
w(n) can be modeled as MA noise, that is,

where g(n) is i.i.d., then, consistent estimates can be obtained by using z(n) =
y(n – d), where d > p + qw. Process z(n) is called an instrumental variable (IV)
if, (1) it is uncorrelated with the additive noise w(n), that is, E{w(n)z(n + m)} =
0, m > 0; and (2) with m = 1, . . ., M ≥ p, we get a full rank set of linear equations
from (1-01). The delayed process z(n) = y(n – d) is an IV when w(n) is MA(qw)
noise and d > p + qw. Appropriate choices of z(n) lead to estimates based on
higher-order cumulants; for example, z(n) = y(n)y(n – ρ), leads to estimates
based on the 1-D slice C3y(m,ρ) of the third-order cumulant; other examples are
discussed in [64]. For a discussion of optimal IV’s, see [58]. When z(n) ≠ y(n),
the resulting matrix is no longer Hermitian symmetric. A variation of RLS that
is appropriate for this case is called the Recursive Instrumental Variable (RIV)
algorithm, and is implemented in rivtr. The algorithm is given by:

y n() x n() w n();+= x n() a k()u n k–()

k 1=

p

∑–=

a k()E y n()z n m– k+(){ }

k 0=

p

∑ 0 m 0>,=

w n() hw n k–()g n()

k 0=

qw

∑= ,

Linear Prediction Models

1-57

Compute the weight vector w(i) recursively, as

(1-102)

(1-103)

(1-104)

(1-105)

where the desired signal d(n) = y(n + 1). The initial values are w(0) = 0 and
P(0) = δ-1I, where δ is a small positive constant. Here y(n) is the observed
process, and z(n) is the IV; when z(n) = y(n), the RIV reduces to RLS.

Examples
load riv
ar(:,1)=rivtr(y,2);
ar(:,2)=rivtr(y,3);
ar(:,3)=rivtr(y,4);
ar(:,4)=rivtr(zw,4);
ar(:,5)=rivtr(zc,4);

Now, let us look at the five steady-state AR parameter estimates.

disp(ar)

The data used in this example correspond to an AR(2) model, with AR
parameter vector [1, –1.5, 0.8]. The vector y contains the noiseless signal.
Additive white Gaussian noise was added to y to obtain the noisy signal zw
with a SNR of 10 dB. Colored Gaussian noise, generated by passing a white
Gaussian sequence through the AR filter [1,0,0.49], was added to y to obtain zc,
also at a SNR of 10 dB.

 1.000 1.000 1.000 1.000 1.000

–1.4789 –1.5075 –1.4931 –1.5354 –1.4686

 0.7600 0.7910 0.7867 0.8248 0.7684

k n() λ 1– P n 1–()z n()

1 λ 1– yH n()P n 1–()z n()+
---=

α n() d n() wH n 1–()y n()–=

w n() w n 1–() k n()α*
n()+=

P n() λ 1– P n 1–() λ 1– k n()yH n()P n 1–()–=

1 Tutorial

1-58

RIV Algorithm: Double-Lattice Form
An order- and time-recursive solution of (1-94) and (1-95)leads to the double
lattice algorithm, and is given below.

Starting with n = 1, evaluate (1-106) through (1-117) for m = 1, 2, . . ., M, where
M is the final desired order; then repeat with n = 2 and so on:

(1-106)

(1-107)

(1-108)

(1-109)

(1-110)

(1-111)

(1-112)

(1-113)

(1-114)

∆m 1–
ƒ n() λ∆m 1–

ƒ n 1–()
ƒm 1–

* n()b̃m 1– n 1–()

γm 1–
* n 1–()

---+=

∆m 1–
b n() λ∆m 1–

b n 1–()
bm 1–

* n 1–()ƒ̃m 1– n()

γm 1–
* n 1–()

---+=

Γƒ m, n()
∆m 1–

ƒ n()
Bm 1– n 1–()
----------------------------------–=

Γb m, n()
∆m 1–

b n()
Fm 1– n()
------------------------–=

µ n()
Fm 1–

* n()

Bm 1–
* n 1–()

----------------------------------–=

ƒm n() ƒm 1– n() Γƒ m,
* n()bm 1– n 1–()+=

bm n() bm 1– n 1–() Γb m,
* n()ƒm 1– n()+=

ƒ̃m n() ƒ̃m 1– n() µ n()Γb m, n()b̃m 1– n 1–()+=

b̃m n() b̃m 1– n 1–() µ 1– n()Γƒ m, n()ƒ̃m 1– n()+=

Linear Prediction Models

1-59

(1-115)

(1-116)

(1-117)

Note that (1-106) through (1-117) are in the proper order required for
successful evaluation.

The initial values for the algorithm are given by

(1-118)

(1-119)

(1-120)

(1-121)

(1-122)

(1-123)

The following discussion is adapted from [64], which also gives a derivation of
the algorithm.

Equations (1-111)and(1-112) with the initial condition in (1-120)define a lattice
structure excited by the observed process y(n). Equations (1-113) and (1-114)
with the initial condition in (1-121) define a lattice structure excited by the

Fm n() Fm 1– n()
∆m 1–

ƒ n()∆m 1–
b n()

Bm 1– n 1–()
---–=

Bm n() Bm 1– n 1–()
∆m 1–

ƒ n()∆m 1–
b n()

Fm 1– n()
---–=

γm n 1–() γm 1– n 1–()
b̃m 1–

*
n 1–()bm 1– n 1–()

Bm 1–
* n 1–()

---–=

∆m 1–
ƒ 0() ∆m 1–

b 0() 0= =

Fm 1– 0() Bm 1– 0() δ 1«= =

ƒ0 n() b0 n() y n()= =

ƒ̃0 n() b̃0 n() z n()= =

F0 n() B0 n() λF0 n 1–() z n()y* n()+= =

γ0 n() 1=

1 Tutorial

1-60

associated process z(n). The two lattices are coupled through the time-update
equations for the ∆’s, (1-106) and (1-107), and the order-update equation for the
conversion factor, (1-117). When y(n) = z(n), the two lattices collapse into one.

In the above, ƒm(n) and bm(n) are the mth order prediction errors for the
observed process y(n); and are the mth order prediction errors for
the associated process z(n); Γƒ,m(n) and Γb,m(n) are the reflection coefficients for
the forward/backward prediction of y(n), and may be interpreted as normalized
cross-correlations between the forward prediction error in one lattice and the
backward prediction error in the other; µ(n) is the scale factor for converting
the reflection coefficients associated with y(n) to those associated with z(n);
Fm(n) is the correlation between the mth order forward prediction errors, ƒm(n)
and ; Bm(n) is the correlation between the mth order backward
prediction errors, bm(n) and ; γm(n) is the scale factor for converting the
a priori prediction errors to their a posteriori values; its absolute value is
bounded by unity; is the cross-correlation between the a posteriori
backward prediction error, bm-1(n – 1), and the a priori tilded forward
prediction error, ; and is the cross-correlation between
ƒm-1(n) and . Time-update equations for Fm(n) and Bm(n) are
given by (1-115) and (1-116).

This algorithm is implemented in routine rivdl.

Examples
load riv
ar(:,1)=rivdl(y,2);
ar(:,2)=rivdl(y,3);
ar(:,3)=rivdl(y,4);
ar(:,4)=rivdl(zw,4);
ar(:,5)=rivdl(zc,4);

Now let’s see the five AR parameter estimates:

disp(ar)

 1.000 1.000 1.000 1.000 1.000

–1.4814 –1.5106 –1.4941 –1.5358 –1.4692

 0.7623 0.7941 0.7876 0.8252 0.7690

ƒ̃m n() b̃m n()

ƒ̃m n()
b̃m n()

∆m 1–
b n()

η̃m 1– n() ∆m 1–
ƒ n()

ϕ̃m 1– n 1–()

Linear Prediction Models

1-61

The data used in this example correspond to an AR(2) model, with AR
parameter vector [1, –1.5, 0.8]. The vector y contains the noiseless signal.
Additive white Gaussian noise was added to y to obtain the noisy signal zw with
a SNR of 10 dB. Colored Gaussian noise, generated by passing a white
Gaussian sequence through the AR filter [1, 0, 0.49], was added to y to obtain
zc, also at a SNR of 10 dB.

Summary
We have discussed several linear prediction problems. The Trench algorithm is
implemented in trench: it computes the backward and forward AR prediction
filters associated with a given cumulant slice. Routines rivtr and rivdl
implement the transversal and double lattice version of the Recursive
Instrumental Variable (RIV) method: these algorithms may be based upon the
correlation or a slice of the third- or fourth-order cumulant, depending upon the
Instrumental Variable (IV) used; ivcal can be used to compute the IV.

1 Tutorial

1-62

Harmonic Processes and DOA
In the harmonic retrieval problem, the observed data are of the form

(1-124)

where w(n) is additive noise; αk’s are the amplitudes, ƒk’s are the frequencies,
and φk’s are the phases. Additional assumptions are often made regarding the
phases; the typical assumption is that the phases are independent random
variables uniformly distributed over [0, 2π]. Such an assumption implies that
multiple realizations are available, that is,

(1-125)

where m denotes the realization number. If only a single realization is
available, then the phases are nonrandom constants. Since 2cos(θ) = ejθ +e-jθ,
we note that a signal consisting of p real harmonics can be handled by the
model in (1-125) with 2p frequencies, ±ƒk, k = 1, . . ., p.

The problem is to determine p and then to estimate the frequencies, amplitudes
and phases of each harmonic. Intuitively, we expect the power spectrum of x(n)
to consist of peaks at ƒ = ƒk, perhaps masked by the spectrum of the noise. The
classical power spectrum estimators (Blackman-Tukey and Welch) can be used
only if the frequencies are well-separated, that is, min|ƒm – ƒn| > 1/L, where
L is the length of the estimated autocorrelation sequence in the
Blackman-Tukey method, or the block size in the Welch method; hence,
parametric models are useful for short data lengths.

The model in (1-125) is similar to the model for the observed data in the array
processing/direction of arrival (DOA) problem. This problem arises in various
applications, such as radar, sonar, geophysics, and analysis of EEG and ECG
signals. An array of N independent sensors provides samples of the data at
different points in space. Data are collected simultaneously from the set of
sensors; the set collected at a single instant of time is called a snapshot, and is
a vector of N observations. The signal recorded at each sensor consists of sensor

y n() αk j2πnƒk jφk+()exp

k 1=

p

∑ w n()+ x n()= w n()+=

ym n() αk j2πnƒk jφk m,+()exp

k 1=

p

∑ wm n()+ xm n()= wm n()+=

Harmonic Processes and DOA

1-63

noise as well as signals from p sources, assumed to be uncorrelated with one
another. The signal recorded at the nth sensor and mth snapshot is

where sk(m) is the signal emitted by the kth source, and τk,n is the signal delay
(with respect to some arbitrary reference point) at the nth sensor. Typically,
the sensors are assumed to be isotropic, and the source signals are assumed to
be plane waves originating from the far-field of the array. The signals are
assumed to be narrow-band, and as such they are characterized by a single
frequency, ƒo or a single wavelength λ = c/ ƒo, where c is the speed of signal
propagation. The received signal can now be written as,

(1-126)

where αk(m) is the amplitude of the kth source signal at snapshot m; and φ(k,n)
is the phase delay of the kth source signal at the nth sensor, and depends upon
the array geometry.

In a circular array, the sensors are assumed to be equally distributed in angle
on the circumference of a circle with radius R. Let the bearings, θk, be
measured with respect to the radius vector passing through a sensor. The
phase delay is then given by [23]

(1-127)

For a linear array, the bearing of the plane wave is defined as the angle
between the plane wave front and the normal to the array. The phase delay is
given by

(1-128)

ym n() Aksk m τk n,–()

k 1=

p

∑ wm n(),+=

ym n() αk m() jφ k n,()()exp
k 1=

p

∑ wm n()+ ==

m 1 … M, , n 1 … N, , ,=,=

φ k n,() 2πR
λ

2πn
N

----------- φk– 
 cos 2πn

N
----------- 

 cos–=

φ k n,()
2πdn

λ
-------------- φk()sin=

1 Tutorial

1-64

where θk is the bearing of the kth source, and dn is the location of the nth source
with reference to some arbitrary origin. For a uniformly spaced linear array,
with spacing d, we can set dn = nd. The observed signals are thus given by,

(1-129)

Comparing (1-129) with (1-125), we see that the term dsin(θk)/λ plays the role
of frequency, and αk(m) plays the role of the complex amplitude αkexp(jφk,m).
Time samples, indexed by n in (1-125), correspond to spatial samples, or sensor
numbers in (1-129). The realization number m in (1-125) is interpreted as the
snapshot number in (1-129). In (1-124), we assume 0 < ƒk < 1 in order to ensure
that there is no aliasing. Similarly, in (1-129), we assume that λ ≥ 2d to ensure
that there is no aliasing; a common assumption is λ= 2d (half-wavelength
spacing).

Thus, a solution to the harmonic retrieval problem in (1-125) also applies to the
DOA problem in (1-129). In the former, we estimate power spectra, as functions
of frequency; in the latter, we estimate angular spectra, as functions of angle, θ.

The following table states the duality between the harmonic retrieval and the
DOA problems:

The autocorrelation matrix ℜxx with (k,l) entry Rxx(l – k) = E{x*(n)x(n + k – l)},
which appears in the harmonic retrieval problem, will be replaced by the

Harmonic Retrieval DOA

Realization Snapshot

Time sample Sensor sample

Frequency ƒ Angular frequency d sin(θ)/λ

Random phases Random complex amplitudes

0 < ƒ < 1 d ≤ λ/2

Temporal correlation matrix Spatial correlation matrix

Periodogram Beamformer

ym n() αk m() j2πn
d φk()sin

λ
------------------------ 

 exp

k 1=

p

∑ wm n()+= m 1 … M,,=

Harmonic Processes and DOA

1-65

spatial correlation matrix, ℜ = E{x(n)x(n)H}, where x(n) is the nth snapshot, in
the DOA problem. The FT of the spatial (temporal) correlation sequence is
called the beamformer (periodogram).

The autocorrelation sequence of the signal in (1-125) is given by,

(1-130)

which follows because the harmonics are uncorrelated (phases are mutually
independent). Note that the autocorrelation sequence is not absolutely
summable; however, the FT of Ryy(τ) exists, provided we are willing to use the
Dirac delta functions defined by ∫g(ƒ)δD(ƒ) := g(0) [5, p.17].

In principle, one can estimate the frequencies by picking peaks in the
estimated power spectrum; the variance of this frequency estimator is of order
1/N3 [22], where N is the length of the time series. The power spectrum is
limited by its poor frequency resolution, that is, frequency separation must be
larger than 1/N. In practice, this severely limits the applicability of the power
spectrum as a direct estimator of the frequency.

Synthetics for the two problems can be generated via harmgen and doagen.

Resolution and Variance
If x(n) consists of two complex harmonics, at frequencies ƒ1 and ƒ2, we expect
to see two peaks in the power spectrum. The resolution of a power spectral
density estimator is the smallest value of |ƒ1 – ƒ2| that leads to two discernible
peaks. The resolution of the classical power spectrum estimators (e.g., Welch
and Blackman-Tukey) is of order 1/M, where M is the effective window length.
In contrast, the resolution of the periodogram is 1/N, and since M ≤ N, the
periodogram exhibits higher resolution than the Blackman-Tukey and Welch
estimators. The choice of the window function dictates the resolution-variance
tradeoff: if W(ƒ) has a broad main lobe, the power spectrum estimate will be
smoother, the variance of the estimate will be smaller, and the resolution will
be lower.

It should be noted that zero-padding the data (or the correlation sequence) does
not improve the resolution, it only makes the spectral estimate denser (this
may lead to improved accuracy in estimating the locations of well-separated
peaks).

Ryy τ() αk
2

k 1=

p

∑ j2πτƒkexp Rw τ()+=

1 Tutorial

1-66

AR and ARMA Models
The basic idea, in the parametric estimators, is that the noiseless harmonic
process in (1-124) obeys a self-driving AR(p) model, that is, [28],

(1-131)

where a(0) = 1, and the roots of the A(z) polynomial are given by ,
k = 1, . . ., p. Hence, we can use any standard algorithm to estimate the AR
parameters; the frequencies can be determined from the roots of the estimated
AR polynomial. The determination of p is now equivalent to the AR model order
determination problem.

In the presence of additive noise, process x(n) in (1-124) satisfies the special
ARMA(p,p) model,

(1-132)

where w(n) is additive noise, not the driving noise of an ARMA model. Now, we
can use any of the standard ARMA parameter estimation techniques to
estimate the a(k)’s.

Multiplying (1-132) by y*(n – k), and taking expectations, we obtain,

(1-133)

where we have assumed that the additive noise is white; hence, with k > p, we
obtain a set of equations from which we can estimate the a(k)’s; these equations
are sometimes called the “extended normal” equations.

The analysis extends to the real harmonic case where we obtain an AR(2p) or
ARMA(2p,2p) model, with roots at , k = 1, . . ., p. Since the roots are
all on |z| = 1, it turns out that a(k) = a(2p – k), k = 0, . . ., 2p.

a k()x n k–()

k 0=

p

∑ 0,=

z e
j2πƒk=

a m()y n m–()

m 0=

p

∑ a m()w n m–()

m 0=

p

∑=

a m()Ryy k m–()

m 0=

p

∑ σw
2 a k()=

z e
j± 2πƒk=

Harmonic Processes and DOA

1-67

Pisarenko’s Method
 The M × M autocorrelation matrix of the process y(n) in (1-124) may be written
as,

(1-134)

where S is a Vandermonde matrix with (m,n) element exp(–j2π(m – 1)ƒn),
m = 1, . . ., p; and D is the diagonal matrix of the sinusoidal powers,
D = diag(P1, . . ., Pp). Since the frequencies are assumed to be distinct, matrix
S has full rank p (M ≥ p). It follows immediately that the p largest eigenvalues
of the matrix Ryy are given by, , k = 1, . . ., p; the remaining M – p
eigenvalues are all equal to . With M = p + 1, it follows from (1-133) that [48]

(1-135)

The vector a is the eigenvector corresponding to the minimum eigenvalue of the
(p + 1) × (p + 1) correlation matrix ℜyy. Once a has been estimated, the
frequencies can be estimated as the roots of the A(z) polynomial. The minimum
eigenvalue solution to (1-135) is known as Pisarenko’s method, and is
implemented in routines harmest and doa. In order to ensure
positive-definiteness of matrix ℜyy, it is essential to use biased sample
estimates of the autocorrelation. For a signal consisting of p real harmonics,
the order should be taken as 2p.

The Pisarenko algorithm separates the eigenvectors and eigenvalues of the
matrix ℜyy into two classes: those associated with the signal and those
associated with the noise. Extensions of the idea have resulted in the
high-resolution eigen-subspace methods, such as the Min-Norm and MUSIC
algorithms.

Ryy Rxx= σw
2 I+ SDSH σw

2 I+=

Pk σw
2

+
σw

2

ℜyya σw
2 a.=

1 Tutorial

1-68

Multiple Signal Classification (MUSIC)
Let M > p. The autocorrelation matrix ℜyy has a linearly independent
(orthogonal) set of eigenvectors. Denote the eigenvalues and eigenvectors by λk
and vk. Define the M element signal vector,

(1-136)

The eigenvectors corresponding to the p largest eigenvalues are said to
constitute the signal subspace; the remaining M – p eigenvectors constitute the
noise subspace. The signals, that is, the harmonics in (1-124), lie in the signal
subspace and are orthogonal to the noise subspace, that is,

hence, with

(1-137)

one can search for the set of frequencies such that eH(ƒ)vk = 0, k = p + 1, . . ., M.
When sample estimates of the autocorrelation are used, these relationships
will hold only approximately. In MUSIC (Multiple Signal Classification) one
determines the frequencies of the harmonics by looking for peaks in the
spectrum defined by

(1-138)

where w(k) = 1. Usually, the correlation matrix used in the FBLS method is
used. When w(k) = 1/λk, we get the so-called Eigenvector solution, and when
w(k) = δ(k – M), we get the Pisarenko solution. These algorithms are
implemented in routines harmest and doa.

ek e
j2πƒk e

j– 2πƒk … e
j– 2πMƒk, ,[]

T
=

ek vH
i 0,= i p 1+ … M;, ,= k 1 … p;, ,=

e ƒ() ej2πƒ e j– 2πƒ … e j– 2πMƒ, ,[]
T

=

Pyy ƒ() w k() eH ƒ()vk
2

k p 1+=

M

∑=

1–

Harmonic Processes and DOA

1-69

Minimum-Norm Method
The minimum-norm (Min-Norm) method is also an eigen-space method.
Motivated by the normal equations for the harmonic signal model, one seeks
the AR vector, a, which is orthogonal to the signal subspace (recall the
discussion of the Pisarenko method). Let us decompose the signal subspace, as

(1-139)

The condition , can be rewritten as,

(1-140)

where w = –[a(1), . . ., a(p)]T. Equation (1-140) represents p equations in M – 1
unknowns. Hence, if p < M – 1, the set of equations is underdetermined, and
the solution is not unique. A unique solution is obtained by choosing the
Min-Norm solution, that is,

(1-141)

This solution, called the minimum-norm solution, was developed by
Kumaresan and Tufts and is implemented in routines harmest and doa.

Pisarenko’s method uses a single noise subspace eigenvector and, hence, is not
as robust as the general MUSIC estimator. The Min-Norm method has been
reported to have a smaller bias than the MUSIC algorithm for estimating the
frequencies. An overview of eigen-methods is given in [26].

A modification of the FBLS algorithm has been reported by Kumaresan and
Tufts [23], where the correlation matrix is replaced by throwing out the
noise subspace eigenvectors, that is, if λk and vk denote the eigenvalues and
eigenvectors of , then,

(1-142)

Qs v1 … vp, ,[]
xs

T

Xs

= =

Qs
Ta 0=

Xs
Tw xs=

w 1 xs
Hxs–[]

1–
Xs

*xs=

Φ̃

Φ̃

Φ̂ λkvkvk
H

k 1=

p

∑=

1 Tutorial

1-70

This procedure of replacing by is sometimes called the low-rank SVD
approximation. The algorithm then proceeds as in FBLS. Kumaresan and
Tufts [29] have established that in the noiseless case, under the assumption,
p ≤ M ≤ N – p/2, p of the roots of A(z) lie on the unit circle, and correspond to
the true frequencies; the remaining (M – p) roots are uniformly distributed in
angle inside the unit circle; these roots are called the extraneous zeros.
High-resolution estimates are obtained by choosing large values for the
predictor order, that is, M ≈ 3N/4.

ESPRIT
Estimation of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) is an eigen-space method developed by Kung, Rao et al [30], and by
Roy and Kailath [57]; however, the basic idea behind this algorithm is
considerably different from that in MUSIC and Min-Norm methods.

In ESPRIT, the basic idea is to decompose the sensor array into two (possibly
overlapping) subarrays, and then to use the cross-correlation between the two
subarrays to estimate the source bearings. The discussion here is in terms of
the DOA problem, but as we have seen earlier, the treatment is applicable to
the harmonic retrieval problem as well.

Assume that we have two arrays, such that elements of one array are at a
constant displacement ∆ with respect to corresponding elements of the other
array. For example, if we have an uniformly spaced linear array of N elements,
we can partition this array into two subarrays, each consisting of L elements,
with a displacement of ∆ = N – L between the two subarrays, that is, with
sensors 1, . . ., N – ∆ in the first subarray, and sensors ∆ + 1, . . ., N in the second
array.

Let ym(n) and zm(n), n = 1, . . ., L, denote the signals at the elements of the two
subarrays, that is,

(1-143)

(1-144)

Φ̃ Φ̂

ym n() αk m() jφ k n,()()exp

k 1=

p

∑ wm n()+=

zm n() αk m() jφ k n,()()e
j2π∆d φk() /λsin

exp

k 1=

p

∑ vm n()+=

Harmonic Processes and DOA

1-71

The mth snapshot can be written in vector form as,

(1-145)

(1-146)

where Φ is a diagonal matrix with (k,k) entry, exp(j2π∆dsin(θk)/λ); matrix A has
(n,k) entry, exp(jφ(k,n)); am = [α1(m), . . ., αM(m)]T is the source signal vector at
the mth snapshot; and, wm and vm are the noise vectors. The bearing
information can be recovered from matrix Φ.

The auto- and cross-correlation matrices of y(n) and z(n) are given by,

(1-147)

(1-148)

where we have assumed that the additive noise is white (spatially uncorrelated
from sensor to sensor), and has variance σ2.

Matrix is the signal correlation matrix and is nonsingular if

the sources are incoherent.

The structure of matrix JL depends upon the common elements of the two sub-
arrays. If the two subarrays have no common elements, then JL is the zero
matrix. In the uniform linear array example considered earlier,
zm(n) = ym + ∆(n), m = 1, . . ., L – ∆, and

In any case, given the knowledge of the geometries of the two arrays, we can
compute matrix JL.

ym Aam wm+=

zm AΦam vm+=

ℜyy E ymym
H

 
 
 

ASAH σ2IL+= =

ℜyz E ymzm
H

 
 
 

ASΦHAH σ2JL+= =

S E amam
H

 
 
 

=

JL
0∆ L× 0∆ ∆×

IL ∆– 0L ∆ ∆×–

=

1 Tutorial

1-72

We can estimate σ2 as the smallest eigenvalue of matrix ℜyy. We can now
eliminate the noise contribution, and create the signal correlation matrices,

(1-149)

(1-150)

Given two n × n matrices, A and B, the generalized eigenvalues of (A,B), are
defined by [21]

If B is nonsingular, there are exactly n generalized eigenvalues, and these are
identical with the eigenvalues of B-1A. The singular B case is discussed in [21].

It is shown in [30, 57] that the generalized eigenvalues of (Cyy,Cyz) are given by
λk = exp(j2π∆dsin(θk)/λ), k = 1, . . ., p. Once λk has been estimated, we can
readily obtain the θk’s. This algorithm — for a uniformly spaced linear array —
is implemented in routine doa; the generalized eigenvalues are computed via
the MATLAB built-in function eig. Algorithms based on fourth-order
cumulants are discussed next.

Criterion-Based Estimators
The FT, at frequency ωo, can be viewed as a filter that passes only the
components with frequency ωo, while suppressing the rest. With finite data
lengths, however, the spectral estimate suffers from the problems of sidelobe
leakage (with details dictated by the choice of window function).

Consider the length p finite impulse response (FIR) filter,

(1-151)

where the input x(n) is assumed to be zero mean. The variance of the filter
output is given by,

Cyy ℜyy σ2IL– ASAH
==

Cyz ℜyz σ2IL– ASΦHAH
==

λ A B,(): z:det A zB–(){ 0 }.= =

y n() a k()x n k–()

k 0=

p

∑=

Harmonic Processes and DOA

1-73

(1-152)

where a = [a(0), . . ., a(p)]T, and Rxx is the (p + 1) × (p + 1) autocorrelation
matrix.

We would like the output variance to be a measure of the power spectral
density of x(n) at frequency ƒo. Alternatively, the FIR filter should pass a
sinusoid at frequency ƒo with unity gain; hence, we have the constraint,

(1-153)

We also want to minimize the contribution due to sinusoids at frequencies
other than ƒo; this can be achieved by minimizing the output variance in
(1-152) subject to the constraint in (1-153). The resulting estimator is given by

(1-154)

where e = [1,e--j2πƒ, . . ., e-j2πpƒ]H. This estimator, which is variously called
Capon’s maximum-likelihood estimator or the Minimum Variance
Distortionless estimator [8, 27], is not a true power spectral density estimator.
For example, if x(n) consists of a harmonic at frequency ƒo and power P that is
observed in white noise with variance , then,

where p is the number of autocorrelation lags used; note that the noise power
contribution has been reduced by a factor of p. The resolving power of this
estimator is reported to be [27]

where SNR is the signal-to-noise ratio (ratio of signal variance to noise
variance), and p is the length of the autocorrelation sequence. This estimator
is implemented in routines harmest and doa.

σy
2 E y n() 2{ } aHRxxa= =

σy
2

a k() j2πkƒo–()exp

k 0=

p

∑ 1.=

Pml ƒ() eH ƒ()Rxx
1– e ƒ()[]=

2

σw
2

Pml ƒo() P σw
2 /p,+=

∆ƒ 1
p SNR
----------------------≥

1 Tutorial

1-74

The maximum-entropy spectral estimator of Burg is based on the availability
of exactly known autocorrelation lags, , (in which case a
Gaussian pdf and an AR(p) model are obtained for process x(n)). Routine
trench may be used to estimate the AR model parameters. The resolving power
is reported to be

For SNR ≥ 1, the maximum entropy estimator has better resolving power than
does Capon’s maximum-likelihood estimator, which in turn is better than the
Blackman-Tukey estimator.

Cumulant-Based Estimators
In [66] it was established that the fourth-order cumulants of the process in
(1-124) are given by

(1-155)

In particular, the diagonal slice is given by,

(1-156)

If w(n) is Gaussian, then C4w(m,m,m) ≡ 0. If w(n) is i.i.d. non-Gaussian, then
C4w(m,l,n) is a delta function at the origin. Note that when w(t) is Gaussian or
i.i.d. non-Gaussian, (1-156) is similar to the autocorrelation sequence of the
noiseless signal. Consequently, all of the analyses based on the autocorrelation
carry over to the fourth-order cumulant. In particular, the development of the
Eigenvector, Pisarenko, ML-Capon, AR, MUSIC, Min-Norm, and beamformer
spectral estimates based on second-order statistics, can also be based on
fourth-order statistics [44]. Similarly we can base ESPRIT on the fourth-order
cross-cumulant matrix as well. The fourth-order statistics are most useful
when the additive noise is narrow-band Gaussian.

Routine harmest implements algorithms for the harmonic retrieval problem: it
estimates the spectrum using the Eigenvector, MUSIC, Pisarenko, ML, and AR
algorithms based on the diagonal slice of the fourth-order cumulant.

Rxx m(){ }m 0=
p

∆ƒ 1
pSNR
-----------------.≥

C4y l m n, ,() e
j2πƒk l m n–+()

αk
4 C4w l m n, ,()+

k 1=

p

∑–=

C4y m m m, ,() e
j2πƒkm

αk
4 C4w m m m, ,()+

k 1=

p

∑–=

Harmonic Processes and DOA

1-75

Routine doa implements algorithms for the direction of arrival problem: it
estimates the angular spectrum using the Eigenvector, MUSIC, Pisarenko,
ML-Capon, ML, and AR algorithms based on the diagonal slice of the
fourth-order cumulant. Routine doa implements the corresponding algorithms
based on second-order statistics; it also implements ESPRIT.

Examples
load harm
Pxx=harmest(zmat,12,4,’unbiased’,256,4);

You should see the display in Figure 1-12.

Figure 1-12 Singular Values of Cumulant Matrix and Estimated Spectra
(harmest)

The data consist of two unit amplitude real harmonics at frequencies 0.1 Hz
and 0.2 Hz, and are contaminated by colored Gaussian noise, with a variance
of 0.5; the noise spectrum has a pole at 0.15 Hz, with a damping factor of 0.9.
The SVD plot is indicative of two real harmonics, and the spectrum appears to
peak at the correct frequencies, 0.1 and 0.2 Hz. The fourth-order cumulants do
not see the Gaussian process at 0.15 Hz. Note that the power spectra are
displayed in dB scale, that is, 10log10(Pxx)

Pxx = harmest(zmat,12,6,'unbiased',256,2);

0 5 10 15
0

2

4
sval: cum−4

−0.5 0 0.5
−40

−20

0
pxx

−0.5 0 0.5
−50

0

eig

−0.5 0 0.5
−40

−20

0

m
us

ic

−0.5 0 0.5
−100

−50

0

pis
ar

−0.5 0 0.5
−40

−20

0

m
l

−0.5 0 0.5
−100

−50

0

ar

−0.5 0 0.5
−40

−20

0

m
in−

no
rm

1 Tutorial

1-76

You should see the display in Figure 1-13. The SVD plot is indicative of three
real harmonics, and the spectrum appears to peak at the correct frequencies,
0.1 and 0.2 Hz, as well as at 0.15 Hz, which is due to the Gaussian noise.

Figure 1-13 Singular Values of Correlation Matrix, and Estimated Spectra
(harmest)

0 5 10 15
0

5

10
sval: cum−2

−0.5 0 0.5
−40

−20

0
pxx

−0.5 0 0.5
−50

0

ei
g

−0.5 0 0.5
−40

−20

0

m
us

ic
−0.5 0 0.5

−100

−50

0

pi
sa

r

−0.5 0 0.5
−40

−20

0

m
l

−0.5 0 0.5
−100

−50

0

ar

−0.5 0 0.5
−50

0
m

in
−

no
rm

Harmonic Processes and DOA

1-77

Examples
load doa1
[spec,theta]=doa(ymat,0.5,1,3,2,1);

You should see the display in Figure 1-14; note that the angular spectra are
plotted in dB scale, that is, 10log10(spec).

The singular value plot indicates the possible presence of three sources. The
observed signal consists of signals from two sources at –15 and –25 degrees,
and is contaminated with spatially correlated noise that acts as a virtual
source at a bearing of 30 degrees. The bearings estimated by ESPRIT should
be –15.4634, –25.8851 and 29.9855. As expected, the Eigenvector, ML, AR,
MUSIC and Min-Norm methods resolve the two sources and the virtual source
due to the noise, whereas the beamformer does not. The MUSIC and Min-Norm
estimates are virtually identical in this example. The vertical lines and circles
denote the true bearings; the cross denotes the virtual bearing of the spatially
correlated noise.

Figure 1-14 Singular Values of Spatial Correlation Matrix, and Estimated
Angular Spectra (doa)

0 5 10
0

20

40
svals of c2

−100 −50 0 50 100
−100

−50

0

pi
sa

r

−100 −50 0 50 100
−40

−20

0

ei
g

−100 −50 0 50 100
−40

−20

0

m
us

ic

−100 −50 0 50 100
−40

−20

0

m
l

−100 −50 0 50 100
−40

−20

0

ar

−100 −50 0 50 100
−40

−20

0

m
in

−100 −50 0 50 100
−20

−10

0

be
am

1 Tutorial

1-78

load doa1
[spec,theta]=doa(ymat,0.5,1.2);

The singular value plot indicates the possible presence of two sources; the
estimated angular spectra show peaks at around the true bearings of –15 and
–25 degrees; notice that the spatially correlated Gaussian noise source has
been virtually suppressed by using fourth-order cumulants. The vertical lines
and circles denote the true bearings; the cross denotes the virtual bearing of
the spatially correlated noise. The bearings estimated by ESPRIT should be
–15.0066 and –25.1361.

Figure 1-15 Singular Values of Spatial Cumulant Matrix, and Estimated
Angular Spectra (doa)

0 5 10
0

200

400
svals of c4

−100 −50 0 50 100
−100

−50

0

pi
sa

r

−100 −50 0 50 100
−50

0

ei
g

−100 −50 0 50 100
−40

−20

0

m
us

ic

−100 −50 0 50 100
−40

−20

0

m
l

−100 −50 0 50 100
−50

0

ar

−100 −50 0 50 100
−40

−20

0

m
in

−100 −50 0 50 100
−40

−20

0

be
am

Harmonic Processes and DOA

1-79

Summary
The estimation of the frequencies of harmonics observed in noise, or that of
determining the bearings of sources in the DOA problem can be treated from
either a parametric or a nonparametric view point. In the latter case, we obtain
nonparametric estimates of spectra and angular spectra. In the former case, we
have several high-resolution algorithms.

Routine harmest can be used for the harmonic retrieval problem; the user has
the choice of using second- or fourth-order cumulants. This routine estimates
power spectra using the MUSIC, Eigenvector, Pisarenko, ML (Capon), AR and
Min-Norm methods, based on either the diagonal slice of fourth-order
cumulants, or on the covariance; it also estimates the conventional
periodogram. The number of harmonics can usually be determined by
examining the singular value plot generated by harmest.

Routine doa can be used to solve the direction-of-arrival problem (DOA) for a
uniformly spaced linear array. It estimates angular spectra using the
Beamformer, ML-Capon, AR, MUSIC, Pisarenko’s method, eigenvector,
Min-Norm and ESPRIT algorithms, based on the spatial cross-correlation or
cross-cumulant. Routine pickpeak may be used to pick peaks in the estimated
(angular) spectra.

1 Tutorial

1-80

Nonlinear Processes
The simplest nonlinear system is the second-order Volterra system whose
input-output relationship is defined by

(1-157)

The corresponding frequency domain representation is

(1-158)

and is obtained by Fourier Transforming both sides of (1-157). The
time-domain product term x(n – k)x(n – l) leads to convolution in the frequency
domain, which is represented by the condition ƒ = ƒ1 + ƒ2. It is usually assumed
that the quadratic kernel is real and symmetric, that is, q(k,l) = q(l,k), or
equivalently, Q(ƒ1,ƒ2) = Q(ƒ2,ƒ1) = Q*(–ƒ1,−ƒ2). It is readily verified that
Q(ƒ1,ƒ2) in the region |ƒ2| ≤ ƒ1,0 ≤ ƒ1 ≤ 1/4, specifies Q(ƒ1,ƒ2) everywhere.

The basic problem is given x(n) and y(n), n = 1, . . ., N, we want to estimate the
linear part, h(k), and the quadratic part, q(k,l).

Solution Using Cross-Bispectra
In [70], an algorithm to estimate the parameters of the model in (1-157) was
developed, under the assumption that x(n) is stationary Gaussian. From
(1-157), we can see that the cross-spectrum is given by,

(1-159)

The term involving the triple product of the X(ƒ)’s disappears since x(n) is
symmetrically distributed. Since Sxx(ƒ) and Sxy(ƒ) can be estimated, we can
estimate H(ƒ), the linear part.

y n() h k()x n(k)–

k 0=

∞

∑ q k l,()x n(k)x n l–()–

l 0=

∞

∑
k 0=

∞

∑+=

Y ƒ() H ƒ()X ƒ()= Q ƒ1 ƒ2,()X ƒ1()X ƒ2()
ƒ1 ƒ2+ ƒ=

∑+

Syx ƒ() E Y ƒ()X* ƒ(){ } H ƒ()E X ƒ()X* ƒ(){ } H ƒ()Sxx ƒ()= = =

Nonlinear Processes

1-81

Consider the cross-cumulant

(1-160)

(1-161)

which follows since x(t) is symmetrically distributed. Assuming Gaussianity,
we can rewrite the last equation in the frequency domain, as

(1-162)

which is obtained under the assumption that q(k,l) = q(l,k). The
cross-bispectrum, Syxx(ƒ1,ƒ2) can be estimated via routine bispecdx and the
spectra can be estimated via routine spectrum; we can then estimate the
quadratic transfer function, Q(ƒ1,ƒ2) from (1-162). This algorithm is
implemented in routine nltick [70]. Note that the input process is assumed to
be Gaussian.

Cxxy τ ρ,() E x n()x n τ+()y n ρ+(){ }=

q k l,()E x n()x n τ+()x n ρ k–+()x n ρ l–+(){ }

l 0=

∞

∑
k 0=

∞

∑=

E{x n()x n τ+() h k()x n ρ k–+()

k 0=

∞

∑=

q k l,()x n ρ k–+()x n ρ l–+() }

l 0=

∞

∑
k 0=

∞

∑+

Syxx ƒ1 ƒ2,() 2Q ƒ1 ƒ2,()Sxx ƒ1()Sxx ƒ2() Sxx ƒ2()δ ƒ1 ƒ2+()E y n(){ }+=

1 Tutorial

1-82

Examples
load nl1
[h,q] = nltick(x,y,128,1);

You should see the display on Figure 1-16. A description of the signals x and y
in nl1.mat is given in the section “Data Files.” The true linear and quadratic
impulse responses are shown in Figure 1-51.

Figure 1-16 Transfer Functions Estimated by nltick

Solution Using FTs
In [50], another algorithm to estimate the parameters of the model in (1-157)
was developed, without assuming that x(n) is Gaussian; indeed, x(n) may be
deterministic. Given the input and output sequences, x(n) and y(n), we can
compute their FTs, X(ƒ) and Y(ƒ) on a suitable grid, ƒm = m/M, where M is the
FFT length. We can collect (1-158) at the various frequencies into a set of
equations that are linear in the unknowns, namely H(ƒ) and Q(ƒ1,ƒ2) [50].

0 0.2 0.4 0.6
10

−4

10
−3

10
−2

10
−1

10
0

linear TF

f
−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

quadratic TF

f1

f2

0 50 100 150
−0.1

0

0.1

0.2

0.3

0.4
linear part: IR

t
10 20 30

5

10

15

20

25

30

quadratic part: IR

t1

t2

Nonlinear Processes

1-83

Let r = m mod 2, and let m+ := (m + r)/2, m- := (m – r)/2, . For m = 0, . . ., M/2,
let the unknown parameter vector be

and,

Then, we have the system of linear equations,

Y(m) = ATb(m),

which is overdetermined; we can obtain the least-squares solution for each
frequency grid point, m.

This algorithm is implemented in routine nlpow.

Examples
load nl1
[h1,q1]=nlpow (x,y,128);

You should see the display on Figure 1-17.

Figure 1-17 Transfer Functions Estimated by nlpow

b m() H m() Q m+ m-,() Q m+ 1+ m- 1–,() … Q M
4
----- m M

4
-----–, 

 , , , ,=
T

A X m() X, m+()X m-() X m+ 1+()X m- 1–() … X M
4
----- 

  X m M
4
-----– 

 , , ,=
T

0 0.2 0.4 0.6
10

−4

10
−3

10
−2

10
−1

10
0

linear TF

f
−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

quadratic TF

f1

f2

0 50 100 150
−0.1

0

0.1

0.2

0.3

0.4
linear part: IR

t1
10 20 30

5

10

15

20

25

30

quadratic part: IR

t1

t2

1 Tutorial

1-84

load nl2
[h2,q2]=nlpow (x,y,128);

You should see the display on Figure 1-18.

Figure 1-18 Transfer Functions Estimated by nlpow

As expected, the plots in the two figures are quite similar. A description of the
signals x and y in the files nl1.mat and nl1.mat may be found in the section
““Data Files.” The true linear and quadratic impulse responses are shown in
Figure 1-51.

Quadratic Phase Coupling
Phase coupling occurs due to nonlinear interactions between harmonic
components. Three harmonics with frequencies ƒk and phases φk, k = 1,2,3, are
said to be quadratically phase coupled if ƒ3 = ƒ1 + ƒ2 and φ3 = φ1 + φ2. Quadratic
phase coupling (coupling at sum and difference frequencies) occurs when a
signal is passed through a square-law device, for example, and may be detected
from the bispectrum [53].

Consider the signal x(n), which is a mixture of harmonics with independent
phases, and quadratically phase coupled sinusoids, that is,

0 0.2 0.4 0.6
10

−4

10
−3

10
−2

10
−1

10
0

linear TF

f
−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

quadratic TF

f1

f2

0 50 100 150
−0.1

0

0.1

0.2

0.3

0.4
linear part: IR

t1
10 20 30

5

10

15

20

25

30

quadratic part: IR

t1

t2

Nonlinear Processes

1-85

(1-163)

where , the ƒ’s are all distinct, and , and φi
are all i.i.d. and uniformly distributed over [–π,π].

Then, the third-order cumulant of x(n) is given by [66]

(1-164)

The diagonal slice, C3x(τ,τ), is given by

(1-165)

x n() αi 2πƒin φi+()cos

i 1=

N

∑ αik
q 2πƒik

q n φik
q

+()cos

k 1=

N

∑
i 1=

Nq

∑+=

ƒi3
q ƒi1

q
= ƒi2

q
+ φi3

q φi1
q

= φi2
q

+, φi1
q φi2

q,

C3x τ1 τ1,()

1
4
--- αi1

q αi2
q αi3

q()

i 1=

Nq

∑ ×=

2πƒi1
q τ1 2πƒi2

q τ2+()cos[2πƒi1
q τ1 2πƒi3

q τ2–()cos+

2πƒi2
q τ1 2πƒi3

q τ2–()cos 2πƒi2
q τ1 2πƒi1

q τ2+()cos+ +

2πƒi3
q τ1 2πƒi1

q τ2–()cos 2πƒi3
q τ1 2πƒi2

q τ2+()cos+ +]

C3x τ τ,() 1
2
--- αij

q

j 1=

3

∏ 2πƒik
q τ()cos

k 1=

3

∑
i 1=

Nq

∑=

1 Tutorial

1-86

The 2-D FT of (1-164) yields the bispectrum,

(1-166)

It is evident that the nonredundant region of the bispectrum shows peaks only
at the phase and frequency coupled bifrequencies, . The FT of the
diagonal slice in (1-165), on the other hand, displays peaks at each of the three
frequencies involved in the phase-coupling.

Consider () with Nq = 1. We have, omitting unnecessary superscripts,

(1-167)

where ƒ3 = ƒ2 + ƒ1. Note that the diagonal slice of the third-order cumulant is
expressed as the sum of three harmonics. From our discussions on AR models
for harmonics, we note that C3x(τ,τ) satisfies a self-driven AR(6) model, whose
roots are at exp(±j2πƒk), k = 1, 2, 3. If we estimate the AR polynomial, we can
compute the parametric bispectrum

(1-168)

The parametric bispectrum estimator is implemented in routine qpctor.

S3 λ1 λ2,()

1
8
--- αi1

q αi2
q αi3

q()

i 1=

Nq

∑=

δ λ1 ƒi1
q

+()δ λ2 ƒi2
q

+() δ λ1 ƒi2
q

+()δ λ2 ƒi1
q

+()+[

+δ λ1 ƒi1
q

–()δ λ2 ƒi2
q

–() δ λ1 ƒi2
q

–()δ λ2 ƒi1
q

–()+

+δ λ1 ƒi1
q

+()δ λ2 ƒi3
q

–() δ λ1 ƒi3
q

–()δ λ2 ƒi1
q

+()+

+δ λ1 ƒi2
q

+()δ λ2 ƒi3
q

–() δ λ1 ƒi3
q

–()δ λ2 ƒi2
q

+()+

+δ λ1 ƒi1
q

–()δ λ2 ƒi3
q

+() δ λ1 ƒi3
q

+()δ λ2 ƒi1
q

–()+

+δ λ1 ƒi2
q

–()δ λ2 ƒi3
q

+() δ λ1 ƒi3
q

+()δ λ2 ƒi2
q

–()+]

ƒi1
q ƒi2

q,()

C3x τ τ,() 1
2
---α1α2α3 2πƒkτ()cos

k 1=

3

∑=

S3x η1 η2,() A η1()A η2()A* η1 η2+()=

Nonlinear Processes

1-87

Examples
load qpc
[arvec,bspec] = qpctor(zmat,18,12);
Maximum of bispectrum: B(0.1484,0.1016) = 4239

You should see the display on Figure 1-19. Note that ƒ1 + ƒ2 ≈ 0.25, which
corresponds to the third peak in the amplitude spectrum, so that we may
conclude that three of the four harmonics are quadratically phase coupled. The
singular value plot shows six significant singular values corresponding to one
quadratically coupled triplet; as in the case of the power spectrum (harmonics
in noise), overestimating the number of harmonics usually leads to better
results; in this case, we used an AR order of 12.

Figure 1-19 Parametric Estimate of bispectrum (qpctor)

Ideally, A(η) contains impulses at ±ƒk, k = 1,2,3, and S3x(η1,η2) is given by

(1-169)

0 0.2 0.4 0.6
10

−2

10
−1

10
0

Power Spectrum

frequency
0 5 10 15 20

0

1

2

3

4

5
Singular values

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

f1

f2

Estimated Parametric Bispectrum

S3x η1 η2,() δ

k 1=

3

∑ η1 ƒk±〈 〉
 
 
 
 

δ

k 1=

3

∑ η2 ƒl±〈 〉
 
 
 
 

δ

m 1=

3

∑ η1 η2 ƒm±+〈 〉
 
 
 
 

=

1 Tutorial

1-88

From (1-166), we note that it suffices to examine the bispectrum in the region
0 ≤ η2 ≤ η1 ≤ 1/2. If ƒ2 ≠ 2ƒ1, the parametric bispectrum will show a single
impulse at (ƒ1,ƒ2), corresponding to k = 1, l = 2, m = 3 in (1-169), indicating the
existence of the quadratically phase-coupled triplet (ƒ1,ƒ2,ƒ1 + ƒ2). If ƒ2 = 2ƒ1,
the bispectrum will have an additional peak at (η1,η2) = (ƒ1,ƒ1), corresponding
to k = 1, l = 1, m = 2 in (1-169), which can also result from the phase-coupled
triplet (ƒ1,ƒ1,2ƒ1).

It is important to note that the process in (1-163) is not ergodic, that is,
consistent estimates of the third-order cumulant, C3x(τ1,τ2), cannot be obtained
from a single realization, unless frequency-coupling is always accompanied by
phase coupling [68]. Indeed, the random phase assumption itself suggests that
multiple realizations are required. Further, creating multiple realizations by
record segmentation does not lead to consistent estimates. Given a single
realization, C3x(τ1,τ2) will show impulses if frequency coupling exists, that is,
ƒ3 =ƒ2 + ƒ1. Given multiple realizations, C3x(τ1,τ2) (and C3x(τ,τ)) will be nonzero
only if both frequency and phase coupling exist, that is, ƒ3 =ƒ2 + ƒ1, and φ3 =φ2
+ φ1.

The parametric bispectrum in (1-168) shows a peak whenever A(η1), A(η2), and
A(η1 + η2) have peaks. Hence, when Nq > 1, spurious peaks might result from
interactions between different triplets of the form,

In the case of Nq >1, interactions may occur between different QPC triplets
leading to additional peaks in the parametric bispectrum given by (1-168).

Summary
The Higher-Order Spectral Analysis Toolbox offers two algorithms to estimate
the parameters of a second-order Volterra model: nltick, which assumes that
the input is Gaussian, and nlpow, which is applicable to arbitrary inputs. Note
that both algorithms require access to inputs and outputs. Quadratic-phase
coupling (QPC) can be detected using routine qpctor. Routine qpcgen can be
used to generate synthetics for the QPC problem, and nlgen can be used to
compute the output of a second-order Volterra system.

ƒil
q ƒjm

q
+ ƒkn

q .=

Time-Frequency Distributions

1-89

Time-Frequency Distributions
The popular and natural tool in linear system analysis is the Fourier
transform, which decomposes a signal into its frequency components. The
power spectrum (or energy spectrum) gives us information about the frequency
components in the data, but not about the temporal localization of these
components. Alternatively, the original time signal itself gives us good time
resolution (obviously!) but does not give us any idea about frequency
localization, except in trivial cases. So far, we have defined spectra, bispectra,
and trispectra, only for stationary processes; as such, they are inappropriate
for the analysis of nonstationary processes or transient signals. For
nonstationary processes, we can define time-varying cumulants and
polyspectra (in the same way that one talks about time-varying covariances
and power spectra). Consider the signal, y(t) = s(t) + g(t), where s(t) is a
deterministic signal and g(t) is stationary zero-mean noise (perhaps Gaussian).
The process y(t) is nonstationary: its mean is s(t), and for k > 1, cky = ckg; thus,
only the first-order cumulant carries information about the signal s(t). In
contrast, the higher-order moments of y(t) depend both upon s(t) and g(t); thus,
in this case, it is preferable to use higher-order moments [63]. For such signals,
time-frequency distributions that describe the temporal evolution of the
spectrum or the polyspectrum (moment spectrum) are useful tools.

A time-frequency distribution (TFD) is a transform that maps a 1-D signal into
a 2-D time-frequency map, which describes how the spectral content of the data
evolves with time. As such, TFD’s are the natural tools for the analysis,
synthesis, interpretation, and processing of nonstationary signals. Among the
more well-known TFD’s are the short-time Fourier transform (STFT) [1], the
Gabor representation [17], and the Wavelet transform [33, 55].

Linearity is a desirable property of algorithms used in analyzing linear
systems; however, quadratic time-frequency distributions have been proposed,
analyzed, and interpreted as time-varying power spectra [13, 25]. The so-called
Cohen class of shift-invariant distributions includes special cases such as the
Spectrogram, Rihaczek, Page, Wigner-Ville distribution (WD) and
Choi-Williams distributions [13, 25].

The WD has become quite popular because it possesses a number of useful
properties, and has been used in the analysis of phase modulated signals,
which are common in radar and sonar [3]. An important property of the WD is
that every member of Cohen’s class can be interpreted as a 2-D linearly filtered
version of the WD [25]. A third-order WD was introduced in [18]; it was

1 Tutorial

1-90

generalized and its properties were studied in [14, 15, 60, 61, 62]. Higher-order
WD’s describe the evolution in time of the higher-order moment spectra of the
signal.

Wigner Spectrum
The Wigner distribution (WD) was introduced in 1932 by Wigner in the context
of quantum mechanics; its usefulness to problems in communication theory
was discovered by Ville in 1948; consequently, it is often called the
Wigner-Ville distribution. A series of papers by Classen and Mecklenbraüker
[11] discussed the usefulness of the WD for time-frequency analysis of
continuous and discrete-time signals, and was devoted to applications in digital
signal processing; sampling issues are also discussed in [12]. Tutorial
overviews of the WD and its relationships with other time-frequency
distributions (TFD) may be found in [3, 13, 25].

In order to differentiate the second-order WD from the higher-order WD’s (to
be introduced later), we will refer to the conventional WD as the Wigner
spectrum (WS).

In contrast to the STFT, which is resolution limited either in time or in
frequency (dictated by the window function), and suffers from smearing and
sidelobe leakage, the WS offers excellent resolution in both the frequency and
time domains.

The Wigner cross spectrum (WCS) of two signals, x(t), y(t), is defined via,

(1-170)

(1-171)

where X(ω) and x(t) constitute an FT pair. The auto WS is obtained when
x(t) = y(t), and is a bilinear function of the signal x(t).

The ambiguity function, which is widely used in radar, is defined as the 2-D FT
of the WS, and can also be expressed as

(1-172)

Wxy t ω,() := x∫ t τ 2⁄+()y* t τ 2⁄–()e jwτ– dτ

:= 1
2π
------ X∫ ω ξ 2⁄+()Y* ω ξ 2⁄–()ejξt dξ

AF θ τ,() x* t τ
2
---– 

  x t τ
2
---+ 

  ej2πθt td∫=

Time-Frequency Distributions

1-91

Cohen’s general class of TFD’s is defined by

(1-173)

where the kernel φ(θ,τ) specifies the particular distribution that is obtained.

Let x(n) = y(n) + z(n); it follows that

(1-174)

Since the WS is a quadratic transform, the WS of the sum of two signals is not
the sum of the individual WS’s, but also has cross-terms. These cross-terms
make it difficult to interpret the WS. These cross-terms may be suppressed by
appropriate filtering, in the ambiguity function domain, that is, by appropriate
choice of the kernel φ(θ,τ).

In order to reduce the effects of the cross-terms, Choi and Williams [10]
proposed using the kernel

(1-175)

where the parameter σ controls the amount of attenuation (the amplitude of
the cross-terms is proportional to σ). Unfortunately, increased suppression of
cross-terms invariably leads to smearing or loss of resolution of the auto terms
in the time-frequency plane.

In practice, signals are sampled in time, and we compute FTs also on a sampled
frequency grid. The discretization in time and frequency of the continuous-time
WS leads to the nonaliasing requirement that the original signal be sampled at
twice the Nyquist rate [12].

The discrete-time algorithm is given next [13, 25]. Let the instantaneous
cross-correlation be defined by

(1-176)

where n is identified with time and m with lag. The WCS is then defined by,

WC t ƒ,() φ θ τ,()AF θ τ,()e j2πtθ– j2πƒτ– τd θd∫∫=

Wxx ƒ n,() Wyy ƒ n,() Wzz ƒ n,() Wy z, ƒ n,() Wz y, ƒ n,()+ + +=

φ θ τ,() θ–
2τ2 σ2⁄()exp=

rxy m n,() x* n m–()y n m+()=

1 Tutorial

1-92

(1-177)

The WS is obtained when x(n) = y(n). The original signal must be sampled at
twice the Nyquist rate or faster, in order to avoid aliasing. In practice, the
frequency variable ƒ is also discretized, ƒ = k/K, where K controls the frequency
resolution. The WCS in (1-177) can also be implemented via two FFT
algorithms, following the approach in [46]. Both approaches demand the same
computational and storage complexity. This algorithm in (1-177) is
implemented in routine wig2.

The ambiguity function, AF, can be computed as

(1-178)

The AF is multiplied by the Choi-Williams filter,

(1-179)

A 2-D FT (θ to n and m to ƒ) yields the filtered WS. Cross-terms can usually be
suppressed via this approach, but with a concomitant loss of resolution. In
practice, θ is a discretized frequency grid. This algorithm is implemented in
routine wig2c.

Wxy ƒ n,() rxy m n,() jπƒm–()exp
m
∑=

AF m θ,() rxy m n,() j2πnθ()exp
n
∑=

w m θ,() mθ σ⁄()2
–()exp=

Time-Frequency Distributions

1-93

Examples
clf
load wigdat
subplot(221), wig2(s2,[],0);
subplot(222), wig2(s2);
subplot(223), wig2(s3);
subplot(224), wig2(s4);

You should see the display in Figure 1-20.

Figure 1-20 Wigner Spectra (wig2)

Signal s2 is a harmonic with a nominal frequency of 0.05 Hz, which has been
multiplied by a Gaussian window, and is centered at n = 20. Note that the WS
of the signal is concentrated around its nominal center frequency; note also the
interaction between the energies at the positive and negative frequencies
giving rise to the interference terms around D.C. By using the analytic version
of the signal, the negative frequency terms are suppressed; this also suppresses
the distortion terms around D.C.

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

WS

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es
frequency

WS

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

WS

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

WS

1 Tutorial

1-94

Signal s3 is a harmonic with a nominal frequency of 0.15 Hz, which has been
multiplied by a Gaussian window, and is centered at n = 50. Note that the WS
of the signal is concentrated around its nominal center frequency.

In the last panel, we compute the WS of the sum signal s4=s2+s3; note the
cross-terms in the WS; some of these can be eliminated by using routine wig2c.

Examples
load wigdat
wig2c(s4);

Compare the display in Figure 1-21 with the (2,2) panel of Figure 1-20; note
that the cross-terms have been suppressed.

Figure 1-21 Wigner Spectrum With Choi-Williams Smoothing (wig2c)

Wigner Bispectrum
The notion of Wigner spectra can be generalized to Wigner bispectra (WB) and
Wigner trispectra (WT) by considering the FTs of appropriately defined
instantaneous triple and quadruple products.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

CWS s=0.05

Time-Frequency Distributions

1-95

Define the instantaneous triple-product

(1-180)

where α = 1/3 and β = 2/3. The WB is then given by

(1-181)

This algorithm is implemented in routine wig3, where the slice ƒ1 = ƒ2 is
computed. Note that the original signal should be sampled at twice the Nyquist
rate, in order to avoid aliasing. It is shown in that the frequency axes are scaled
by the factor of 2/3, which can be easily fixed.

As in the case of the WS, the WB also suffers from the problems of cross-terms;
one can attempt to suppress these terms by appropriate filtering. Define the
smoothing kernel,

(1-182)

The filtered WB is then given by

This algorithm is implemented in routine wig3c, where the slice ƒ1 = ƒ2 is
computed. It should also be noted that the application of the Choi-Williams
filter to the WB does not guarantee preservation of the auto-terms;
consequently, routine wig3c should be used with great caution.

r3 t τ1 τ2, ,() x* t ατ1– ατ2–()x t βτ1 ατ2–+()x t ατ1– βτ2+()=

W n ƒ1 ƒ2, ,() dτ1dτ2e
j2π– ƒ1τ1 ƒ2τ2+()

r3 t τ1 τ2, ,()∫∫=

Φ θ τ1 τ2, ,() θ–
2 τ1

2 τ2
2

+() σ⁄()exp=

W n ƒ1 ƒ2, ,() θτ1 τ2 ue
j2π– ƒ1τ1 ƒ2τ2+()

e j2π– tθej2πuθddd∫∫∫∫=

r3 t τ1 τ2, ,()Φ θ τ1 τ2, ,()

1 Tutorial

1-96

Examples
clf
load wigdat
subplot(221), wig3(s2,[],0);
subplot(222), wig3(s2);
subplot(223), wig3(s3);
subplot(224), wig3(s4);

You should see the display in Figure 1-22.

Figure 1-22 Wigner bispectra (wig3)

Signal s2 is a harmonic with a nominal frequency of 0.05 Hz, which has been
multiplied by a Gaussian window, and is centered at n = 20. Note that the WB
of the signal is concentrated around its nominal center frequency; note also the
interaction between the energies at the positive and negative frequencies
giving rise to the interference terms around D.C. By using the analytic version
of the signal, the negative frequency terms are suppressed; this also suppresses
the distortion terms around D.C.

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

WB f1=f2

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es
frequency

WB f1=f2

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

WB f1=f2

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

WB f1=f2

Time-Frequency Distributions

1-97

Signal s3 is a harmonic with a nominal frequency of 0.15 Hz, which has been
multiplied by a Gaussian window, and is centered at n = 50. Note that the WB
of the signal is concentrated around its nominal center frequency.

In the last panel, we compute the WB of the sum signal s4=s2+s3; note the
cross-terms in the WS; some of these can be eliminated by using routine wig3c.

A direct consequence of the definition of the WB is that the frequency axes are
scaled by the factor 2/3 [4]–[5]. In this routine, this scaling has been undone so
that the peaks appear at the expected frequencies.

Examples
load wigdat
wig3c(s4,256,0.2,1)

Compare the display in Figure 1-23 with the (2,2) panel in Figure 1-20 and with
Figure 1-21; notice the suppression of cross-terms.

Figure 1-23 Wigner bispectrum With Choi-Williams Smoothing (wig3c)

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

CWB f1=f2 s=0.2

1 Tutorial

1-98

Wigner Trispectrum
Define the instantaneous fourth-order product,

(1-183)

where

The WT is then given by

(1-184)

Notice that two terms are conjugated; also note the sign of the ƒ3τ3 term. This
algorithm is implemented in routine wig4 where the slice ƒ1 = ƒ2 = –ƒ3 = ƒ is
computed, that is, we compute

(1-185)

Note that the original signal should be sampled at twice the Nyquist rate, in
order to avoid aliasing. Also note that the frequency axes are scaled by the
factor of 1/2, which can be easily fixed.

The WT also suffers from the presence cross-terms. As in the case of WS, we
can attempt to suppress the cross terms by appropriate filtering.

Define the smoothing kernel,

(1-186)

The filtered WT is then given by

This algorithm is implemented in routine wig4c, where the slice ƒ1 = ƒ2 = –ƒ3
is computed; the resulting sliced WT is real valued. As in the case of the WS,
cross-terms can usually be suppressed by this approach, but with a
concomitant loss of resolution. In contrast to the WB, the filtering does not
unduly distort the auto terms [14, 15].

r4 t τ1 τ2 τ3, , ,() x* t τ–()x t τ– τ1+()x t τ– τ2+()x* t τ– τ3+()=

τ : τ1 τ2 τ3+ +() 4.⁄=

W n ƒ1 ƒ2 ƒ3, , ,() τ1 τ2 τ3e
j2π– ƒ1τ1 ƒ2τ2 ƒ3τ3–+()

r4 t τ1 τ2 τ3, , ,()ddd∫∫∫=

Ws n ƒ,() τ1 τ2 τ3e
j2π– ƒ τ1 τ2 τ3+ +()

r4 t τ1 τ2 τ3, , ,()ddd∫∫∫=

Φ θ τ1 τ2 τ3, , ,() θ–
2 τ1

2 τ2
2 τ3

2
+ +() σ⁄()exp=

W n ƒ1 ƒ2 ƒ3, , ,() θdτ1 τ2dτ3 u e
j2π– ƒ1τ1 ƒ2τ2 ƒ3τ3+ +()

ddd∫∫∫∫∫=

Time-Frequency Distributions

1-99

Examples
clf, load wigdat
subplot(221), wig4(s2,[],0);
subplot(222), wig4(s2);
subplot(223), wig4(s3);
subplot(224), wig4(s4);

You should see the display in Figure 1-24. Signal s2 is a harmonic with a
nominal frequency of 0.05 Hz, which has been multiplied by a Gaussian
window, and is centered at n = 20. Note that the WT of the signal is
concentrated around its nominal center frequency; note also the interaction
between the energies at the positive and negative frequencies giving rise to the
interference terms around D.C. By using the analytic version of the signal, the
negative frequency terms are suppressed; this also suppresses the distortion
terms around D.C.

Signal s3 is a harmonic with a nominal frequency of 0.15 Hz, which has been
multiplied by a Gaussian window, and is centered at n = 50. Note that the WT
of the signal is concentrated around its nominal center frequency.

In the last panel, we compute the WS of the sum signal s4=s2+s3; note the
cross-terms in the WT; some of these can be eliminated by using routine wig4c.

Figure 1-24 Wigner trispectra (wig4)

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

WT

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

WT

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

WT

−0.2 −0.1 0 0.1 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

WT

1 Tutorial

1-100

Examples
load wigdat
wig4c(s4);

Compare the display in Figure 1-25 with the (2,2) panel of Figure 1-24, and
Figure 1-21 and Figure 1-23; note that the cross-terms in Figure 1-24 have
been suppressed.

Figure 1-25 Wigner Trispectrum With Choi-Williams Filtering (wig4c)

Summary
The Higher-Order Spectral Analysis Toolbox offers routines to compute the
WS, and slices of the WB and the WT, and are implemented in wig2, wig3, and
wig4. Routines wig2c, wig3c, and wig4c implement the so-called
Choi-Williams filter, which can help suppress the cross-terms in the WS, WB,
and WT. It should be noted that this filtering may, in fact, destroy signal terms
in the WB (but not in WS or WT). Wigner spectra of different orders offer
different perspectives on the data, and are useful for exploratory data analysis.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

10

20

30

40

50

60

tim
e

in
 s

am
pl

es

frequency

CWT s=0.05

Time-Delay Estimation

1-101

Time-Delay Estimation
The time-delay estimation problem occurs in various applications, for example,
in the determination of range and bearing in radar and sonar. It also has
esoteric applications, such as the measurement of the temperature of a molten
alloy by measuring the passage time of a signal. Other applications include
analysis of EEG data.

The basic model is as follows: two sensors record delayed replicas of a signal,
in the presence of noise:

(1-187)

(1-188)

where D is the delay of the signal at the y-sensor relative to the signal at the
x-sensor, A is the relative amplitude gain, and wx(t) and wy(t) are sensor noises.
Given x(t), y(t), t=0 . . ., N – 1, we want to estimate the delay D.

The basic idea is to shift the signal y(t) and compare the shifted waveform with
x(t); the best match occurs when the shift equals the delay D. This notion is
made more precise by using the cross-correlation between the two signals. We
assume that s(t) is a stationary process, and that the noises are zero mean.

A Cross-Correlation Based Method
The cross-correlation between the two signals x(t) and y(t) is given by,

(1-189)

where is the cross correlation between the two noise processes, and
Rss(τ) is the autocorrelation of the signal. If the noises are uncorrelated, Rxy(τ)
will have a peak at τ = D, the unknown delay. In practice, due to effects of finite
length estimates, and due to the presence of noise, the cross-correlation
estimate may not have a sharp peak.

The data may be prefiltered in order to sharpen the peak; equivalently, we can
multiply the estimated cross-correlation by a window function. Different
choices of the window function lead to different estimates. The most popular

x t() s t() wx t()+=

y t() As t D–() wx t()+=

Rxy τ() ARss τ D–() Rwx wy, τ()+=

Rwx wy, τ()

1 Tutorial

1-102

window function is the maximum-likelihood window of Hannan and
Thompson, which is described below.

Let Sxy(ƒ) denote the cross-spectrum between the two signals, x and y; and let
Sxx(ƒ) and Syy(ƒ) denote the autospectra of x and y. The squared coherence
function is defined by

The optimal-maximum-likelihood window is then

and the windowed cross-correlation, Rxy(m), is the IFT of W(ƒ)Sxy(ƒ).

Estimates of the auto- and cross- spectra and the coherence can be obtained via
the MATLAB routine spectrum; the segment length must be at least twice the
expected maximum delay. Since good estimates of the spectra demand a large
number of segments, it is critical that the lengths of the time-series, x and y, be
much larger than the expected maximum delay.

An initial estimate, d, of the delay D is given by the location of the peak of R(m).
A three-point interpolation may be used to improve the delay estimate [39]

The optimal-maximum-likelihood window estimator is implemented in routine
tder.

Cxy ƒ()
Sxy ƒ() 2

Sxx ƒ()Syy ƒ()
-----------------------------------.=

W ƒ() 1
Sxy ƒ()

Cxy ƒ()
1 Cxy ƒ()–()

--------------------------------,=

D̂ 2D 1–
2

R d() R d 1–()–

R d 1+() 2– *R d() R d 1–()+
--.–=

Time-Delay Estimation

1-103

Examples
load tde1
delay=tder(s1,s2,30,64,0,64);
Estimated delay= 15.9987

You should see the display on Figure 1-26 and the Estimated delay
(Estimated=15.997). The two signals are corrupted by spatially correlated
noise; the noise correlation shows a strong peak at a delay of 5 samples; the
signal delay is 16 samples.

Figure 1-26 Time-Delay Estimated Using Cross-Correlation (tder)

A Cross-Cumulant Based Method
The cross-correlation based method assumes that the sensor noises are
uncorrelated. If the noise processes are correlated, it may not be possible to
detect the peak of Rss(τ) since it may be masked by (see (1-189)). If
the signals are non-Gaussian, and the noise processes are Gaussian, we can
use third-order cumulants, even if the noise processes are correlated.

−80 −60 −40 −20 0 20 40 60 80
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
TDER: Windowed Rxy: delay = 16

Rwx wy, τ()

1 Tutorial

1-104

Let P be the maximum expected delay, and assume that the delay D is an
integer. Then, [39, 40]

(1-190)

where a(n) = 0, n ≠ D, and a(D) = 1. Consider the third-order cumulants,

(1-191)

(1-192)

Substituting (1-190) into (1-191), we obtain

(1-193)

Using this equation for various values of ρ and τ, we get a system of linear
equations in the a(i)’s, namely,

 Cxxxa = cyxx.

The estimated delay is the index n which maximizes |a(n)|. A low rank
approximation of the cumulant matrix Cxxx may be used to improve the
robustness to noise. This algorithm is implemented in routine tde.

y n() a i()x n i–()

i P–=

P

∑ w n()+=

Cyxx τ ρ,() : E y* n()x n τ+()x n ρ+(){ }=

Cxxx τ ρ,() : E x* n()x n τ+()x n ρ+(){ }=

Cyxx τ ρ,() a i()Cxxx τ i+ ρ i+,()

i P–=

P

∑=

Time-Delay Estimation

1-105

Examples
load tde1
[delay,avec]=tde(s1,s2,30,128);
Estimated delay= 16

You should see the display in Figure 1-27, and the Estimated delay (Estimated
delay=16). The two signals are corrupted by spatially correlated noise; the
cross-correlation between the noises at the two sensors has a strong peak at a
delay of 5 samples; the signal delay is 16 samples.

Figure 1-27 Time-Delay Estimated Using Cross-Cumulants (tde)

A Hologram Based Method
The algorithm described in the previous section can also be implemented in the
frequency domain. Define auto- and cross-bispectra,

−30 −20 −10 0 10 20 30
−0.2

0

0.2

0.4

0.6

0.8

1
TDE: parameter vector, delay = 16

Delay in samples

Bxxx ƒ1 ƒ2,() E X ƒ1()X ƒ2()X* ƒ1 ƒ2+(){ } Sxxx ƒ1 ƒ2,()= =

Bxyz ƒ1 ƒ2,() E X ƒ1()X ƒ2()X* ƒ1 ƒ2+(){ } Sxxx ƒ1 ƒ2,()e
j2πDƒ2–

= =

1 Tutorial

1-106

The third-order hologram, h(τ), is then defined by [39, 40]

(1-194)

(1-195)

(1-196)

The hologram should display a strong peak at the location of the true delay.
Since third-order statistics are used, the method is insensitive (in theory) to
both spatially and temporally colored noise which is symmetrically distributed
(e.g., Gaussian). In practice, the estimated hologram, h(τ), will not be an
impulse; hence, we estimate D as the index τ, which maximizes |h(τ)|. This
algorithm is implemented in routine tdeb.

h τ() dƒ1 dƒ2 j2πƒ2τ()exp
Bxyx ƒ1 ƒ2,()
Bxxx ƒ1 ƒ2,()
--------------------------------∫∫=

dƒ1 dƒ2 j2πƒ2τ()exp e
j2πDƒ2–

∫∫=

δ τ D–()=

Time-Delay Estimation

1-107

Examples
load tde1
delay=tdeb(s1,s2,30);
Delay estimated by TDEB is 16

You should see the display on Figure 1-28, and the Estimated delay (Estimated
delay=16). The two signals are corrupted by spatially correlated noise; the
cross-correlation between the noises at the two sensors has a strong peak at a
delay of 5 samples; the signal delay is 16 samples.

Figure 1-28 Time-Delay Estimated Using Cross-Bispectrum (tdeb)

Summary
The basic idea in time-delay estimation is to locate the peak in the
cross-correlation between two signals; routine tder implements the
Maximum-likelihood window of Hannan and Thompson, and is useful if the
noises at the two sensors are not spatially correlated.

Routines tde and tder use third-order cross-cumulants and cross-bispectra
respectively; hence, the sensor noises may be spatially correlated, provided
they are symmetric (cross-bispectrum of the noises is zero). Routine tdegen can
be used to generate synthetics for the TDE problem.

−80 −60 −40 −20 0 20 40 60 80
−10

0

10

20

30

40

50

60

70
TDEB: Hologram delay = 16

1 Tutorial

1-108

Case Studies
In this section, we will use the Higher-Order Spectral Analysis Toolbox to
process some real data; in doing so, we will learn some of the pitfalls and tricks
of the trade.

Sunspot Data
Schuster was, perhaps, the first to use the periodogram to analyze sunspot
data in the nineteenth century; subsequently, these data have been virtually
adopted as a standard by statisticians and signal analysts. These data are
known to have an approximate 11-year cycle. Sunspot data for the years
1700-1987 are available in the file sunspot.dat, which is included in the
standard distribution package.

Figure 1-29 shows the data and the histogram; the latter is indicative of an
exponential distribution. We used cumest to obtain the estimates of some
summary statistics, which are shown in the third column of Table 1-1; the last
column is discussed later.

Figure 1-29 Sunspot Data

0 50 100 150 200 250 300
0

50

100

150

200

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Case Studies

1-109

Table 1-1: Summary Statistics for Sunspot Data

The data in Figure 1-29 display an apparent periodicity; we can use harmest to
verify this. The (1,1) panel of Figure 1-30 displays the singular values of the
covariance matrix; the plot indicates that only three singular values are
significant (p = 3); hence, we used an order of 3. The corresponding power
spectral estimates are shown in the remaining panels of Figure 1-30: All of the
estimates have a strong peak at 0 Hz and at approximately ±0.1 Hz. We can use
pickpeak to accurately locate the peaks in the power spectra; we can also use
roots to estimate the locations of the roots of the AR polynomial estimated by
the AR method; doing so, we obtain an estimate of 10.64 years for the period.

Figure 1-30 Sunspot Data: Power Spectra

Original Differenced

Mean µ = E{x(t)} 48.434 0.085

Variance σ2 = E{(x(t) – µ)2} 1548.781 547.773

Skewness E{(x(t) – µ)3}/σ3 1.038 0.904

Kurtosis E{(x(t) – µ)4}/σ4 – 3 0.657 1.502

0 10 20 30 40
0

1

2
x 10

5 sval: cum−2

−0.5 0 0.5
−100

−50

0
pxx

−0.5 0 0.5
−100

−50

0

ei
g

−0.5 0 0.5
−40

−20

0

m
us

ic

−0.5 0 0.5
−100

−50

0

pi
sa

r

−0.5 0 0.5
−40

−20

0

m
l

−0.5 0 0.5
−200

−100

0

ar

−0.5 0 0.5
−40

−20

0

m
in

−n
or

m

1 Tutorial

1-110

We used glstat to test for Gaussianity and linearity; the test results are:
Test statistic for Gaussianity is 357.4639 with df = 60, Pfa = 0
Linearity test: R (estimated) = 14.8592, lambda = 11.0332, R (theory) = 9.1222,
N = 16.

The probability of false alarm (Pfa) in rejecting the Gaussian hypothesis is 0,
that is, we are virtually certain that the data have nonzero bispectrum; thus,
the test indicates that the data are non-Gaussian as expected (recall that the
histogram shows that the univariate pdf is non-Gaussian, and that the
skewness is around unity). The estimated and theoretical values of R, the
interquartile range of the estimated bicoherence values, are not very different
from one another; hence, the tests do not show any strong evidence of
nonlinearity.

The bispectrum of the data was estimated via bispeci; we used 25 lags and the
default window. The resulting estimate is shown in Figure 1-31. The
bispectrum shows sharp peaks at around (0,0.1) and (0.1,0.1) (and symmetric
locations) and is indicative of possible quadratic coupling. The peak at (0,0.1)
is most probably an artifact due to the fact that the data are all positive valued.

Figure 1-31 Sunspot Data: Bispectrum

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Bispectrum estimated via the indirect method

f1

f2

Case Studies

1-111

Differencing the data is a standard trick in exploratory data analysis; we can
use MATLAB’s diff function to compute the first-order differences. The
differenced data and the corresponding histogram are shown in Figure 1-32.
Summary statistics are shown in the last column of Table 1-1.

Figure 1-32 Sunspot Data: First Difference

0 50 100 150 200 250 300
−100

−50

0

50

100

150

−60 −40 −20 0 20 40 60 80 100 120
0

20

40

60

80

100

1 Tutorial

1-112

The singular value plot displayed by harmest (see the (1,1) panel in Figure
1-33) indicates either four or six significant singular values; using p=6, we
obtain the power spectra shown in the remaining panels of Figure 1-33. Again,
using roots, we estimate the periods to be 5.47 and 10.50 years (AR method).

We used glstat to test for Gaussianity and linearity; the test results are:
Test statistic for Gaussianity is 250.1965 with df = 70, Pfa = 0
Linearity test: R (estimated) = 13.5335, lambda = 6.4449, R (theory) = 7.0433,
N = 16.

The test indicates that the data are non-Gaussian as expected (recall that the
skewness is around unity).

Figure 1-33 Differenced Sunspot Data: Power Spectra

0 10 20 30 40
0

5000

10000
sval: cum−2

−0.5 0 0.5
−50

0
pxx

−0.5 0 0.5
−40

−20

0

ei
g

−0.5 0 0.5
−40

−20

0

m
us

ic

−0.5 0 0.5
−100

−50

0

pi
sa

r

−0.5 0 0.5
−40

−20

0

m
l

−0.5 0 0.5
−100

−50

0

ar

−0.5 0 0.5
−40

−20

0

m
in

−n
or

m

Case Studies

1-113

The bispectrum of the differenced data in Figure 1-34 has sharp peaks around
(.094, .094), and indicates coupling between the periods at 5.3 years and 10.6
years.

Figure 1-34 Differenced Sunspot Data: Bispectrum

In this example, differencing the data helped to clarify the estimates of the
power spectrum as well as the bispectrum. Our tests indicate that the data are
non-Gaussian, and show evidence of a fundamental period of around 10.6 years
as well as a harmonic at around 5.3 years; this may be indicative of quadratic
nonlinearities.

The various figures were generated via

 load sunspot.dat; sp=sunspot(:,2); eda(sp); eda(diff(sp));

Function eda is listed in Table 1-3.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Bispectrum estimated via the indirect method

f1

f2

1 Tutorial

1-114

Canadian Lynx Data

Examples
This time series consists of the annual number of Canadian lynx trapped in the
Mackenzie River district of Northwest Canada for the years 1821–1934;
listings of the data may be found in [56] and [52], where this time series is
discussed in detail, and additional references are also given.

We used eda to generate Figure 1-35 through Figure 1-40. The histogram in
Figure 1-35 is indicative of an exponential distribution, and the data show
apparent periodicity. Summary statistics are shown in Table 1-2; the last
column corresponds to first differences.

Figure 1-35 Lynx Data

0 20 40 60 80 100 120
0

2000

4000

6000

8000

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

Case Studies

1-115

Table 1-2: Summary Statistics for Lynx Data

Routine harmest indicates an order of three (see panel (1,1) of Figure 1-36), and
the power spectra are displayed in Figure 1-36. We see a peak at DC, and two
other peaks corresponding to a cycle of 9.63 years.

Figure 1-36 Lynx Data: Power Spectra

We used glstat to test for Gaussianity and linearity; the test results are:
Test statistic for Gaussianity is 196.752 with df = 28, Pfa = 0
Linearity test: R (estimated) = 6.8468, lambda = 11.299, R (theory) = 9.2282,
N= 5.

Original Differenced

Mean µ = E{x(t)} 1537.89 27.673

Variance σ2 = E{(x(t) – µ)2} 2.439 e+06 1.409 e+06

Skewness E{(x(t) – µ)3}/σ3 1.345 -0.282

Kurtosis E{(x(t) – µ)4}/σ4 – 3 1.463 1.365

0 10 20 30 40
0

1

2
x 10

8 sval: cum−2

−0.5 0 0.5
−50

0
pxx

−0.5 0 0.5
−100

−50

0

ei
g

−0.5 0 0.5
−40

−20

0

m
us

ic

−0.5 0 0.5
−100

−50

0

pi
sa

r

−0.5 0 0.5
−40

−20

0

m
l

−0.5 0 0.5
−100

−50

0

ar

−0.5 0 0.5
−50

0

m
in

−n
or

m

1 Tutorial

1-116

The test indicates that the data are non-Gaussian as expected (recall that the
skewness is around unity, and that the histogram is indicative of an
exponential distribution). The time-series length is only 114 samples, and
glstat bases its estimate of the interquartile range on only 5 samples; hence,
the test for linearity is not conclusive.

The bispectrum of the data was estimated via bispeci; we used 25 lags and the
default window. The resulting estimate is shown in Figure 1-37. The
bispectrum shows sharp peaks at around (0.1,0.1) (and symmetric locations)
and is indicative of possible quadratic frequency coupling. The data appear to
be band-pass in nature.

Figure 1-37 Lynx Data: bispectrum

As with the sun-spot data, we repeated the exercise with the first differences;
corresponding plots are shown in Figure 1-38 through Figure 1-40. Notice that
the histogram appears to be somewhat symmetrical, but the skewness is
significantly nonzero; the correlation matrix indicates two harmonics (order 4)
as evidenced by the singular value plot shown in the (1,1) panel of Figure 1-38;
the estimated cycles are 4.8 years and 9.6 years. The bispectrum confirms the
coupling between these two periods.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Bispectrum estimated via the indirect method

f1

f2

Case Studies

1-117

In this example, we used harmest and bispeci to estimate the periods of the
harmonics, and to detect quadratic coupling; differencing the data helped to
clarify the estimates of the power spectrum as well as the bispectrum. Our tests
confirm that the data are non-Gaussian, and show evidence of a fundamental
period of around 9.6 years as well as a harmonic at around 4.8 years; this may
be indicative of quadratic nonlinearities.

Figure 1-38 Lynx Data: Differenced

0 20 40 60 80 100 120
−4000

−2000

0

2000

4000

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000
0

10

20

30

40

50

1 Tutorial

1-118

Figure 1-39 Lynx Data, Differenced: Power Spectra

Figure 1-40 Lynx Data, Differenced: bispectrum

0 10 20 30 40
0

1

2
x 10

7 sval: cum−2

−0.5 0 0.5
−50

0
pxx

−0.5 0 0.5
−50

0
ei

g

−0.5 0 0.5
−40

−20

0

m
us

ic

−0.5 0 0.5
−50

0

pi
sa

r

−0.5 0 0.5
−40

−20

0

m
l

−0.5 0 0.5
−100

−50

0

ar

−0.5 0 0.5
−40

−20

0

m
in

−n
or

m

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Bispectrum estimated via the indirect method

f1

f2

Case Studies

1-119

Table 1-3: Listing of eda.m

function eda(sp)
%EDA Exploratory Data Analysis
% eda(sp) : sp is the time-series data
%
& Author: A. Swami, Jan 1995

disp('-------- 1 – data and histogram')
figure(1)
subplot(211), plot(1:length(sp),sp),grid,
subplot(212), hist(sp), grid

disp('-------- 2 – Summary stats')
c1 = mean(sp);
c2 = cumest(sp,2);
c3 = cumest(sp,3) / c2^(3/2);
c4 = cumest(sp,4) / c2^2;

fprintf(' Mean %g\n',c1);
fprintf(' Variance %g\n',c2);
fprintf(' Skewness (normalized) %g\n', c3);
fprintf(' Kurtosis (normalized) %g\n', c4);

disp('-------- 3 – power spectra and harmonic models')
figure(2)
[p2,a2,b2] = harmest(sp, 30, 0, 'u', 256, 2);
r = cplxpair(roots(a2));
disp('Estimated cycles')
a = angle(r);
yest = a*0;
ind = find(a ~= 0) ;
yest(ind) = (2*pi) * ones(size(ind)) ./ angle(r(ind)) ;
yest

disp('-------- 4 – gaussianity and linearity tests')
glstat(sp, .51, length(sp)) ;

disp('-------- 5 – the bispectrum')
figure(3)
[Bspec, w] = bispeci(sp, 25); % 25 lags

%pcolor(w,w,abs(Bspec)), shading('interp') % nice, slow

1 Tutorial

1-120

A Classification Example
The data consist of two underwater acoustic signals; the sampling rate is fairly
high and we have lots of data (131,072 samples) The primary interest here is
to classify the two signals.

Means and standard deviations were estimated over 262 nonoverlapped
segments, each of length 500 samples, and are shown in Figure 1-41; the data
appear to be highly nonstationary. Because of the nonstationarity, overall
estimates of the power spectrum or the bispectrum, or tests of Gaussianity and
or linearity will not be meaningful.

Figure 1-41 Acoustic Data: Means and Standard Deviations

We segmented the data into lengths of 1024 samples; power spectra, estimated
from each segment, indicate that the data are essentially low-pass; we expect
that a second-order AR model may be adequate to classify the data. We used

0 100 200 300
−1

−0.5

0

0.5

1
mean−A

0 100 200 300
−1

−0.5

0

0.5

1
mean−B

0 100 200 300
0

0.2

0.4

0.6

0.8

1
std−A

0 100 200 300
0

0.2

0.4

0.6

0.8

1
std−B

Case Studies

1-121

arrcest, with p=2, q=0, norder=2, maxlag=24 to fit AR(2) models to successive
segments of the data.

nsamp = 1024; ind=[1:nsamp]';
for k=1:length(x)/nsamp
 arx(:,k) = arrcest(x(ind),2,0,2,24);
 ary(:,k) = arrcest(y(ind),2,0,2,24);
 ind = ind + nsamp;
end
plot(arx(:,2),arx(:,3),'x', ary(:,2),ary(:,3),'o'),grid

In Figure 1-42 the AR coefficient a(2) is plotted against the coefficient a(1);
circles and crosses correspond to the two time series; note that the data appear
to be well-separated in the AR coefficient domain. The relationship between
a(2) and a(1) appears to be linear; we used tls to estimate the slope and
intercept, from which we derived the line separating the two classes. Since the
autocorrelation is adequate for classifying the data, higher-order statistics are
not useful in this example. In other examples, perhaps, when the data are
contaminated by lot of Gaussian noise, AR estimates based on third- or
fourth-order cumulants may be more useful.

Figure 1-42 Acoustic Data: AR(2) Coefficients

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Class A

Class B

1 Tutorial

1-122

Laughter Data
Speech signals are highly nonstationary, and are known to exhibit phase- and
frequency-coupling phenomena. Here we will use some of the Higher-Order
Spectral Analysis Toolbox M-files to illustrate these features. We will use the
initial 1400 sample segment of the data in the file laughter.mat, which is
included in the standard MATLAB distribution package. The commands that
we used to generate the various figures, and to estimate various quantities are
listed in Table 1-4.

Figure 1-43 shows the data and the histogram; the univariate distribution does
not appear to be symmetrical. The mean, standard deviation, skewness, and
kurtosis were estimated to be 0.5621, 536.69, 0.1681, and 1.3277 indicating
that the data are non-Gaussian, and that the univariate pdf is not symmetric
distributed.

Figure 1-43 Laughter Data

0 20 40 60 80 100 120 140 160 180
−4

−2

0

2

4

6

time in ms

laughter data

−4 −3 −2 −1 0 1 2 3 4 5
0

100

200

300

Case Studies

1-123

Figure 1-44 shows the spectrogram or the STFT computed via specgram; we
used an FFT length of 512, Hanning window of length 256, and an overlap of
240 samples. Three dominant frequency tracks can be seen in the figure,
approximately around 550 Hz, 1100 Hz and 1550 Hz; the last formant begins
around 30 ms; additional fragments are visible around 1800 Hz and 2100 Hz.

Figure 1-44 Laughter Data: Spectrogram

The spectrogram indicates that the speech signal is essentially harmonic in
nature; it also shows that the frequencies appear to be approximately
harmonically related. Since the STFT is resolution limited, we can use
parametric methods such as harmest to obtain accurate estimates; we should,
of course, keep in mind the nonstationary nature of the data.

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

4000

time in ms

fre
qu

en
cy

 in
 H

z

specgram(x,512,8192,256,240)

1 Tutorial

1-124

The (1,1) panel of Figure 1-45 shows the singular values of the covariance
matrix, as estimated by harmest; we set nlag=25 and nfft=512. The singular
values are essentially zero after p = 12; hence we selected an order of 12, and
obtained the various estimates shown in the figure.

We can use roots to compute the roots of the AR polynomials estimated by the
AR and Min-Norm methods; angle(roots(ar))/(2*pi) yields the normalized
frequencies and abs(roots(ar)) yields the radius; the top two panels of Figure
1-47 show the locations of the roots of the two AR polynomials. The roots closest
to the unit circle were found to be approximately at 0.0702, 0.1329, 0.1962 Hz
for the AR method (less dominant roots at 0.2480, 0.3706 and 0.2012); for the
Min-Norm method, the dominant roots are at frequencies 0.0710, 0.1945,
0.1272 and 0.1377. (These frequencies are normalized, that is, to find the
correct frequencies, we should multiply them by the sampling frequency, which
was 8000 Hz.)

Figure 1-45 Laughter Data: “Power Spectra”

0 10 20 30
0

10

20
sval: cum−2

−0.5 0 0.5
−100

−50

0
pxx

−0.5 0 0.5
−100

−50

0

ei
g

−0.5 0 0.5
−50

0

m
us

ic

−0.5 0 0.5
−100

−50

0

pi
sa

r

−0.5 0 0.5
−40

−20

0

m
l

−0.5 0 0.5
−100

−50

0

ar

−0.5 0 0.5
−40

−20

0

m
in

−n
or

m

Case Studies

1-125

We can also use fourth-order cumulants to estimate the frequencies. Notice
that the singular values of the cumulant matrix, shown in the (1,1) panel of
Figure 1-46, look quite different from the singular values of the covariance
matrix shown in the (1,1) panel of Figure 1-45; in particular, the singular
values of the cumulant matrix appear to be essentially zero after p = 8; a
possible explanation is that some of the harmonics are well-modeled as
narrow-band Gaussian, and some as narrow-band non-Gaussian. Various
“spectra” corresponding to order p = 8 are shown in Figure 1-46; the root
locations of the AR polynomials are shown in the bottom panels of Figure 1-47.
The dominant roots of the AR polynomial in the AR method are located at
0.1297 and 0.1964 Hz; a less dominant pole is at 0.2678 Hz. In the case of the
Min-Norm method, the dominant roots are located at 0.0616, 0.1307, 0.1960
and 0.2622, suggesting that the signal has harmonics at approximately 2ƒo,
3ƒo, and 4ƒo.

We can test whether the bispectrum of the data are statistically nonzero by
using glstat. The test results, using cparm=0.51, nfft=256 were: Test statistic
for Gaussianity is 71.3231 with df = 48, Pfa = 0
Linearity test: R (estimated) = 2.3216, lambda = 2.376, R (theory) = 4.472,
N = 14.

Since the Pfa is close to 0, we can be virtually certain that the data have
nonzero bispectrum and hence are non-Gaussian. The estimated and
theoretical R values are not close to each other indicating that the data are not
linear.

1 Tutorial

1-126

Figure 1-46 Laughter Data: “Cumulant Spectra”

Figure 1-47 Laughter Data: “Root Locations”

0 10 20 30
0

5

10
sval: cum−4

−0.5 0 0.5
−100

−50

0
pxx

−0.5 0 0.5
−50

0
ei

g

−0.5 0 0.5
−40

−20

0

m
us

ic

−0.5 0 0.5
−400

−200

0

pi
sa

r

−0.5 0 0.5
−40

−20

0

m
l

−0.5 0 0.5
−100

−50

0

ar

−0.5 0 0.5
−50

0

m
in

−
no

rm

-1

-0.5

0

0.5

1

x

x

x

x

x

x

x

x

x

x

x

x

2-ar

-1

-0.5

0

0.5

1

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

2-min

-1

-0.5

0

0.5

1 x

x

x

x

x

x

xx

4-ar

-2

-1

0

1

2

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

r-min

Case Studies

1-127

In order to check for quadratic frequency coupling, we can estimate the
nonparametric bispectrum (either via bispeci or bispeci) or the parametric
bispectrum (via qpctor). The bispectrum estimated via bispeci, with
nfft=256, segsamp=100, overlap=0, wind=1 is shown in Figure 1-48. Since the
data contain several harmonic components, the bispectrum displays several
impulses; in the case of speech signals, we know that these harmonics are at
integer multiples of a fundamental. In this case, it suffices to examine the
diagonal slice of the bispectrum that is shown in Figure 1-49. We used
pickpeak to locate the dominant peaks, which were found to be at 0.0664,
0.1289 and 0.1953 Hz; given the FFT length of 256, we can conclude that the
these three harmonics are quadratically frequency coupled; the frequency
coupling is also evident (but less obvious) from the power spectral estimates
and the spectrogram.

Figure 1-48 bispectrum – nonparametric

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

bispecd(reshape(x,100,14), 256, 1)

f1

f2

1 Tutorial

1-128

Figure 1-49 Diagonal Slice of bispectrum

We used routine qpctor to confirm the quadratic frequency coupling; we let
nlags=25, segsamp=100, overlap=0; the singular values, shown in Figure 1-50,
appear to fall in four clusters; we used p = 10 to estimate the parametric
bispectrum shown in the bottom panel. The dominant peak is at
(0.0625,0.0625) Hz, indicating the presence of a second harmonic at 0.1250 Hz;
also note that the contour plot indicates peaks at (ƒo,kƒo), k = 1,2,3, where ƒo ≈
0.0625 Hz. In the case of self-coupling [73] the bispectrum can be used to verify
the presence of higher-order couplings as well (we have ƒo + ƒo = 2ƒo, and
ƒo + 2ƒo = 3ƒo, ƒo + 3ƒo = 4ƒo, etc., which lead to the indicated peaks).

In this example, we used glstat to confirm that the data are non-Gaussian,
and nonlinear. We used harmest and qpctor to estimate the frequencies of the
fundamental and the harmonics and to confirm frequency coupling. We used
roots to determine the frequencies from the parameter vector estimated via
the AR method; we can use pickpeak to locate the peaks in the various spectra
estimated by harmest; note that the accuracy of the peak locations is limited by
the FFT length (this should not be confused with resolving power). Since the
signal is rich in harmonics, we found it more useful to look at a slice (the
diagonal slice) of the bispectrum. Our final conclusions are that the speech
segment in question is non-Gaussian, nonlinear, and contains harmonics of the
form ƒok = kƒo, with ƒo ≈ 500 Hz.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
diagonal slice

Case Studies

1-129

Figure 1-50 Parametric bispectrum via qpctor

0 0.2 0.4 0.6
10

−8

10
−6

10
−4

10
−2

10
0

Power Spectrum

frequency
0 10 20 30

0

0.5

1

Singular values

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

f1

f2

Estimated Parametric Bispectrum

1 Tutorial

1-130

Table 1-4: Commands Used to Analyze Laughter Data

load laughter mat % laughter data
y = y(1:1400);
sp = (y-mean(y))/std(y); % standardize

%
figure(1) % data and histograms:
subplot(211), plot(1:length(sp),sp),grid,
subplot(212), hist(sp), grid

% % summary stats:
c1 = mean(sp); c2 = cumest(sp,2);
c3 = cumest(sp,3) / c2^(3/2); c4 = cumest(sp,4) / c2^2;
fprintf(' Mean %g\n',c1);
fprintf(' Variance %g\n',c2);
fprintf(' Skewness (normalized) %g\n', c3);
fprintf(' Kurtosis (normalized) %g\n', c4);

figure(2), specgram(sp,512,8000,hamming(256),240);

% -------- power spectra and cum-4 spectra
figure(3), [px2,a21,a22]=harmest(sp,25,12,'biased',512,2);
figure(4), [px4,a41,a42]=harmest(sp,25,8,'biased',512,4);

r21 = roots(a21); r22 = roots(a22);
r41 = roots(a41); r42 = roots(a42);
figure(5)
subplot(221), polar(angle(r21), abs(r21), 'x'), grid
subplot(222), polar(angle(r22), abs(r22), 'x'), grid
subplot(223), polar(angle(r41), abs(r41), 'x'), grid
subplot(224), polar(angle(r42), abs(r42), 'x'), grid

glstat(sp,0.51.256); % gl test

% -------- bispectrum and diagonal slice

figure(6), [Blaf,w] = bispecd(sp,256,1,100,0);
figure(7), dB = abs(diag(Blaf));
plot(w,dB), grid, title('diagonal slice')
[loc,val] = pickpeak(dB,3)
disp(w(loc))

figure(8), qpctor(sp,25,10,512,100,0); % QPC test

Case Studies

1-131

Pitfalls and Tricks of the Trade
As the previous examples illustrate, we should first use univariate statistics
(mean, median, skewness, kurtosis, histograms) and second-order statistics
(SOS). Before using algorithms based on higher-order statistics, we should test
the data for Gaussianity, and if applicable, for linearity as well. Note that the
symmetry of the univariate pdf does not imply that the bispectrum is zero.

Model parameters (e.g., ARMA, harmonics) estimated by algorithms based on
cumulants of different orders need not agree with one another. For example, in
the case of the laughter data, we saw that the second- and fourth-order spectra
were different; a possible reason could be that some of the harmonic
components can be well-modeled as narrow-band Gaussian.

Similarly, in the case of ARMA modeling, algorithms based on cumulants of
different orders may lead to different results. Consistent results may be
expected only in the case of noise-free data and long data lengths. Consider the
following three-component model

Assume that u1(n) is i.i.d. Gaussian, u2(n) is i.i.d., single-sided exponential, and
u3(n) is i.i.d., and double-sided exponential (Laplace); further assume that the
ui’s are independent of one another. Let denote the variance, and γ3,i and
γ4,i the skewness and kurtosis of ui(n). Then,

y n() xi n()

i 1=

3

∑=

xi n() hi k()ui n k–().
i 1=
∑=

σi
2

S2x ω() σ1
2 H1 ω() 2 σ2

2 H2 ω() 2 σ3
2 H3 ω() 2

+ +=

S3x ω1 ω2,() γ3 2, H2 ω1()H2 ω2()H2
* ω1 ω2+()=

S4x ω1 ω2 ω3, ,() γ4 2, H2 ω1()H2 ω2()H2 ω3()H2
* ω1 ω2 ω3+ +()=

γ4 3, H3 ω1()H3 ω2()H3 ω3()H3
* ω1 ω2 ω3+ +()+

1 Tutorial

1-132

In this example, the power spectrum is the sum of the power spectra of the
three components; since u1(n) and u3(n) are both symmetric distributed, their
skewnesses are zero; hence, only the second component contributes to the
bispectrum; finally, since u1(n) is Gaussian, all of its cumulants of order
greater than two are zero; hence, it does not contribute to the fourth-order
cumulant.

Even though γ3,2 ≠ 0 in the above example, it is easy to construct examples of
H2(ω) so that the bispectrum is zero [63]. Hence, a zero bispectrum is not
inconsistent with nonzero skewness of the driving i.i.d. process.

In the context of harmonic processes of the form,

the phrases frequency coupling and phase coupling are often used in the same
sense; the former refers to relationships of the form ω3 = ω2 + ω1, and the latter
to φ3 = φ2 + φ1. Generally, but not always, the two relationships go hand in
hand.

Further, in the case of harmonic processes, the power spectrum and parametric
methods based on the autocorrelation are usually sufficient, unless the data
contain narrow-band Gaussian components. Higher-order cumulants and
spectra are useful to isolate specific types of coupling (quadratic, cubic, etc.).

Several of the M-files in the Higher-Order Spectral Analysis Toolbox allow the
user to segment the data, that is, cumulants are estimated for each segment
and are then averaged across the set of segments; such segmentation usually
speeds up calculations, at a slight loss in statistical efficiency; note that
segmented estimates can never be better than unsegmented estimates.

In the case of bispectra, as we have seen earlier, we can obtain consistent
estimates by either estimating bispectra from segments and averaging them
(frequency resolution limited by the segment length) or by applying an
appropriate smoothing window (in the frequency, data or lag domain).

Be aware that the higher-order moments and cumulants of complex processes
can be defined in different ways, and that their polyspectra do not possess all
the symmetry properties of their real counterparts.

s n() αk ωkn φk+(),cos

k 1=

p

∑=

Case Studies

1-133

There has been lot of confusion about the nonredundant region (NRR) of the
bispectrum; we refer the reader to Brillinger [4] for an explanation of why the
NRR is the triangle with vertices (0,0), (0,π), and (2π/3,2π/3), and not the
triangle with vertices (0,0), (0,π), and (π/2,π/2).

Finally, it is easy to be misled by contour plots, where 100*eps may stand out
as a peak in a background of eps; careful attention should be paid to scaling the
data; normalizing the data to unity variance is usually helpful.

1 Tutorial

1-134

Data Files
The Higher-Order Spectral Analysis Toolbox distribution diskette includes
several .mat files. These files are used in the “Tutorial” to demonstrate various
toolbox functions. Descriptions of these .mat files are given below.

In the following, signal-to-noise ratio (SNR) is defined as the ratio of the signal
variance to the noise variance; when expressed in dB, it is given by
10log10 , where is the variance of the signal, and is the variance
of the noise. All frequencies are in Hz relative to a nominal sampling frequency
of 1 Hz.

ar1.mat An AR (2) synthetic; the AR parameters are [1, –1.5, 0.8]; the
time-series length is 1024 samples; input distribution is single-sided
exponential; additive white Gaussian noise was added so as to obtain a SNR of
20 dB. The vector y contains the AR(2) time-series.

ar1.mat AR(2) synthetic

arma1.mat ARMA(2,1) synthetic

doa1.mat Synthetic for the direction of arrival problem

gldat.mat Data for Gaussianity/linearity tests

harm.mat Synthetic for the harmonics in noise problem

ma1.mat MA(3) synthetic

nl1.mat Synthetic for testing the nonlinear routines

nl2.mat Synthetic for testing the nonlinear routines

qpc.mat Synthetic for the quadratic phase coupling
problem

riv.mat Synthetic for the adaptive LP problem

tde1.mat Synthetic for the time-delay estimation
problem

tprony.mat Synthetic for testing Prony’s method

wigdat.mat Synthetic for testing the Wigner routines

σs
2 σn

2⁄() σs
2 σn

2

Data Files

1-135

arma1.mat An ARMA (2,1) synthetic; the AR parameters are [1, –0.8, 0.65]; the
MA parameters are [1, –2]; the time-series length is 1024 samples; input
distribution is single-sided exponential; additive white Gaussian noise was
added so as to obtain a SNR of 20 dB. The vector y contains the ARMA(2,1)
synthetic. The model is mixed-phase.

doa1.mat This data file contains the 4096 -by- 8 matrix ymat. It is a synthetic
for the DOA problem, with two sources at bearings, θ1 = –15° and θ2 = –25°; the
eight sensors are spaced half a wavelength apart. The source signals are
Laplace distributed, and have unity variance. Spatially correlated Gaussian
noise, with unity variance, was added to obtain the noisy signals. The spatial
color is such that the angular noise spectrum of the noise shows sharp peaks at
±30°.

gldat.mat This file contains the vectors e, g, l, u, x, and z; each vector
consists of 512 samples. Sequences e, g, l, and u are realizations of i.i.d.
sequences with exponential, Gaussian, Laplace, and uniform distributions.
Sequence x is obtained by passing e through the AR filter, [1, –1.5, 0.8]; and,
z(n) = x3(n).

harm.mat A harmonics-in-noise synthetic. Two unity amplitude harmonics,
with frequencies λ1 = 0.1 and λ2 = 0.2, were corrupted with additive colored
Gaussian noise with a variance of 0.5. Since each of the harmonics has power
0.5, the SNR is 3 dB. Thirty-two independent realizations, each with 128
samples were generated. The phases of the harmonics were chosen randomly
for each realization. The colored Gaussian noise was generated by passing
white Gaussian noise through an AR filter with coefficients [1, –1.058, 0.81].
The noise spectrum has a pole at 0.15 Hz with a damping factor of 0.9. The set
of realizations is contained in the matrix zmat; the columns correspond to
independent realizations.

ma1.mat An MA(3) synthetic; the MA parameters are [1,0.9,0.385, –0.771]; the
time-series length is 1024 samples; input distribution is single-sided
exponential; additive white Gaussian noise was added so as to obtain a SNR of
20 dB. The vector y contains the MA(3) synthetic. The model is mixed-phase.

nl1.mat This file contains data to test functions nlpow and nltick. A white
Gaussian process, x, is passed through a second-order Volterra system, to
obtain the output process y. Matrices x and y are 64 × 64, with columns
corresponding to realizations. The input-output relationship for a second-order
Volterra system is given by,

1 Tutorial

1-136

The filter h was chosen to be the IR of an FIR(12) filter, with a cutoff of 0.2Hz,
and was generated with h = fir1(11,0.4). The filter q was chosen such that

q(k,l) = h1(k)h1(l), where h1 is the IR of an FIR(12) filter, with a cutoff of 0.1Hz,
and was generated by h1 = fir1(11,0.2). The output data were generated
using function nlgen, y = nlgen (x,h,q). The impulse responses (IR) and
transfer functions (TF) of the linear part (h), and the quadratic part (q) are
shown in Figure 1-51.

Figure 1-51 Transfer Functions of a Second-Order Volterra Model

nl2.mat This file contains data to test function nlpow. This data file was
generated in the same way as was nl1.mat, except that the process x was
chosen to be i.i.d. and Laplacian.

y n() h k()x n k–()

k 0=

∞

∑ q k l,()x n k–()x n l–().

l 0=

∞

∑
k 0=

∞

∑+=

Data Files

1-137

qpc.mat A quadratically phase coupled synthetic. The data consist of four
harmonics corrupted by white Gaussian noise. The frequencies of the
harmonics are λ1 = 0.1, λ2 = 0.15, λ3 = 0.25 and λ4 = 0.40 Hz. For each
realization, the phases of the first, second, and fourth harmonics, φ1, φ2, and φ4
were chosen randomly; the phase of the third harmonic was set to φ3 = φ1 + φ2.
Note that the triplet of harmonics with frequencies (0.1, 0.15, 0.25) exhibits
both phase and frequency coupling; the triplet with frequencies (0.15, 0.25,
0.40) is frequency-coupled, but not phase-coupled. Sixty-four independent
realizations, each consisting of 64 samples, were generated. The amplitudes of
all four harmonics were unity, and white Gaussian noise with a variance of 1.5
was added to the signal. The set of realizations is contained in the matrix zmat;
the columns correspond to independent realizations.

riv.mat This data file contains three vectors, y, zw, and zc, each consisting of
1024 samples. A zero-mean exponentially distributed i.i.d. sequence was
passed through the AR filter [1, –1.5, 0.8] to obtain y. Additive white Gaussian
noise was added to y to obtain the noisy signal zw whose SNR is 10 dB. Colored
Gaussian noise, generated by passing a white Gaussian sequence through the
AR filter [1, 0, 0.49] was added to y to obtain zc, also at a SNR of 10 dB.

tde1.mat A synthetic for time-delay estimation. The signal at the first sensor
is i.i.d., zero mean, single-sided exponentially distributed with unity variance,
and skewness of two. The signal at the second sensor is a delayed version of the
signal at the first sensor (delay = 16 samples). The first signal was corrupted
by white Gaussian noise to obtain a SNR of 0 dB. The signal at the second
sensor was corrupted by colored Gaussian noise, obtained by passing the noise
at the first sensor through the MA filter, [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]. Note that
the two noise signals have a strong spatial correlation at a delay of five
samples. The signal length is samples. Vectors s1 and s2 contain the simulated
signals at the two sensors.

tprony.mat This mat-file contains the 256 sample complex transient x, and is
used to test the function hprony; here,

x(n) = exp{jπ/2 + n(–0.1 + j0.84π)} + 2exp{jπ/4 + n(–0.2 + j0.64π)}

wigdat.mat This file contains four signals, s1, s2, s3, and s4, described below,
which are used to test the functions wig2, wig2c, wig3, wig3c, wig4, and wig4c.

Signal s1 is a real harmonic, given by

s1(n) = cos(2πƒn), ƒ = 0.1

1 Tutorial

1-138

Signals s2 and s3 are generated via

with T = .001, n0 = 20, ƒ = 50, σ = 0.01 for signal s2, and T = .001, n0 = 50,
ƒ = 150, σ = 0.01 for signal s3. Signal s4 is the sum of s2 and s3. Note that
signals s2 and s3 are harmonics at frequencies 0.05 and 0.15 Hz, which have
been multiplied by a Gaussian shaped window function. Signals s1, s2, s3, and
s4 are displayed in Figure 1-52.

Figure 1-52 Signals in file wigdat.mat

s n() 2π–
T n n0–()

2σ
------------------------- 

 
2

 
 exp 2πƒnT()cos=

0 10 20 30 40

−1

−0.5

0

0.5

1
s1

0 20 40 60 80
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
s2

0 20 40 60 80
−1

−0.5

0

0.5

1
s3

0 20 40 60 80
−1.5

−1

−0.5

0

0.5

1

1.5
s4 = s2 + s3

References

1-139

References
1 Allen, J.B., “Short-time spectral analysis, synthesis and modification by

discrete Fourier transform,” IEEE Trans ASSP, Vol. 25, pp. 235-38, June
1977.

2 Blackman, R.B. and J.W. Tukey, The Measurement of Power Spectra, New
York: Dover, 1959.

3 Boudreaux-Bartels, G., Time-Frequency Signal Processing Algorithms:
Analysis and Synthesis Using Wigner Distributions, Ph.D. dissertation, Rice
University, 1984.

4 Brillinger, D.R., “An Introduction to Polyspectra,” Ann. Math. Stat., Vol. 36,
pp. 1351-74, 1965.

5 Brillinger, D.R., Time Series: Data Analysis and Theory, McGraw Hill, 1981.

6 Brillinger, D.R. and M. Rosenblatt, “Computation and interpretation of k-th
order spectra,” in Spectral Analysis of Time Series, B. Harris, ed., pp.
189-232, John Wiley, 1967.

7 Cadzow, J.A., “Spectral Estimation: An Overdetermined Rational Model
Equation Approach,” Proc. IEEE, Vol. 70, pp. 907-38, 1982.

8 Capon, J., “High-resolution frequency-wavenumber analysis,” Proc. IEEE,
Vol. 57, pp. 1408-18, 1969.

9 Chandran, V. and S. Elgar. “A general procedure for the derivation of
principal domains of higher order spectra.” IEEE Trans. on Signal
Processing, SP-42: pp. 229-33, Jan. 1994.

10 Choi, H. and W.J. Williams, “Improved Time-Frequency Representation of
Multicomponent Signals Using Exponential Kernels,” IEEE Trans. ASSP,
pp. 862-71, June 1989.

11 Classen, T.A.C.M. and W.F.G. Mecklenbraüker, “The Wigner distribution —
a tool for time-frequency signal analysis,” Phillips J. Res., Vol. 35, pp.
217-50, 276-300, 372-89, 1067-72, 1980.

1 Tutorial

1-140

12 Classen, T.A.C.M. and W.F.G. Mecklenbraüker, “The aliasing problem in
discrete-time Wigner distributions,” IEEE Trans ASSP, pp. 1067-72, Oct.
1983.

13 Cohen, L., “Time-Frequency Distributions: A Review,” Proc. IEEE, pp.
941-81, July 1989.

14 Fonollosa, J.R. and C.L. Nikias, “Wigner Higher-Order Moment Spectra:
Definitions, Properties, Computation and Applications to Transient Signal
Detection,” IEEE Trans. SP, Jan. 1993.

15 Fonollosa, J.R. and C.L. Nikias, “Analysis of finite-energy signals using
higher-order moments- and spectra-based time-frequency distributions,”
Signal Processing, Vol. 36, pp. 315-28, 1994.

16 Friedlander, B. and B. Porat, “Asymptotically optimal estimation of MA and
ARMA parameters of non-Gaussian processes from high-order moments,”
IEEE Trans. on Automatic Control, Vol. 35(1), pp. 27-37, 1990.

17 Gabor, D., “Theory of communication,” J.i.e. E., Vol. 93, pp. 429-59, 1946.

18 Gerr, N.L., “Introducing a third-order Wigner distribution,” Proc. IEEE, pp.
290-92, Mar. 1988.

19 Giannakis, G.B. and J.M. Mendel, “Identification of non-minimum phase
systems using higher-order statistics,” IEEE Trans. ASSP, Vol. 37, pp.
360-77, Mar. 1989.

20 Giannakis, G.B. and J.M. Mendel, “Cumulant-based order determination of
non-Gaussian ARMA models,” IEEE Trans. ASSP, pp. 1411-21, Aug. 1990.

21 Golub, G.H. and C.F. Van Loan, Matrix Computations, pp. 420-5, Baltimore:
The Johns Hopkins University Press, 1983.

22 Hasan, T., “Nonlinear time series regression for a class of amplitude
modulated sinusoids,” J. Time Series Analysis, Vol. 3, pp. 2, 109-22, 1982.

23 Haykin, S., Adaptive Filter Theory, New Jersey: Prentice-Hall, pp. 391-94,
198-205, 464-70, 234-36, 2nd ed., 1991.

24 Hinich, M.J., “Testing for Gaussianity and linearity of a stationary time
series,” J. Time Series Analysis, Vol. 3, pp. 169-76, 1982.

References

1-141

25 Hlaswatch, F., and G.F. Boudreaux-Bartels, “Linear and Quadratic Time-
Frequency Representations,” IEEE Signal Processing Magazine, pp. 21-67,
Apr. 1992.

26 Johnson, D.H., “The application of spectrum estimation methods to bearing
estimation problems,” Proc. IEEE, Vol. 70, pp. 975-89, 1982.

27 Kay, S.M., Modern Spectral Estimation: Theory and Applications, New
Jersey: Prentice-Hall, 1988.

28 Kay, S.M. and S.L. Marple, “Spectrum Analysis — A Modern Perspective,”
Proc. IEEE, Vol. 69, pp. 1380-1418, 1981.

29 Krauss, T., J.N. Little, and L. Shure, MATLAB Signal Processing Toolbox
User’s Guide, The MathWorks Inc., 1994.

30 Kumaresan, R. and D.W. Tufts, “Estimating the angles of arrival of multiple
plane waves,” IEEE Trans. AES, Vol. 19, pp. 134-39, 1983.

31 Kung, S.Y. et al, “State-space and SVD approximation methods for the
harmonic retrieval problem,” J. Opt. Soc. Amer., Vol. 73., pp. 1799-1811,
1983.

32 Makhoul, J., “Stable and efficient lattice methods for linear prediction,”
IEEE Trans. ASSP, Vol. 25, pp. 423-28, Oct. 1977.

33 Mallat, S., “A theory for multi-resolution signal representation: the wavelet
transform,” IEEE Trans. PAMI, Vol. 11, pp. 674-93, July 1989.

34 Marple, S.L., Jr., Digital Spectral Analysis with Applications, pp. 229-31,
New Jersey: Prentice-Hall, 1987.

35 Marple, Jr., “A new autoregressive spectrum analysis algorithm,” IEEE
Trans. ASSP, Vol. 28, pp. 441-50, Aug. 1990.

36 Matsuoka, T. and T.J. Ulrych, “Phase estimation using the bispectrum,”
Proc. IEEE, Vol. 72, pp. 1403-11, 1984.

37 Mendel, J.M., “Tutorial on higher-order statistics (spectra) in signal
processing and system theory: Theoretical results and some applications,”
Proc. IEEE, Vol. 79, pp. 278-305, 1991.

1 Tutorial

1-142

38 Nikias, C.L. and J.M. Mendel, “Signal processing with higher-order
spectra,” IEEE Signal Processing Magazine, Vol. 10, No 3, pp. 10-37, July
1993.

39 Nikias, C.L. and R. Pan, “Time delay estimation in unknown Gaussian
spatially correlated noise,” IEEE Trans. ASSP, Vol. 36, pp. 1706-14, Nov.
1988.

40 Nikias, C.L. and A. Petropulu, Higher-Order Spectra Analysis: A Nonlinear
Signal Processing Framework, New Jersey: Prentice-Hall, 1993.

41 Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.

42 Oppenheim, A.V. and R.W. Schafer, Digital Signal Processing, New Jersey:
Prentice-Hall, 1989.

43 Pan, R. and C.L. Nikias, “The complex cepstrum of higher-order cumulants
and non-minimum phase system identification,” IEEE Trans ASSP, Vol. 36,
pp. 186-205, Feb. 1988.

44 Pan, R. and C.L. Nikias, “Harmonic decomposition methods in cumulant
domains,” Proc. ICASSP-88, pp. 2356-59, New York, 1988.

45 Patel, J.K. and C.B. Read, Handbook of the Normal Distribution, Sec 7.9.4,
M. Dekker, New York, 1982.

46 Perryin, F. and R. Frost, “A unified definition for the discrete-time,
discrete-frequency, and discrete time/frequency Wigner distributions,”
IEEE Trans. ASSP, Vol. 34, pp. 858-67, Aug. 1986.

47 Pflug, L.A., G. E. Ioup, J. W. Ioup and R. L. Field, “Properties of higher-order
correlations and spectra for bandlimited transients,” J. Acoust. Soc. Am.,
Vol. 91(2), pp. 975-88, Feb. 1992.

48 Pisarenko, V.F., “The retrieval of harmonics from a covariance function,”
Geophysical J. Royal Astron. Soc., Vol. 33, pp. 347-66, 1973.

References

1-143

49 Porat, B., Digital Processing of Random Signals, New Jersey: Prentice-Hall,
1994.

50 Porat, B., B. Friedlander, and M. Morf, “Square-root covariance ladder
algorithms,” in Proc. ICASSP-81, Atlanta, GA, pp. 877-880, March 1981.

51 Powers, E.J., Ch.P. Ritz, C.K. An, S.B. Kim, R.W. Miksad and S.W. Nam,
“Applications of digital polyspectral analysis to nonlinear systems modeling
and nonlinear wave phenomena,” Proc. Workshop on Higher-Order Spectral
Analysis, pp. 73-77, Vail, Colorado, June 1989.

52 Priestley, M.B., Spectral Analysis and Time Series, Academic Press, London,
1981.

53 Priestley,M.B., Non-linear and non-stationary time series analysis,
Academic Press, London, 1988.

54 Raghuveer, M.R. and C.L. Nikias, “Bispectrum Estimation: A Parametric
Approach,” IEEE Trans. ASSP, Vol. 33, pp. 1213-30, 1985.

55 Rangoussi, M. and G.B. Giannakis, “FIR modeling using log-bispectra:
Weighted least-squares algorithms and performance analysis,” IEEE Trans.
Cir Sys, Vol. 38, pp. 281-96, 1991.

56 Rioul, O. and M. Vetterli, “Wavelets and signal processing,” IEEE Signal
Processing Magazine, pp. 14-38, Oct 1991.

57 Roy, R. and T. Kailath, “ESPRIT – Estimation of signal parameters via
rotational invariance techniques,” IEEE Trans ASSP, Vol. 37, pp. 984-95,
July 1989.

58 Stoica, P., T. Soderstrom and B. Friedlander, “Optimal instrumental
variable estimates of the AR parameters of an ARMA process,” IEEE. Trans
Auto. Control, Vol. 30, pp. 1066-74, Nov 1985.

59 Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984.

1 Tutorial

1-144

60 Swami, A., System Identification Using Cumulants, Ph.D. Dissertation,
University of Southern California, pp. 107-8, 1988.

61 Swami, A., “Higher-Order Wigner Distributions,” in Proc. SPIE-92, Session
on Higher-Order and Time-Varying Spectral Analysis, Vol. $1770, 290-301,
San Diego, CA, July 19-24, 1992.

62 Swami, A., “Third-order Wigner distributions,” Proc. ICASSP-91, pp.
3081-84, Toronto, Canada, May 1991.

63 Swami, A., “Some new results in higher-order statistics,” Proc. Intl. Signal
Processing Workshop on Higher-Order Statistics, Chamrousse, France, pp.
135-38, July 1991.

64 Swami, A., “Higher-order Wigner distributions,” in Proc. SPIE-92, Session
on Higher-Order and Time-Varying Spectral Analysis, Vol. 1770, pp.
290-301, San Diego, CA, July 1992.

65 Swami, A., “Pitfalls in polyspectra,” Proc. ICASSP-93, Minneapolis, Vol. IV,
pp. 97-100, Apr. 1993.

66 Swami, A., and J.M. Mendel, “Adaptive Cumulant-Based Estimation of
ARMA Parameters,” Proc. Amer. Control Conf., ACC-88, Atlanta, GA, pp.
2114-19, June 1988.

67 Swami, A. and J.M. Mendel, “Lattice algorithms for recursive instrumental
variable methods,” to appear in The Int’l Journal of Adaptive Control and
Signal Processing, 1996. See also: USC-SIPI Report-117, University of
Southern California, Los Angeles, Dec. 1987; Proc. ICASSP-88, New York,
pp. 2248-51, Apr. 1988; Proc. Amer. Control Conf., Atlanta, GA, pp. 2114-19,
June 1988.

68 Swami, A. and J.M. Mendel, “ARMA parameter estimation using only
output cumulants,” IEEE Trans. ASSP, Vol. 38, pp. 1257-65, July 1990.

69 Swami, A. and J.M. Mendel, “Cumulant-based approach to the harmonic
retrieval and related problems,” IEEE Trans. ASSP, Vol. 39, pp. 1099-1109,
May 1991.

References

1-145

70 Swami, A. and J.M. Mendel, “Identifiability of the AR parameters of an
ARMA process using cumulants,” IEEE Trans. on Automatic Control, Vol.
37, pp. 268-73, Feb. 1992.

71 Swami, A. and P. Tichavsky, “The n-th order moment (cumulant) of multiple
sinusoids: strong ergodicity and related issues” Proc. IEEE SP/ATHOS
Workshop on HOS, Girona, Spain, June 1995.

72 Tekalp and A. T. Erdem, “Higher-order spectrum factorization in one and
two dimensions with applications in signal modeling and nonminimum
phase system identification” IEEE Trans. on Acoustics, Speech, and Signal
Processing, Vol. 37(10), pp. 1537-49, 1989.

73 Tick, L.J., “The estimation of transfer functions of quadraticsystems,”
Technometrics, 3, 563-67, Nov 1961.

74 Tugnait, J.K., “Identification of linear stochastic systems via second- and
fourth-order cumulant matching,” IEEE Trans. on Information Theory, Vol.
33(3), pp. 393-407, May 1987.

75 Tugnait, J.K., “Approaches to FIR system identification with noisy data
using higher-order statistics,” IEEE Trans. ASSP, Vol. 38, pp. 1307-17, July
1990.

76 Zhou, G. and G.B. Giannakis, “Self coupled harmonics: stationary and
cyclostationary approaches,” Proc. ICASSP, pp. 153-156, Adelaide,
Australia, Apr. 1994.

77 Zohar, S., “Toeplitz Matrix Inversion: the Algorithm of W.F. Trench,” J.
Assoc. Comp. Mach., Vol. 16, pp. 592-601, 1968.

1 Tutorial

1-146

2

Reference

2 Reference

2-2

Function Tables
The following tables summarize the suite of M-files in the Higher-Order
Spectral Analysis Toolbox by functionality. Reference entries for the functions
are then listed in alphabetical order. On-line help is available via the help and
hosahelp commands.

Higher-Order Spectrum Estimation: Conventional
Methods

Function Purpose

cum2x Estimates second-order cross-cumulants

cum3x Estimates third-order cross-cumulants

cum4x Estimates fourth-order cross-cumulants

cumest Estimates auto cumulants (orders 2,3,4)

bicoher Estimates auto-bicoherence

bicoherx Estimates cross-bicoherence

bispecd Direct method for bispectrum estimation

bispecdx Direct method for cross-bispectrum estimation

bispeci Indirect method for bispectrum estimation

glstat Detection statistics for Gaussianity and linearity tests

Function Tables

2-3

Higher-Order Spectrum Estimation: Parametric
Methods

Quadratic Phase Coupling (QPC)

Function Purpose

armaqs ARMA parameter estimation, q-slice algorithm

armarts ARMA parameter estimation, residual time series
algorithm

armasyn Generates ARMA synthetics

arorder AR order estimation (AR and ARMA processes)

arrcest AR parameter estimation

bispect Computes theoretical bispectrum of an ARMA process

cumtrue Computes true cumulants of ARMA processes

maest MA parameter estimation

maorder MA order estimation

rpiid Generates sequence of i.i.d. random variables

trispect Computes theoretical trispectrum of an ARMA process

Function Purpose

qpcgen Generates synthetics for the QPC problem

qpctor Parametric QPC detection

2 Reference

2-4

Second-Order Volterra Systems

Harmonic Retrieval

Time-Delay Estimation (TDE)

Array Processing: Direction of Arrival (DOA)

Function Purpose

nlgen Computes output of a second-order Volterra system

nlpow Parameter estimation: arbitrary inputs: Powers’ method

nltick Parameter estimation: Gaussian inputs: Tick’s method

Function Purpose

harmest Estimates frequencies of sinusoidal signals

harmgen Generates synthetics for harmonic retrieval problem

Function Purpose

tde TDE, based on cross-cumulants

tdeb TDE, based on cross-bispectrum

tdegen Generates synthetics for the TDE problem

tder TDE, based on cross-correlation

Function Purpose

doa Estimates DOA from a linear array of sensors based on
spatial cross-cumulant or covariance matrix

doagen Generates synthetics for the DOA problem

Function Tables

2-5

Adaptive Linear Prediction

Impulse Response (IR), Magnitude and
Phase Retrieval

Time-Frequency Estimates

Function Purpose

ivcal Computes instrumental variable processes

rivdl Adaptive LP using double lattice filter

rivtr Adaptive LP using transversal filter

Function Purpose

biceps Estimates IR complex cepstrum (lag domain)

bicepsf Estimates IR & complex cepstrum (FFT method)

matul Estimates Fourier phase and magnitude of a signal using
the Matsuoka-Ulrych algorithm

Function Purpose

wig2 Wigner spectrum

wig2c Wigner spectrum, with Choi-Williams filtering

wig3 Wigner bispectrum

wig3c Wigner bispectrum, with Choi-Williams filtering

wig4 Wigner trispectrum

wig4c Wigner trispectrum, with Choi-Williams filtering

2 Reference

2-6

Utilities

Demo

Function Purpose

hosahelp One line help of Higher-Order Sectral Analysis Toolbox
commands

hprony Modeling of transient signals via Prony’s method

pickpeak Picks peaks subject to a separation criterion

tls Total Least Squares solution

trench Trench recursion for non-symmetric Toeplitz matrix

Function Purpose

hosademo Guided tour of the Higher-Order Sectral Analysis Toolbox

Miscellaneous

2-7

Miscellaneous
help hosa will display the list of HOSA Toolbox M-files, along with one-line
descriptions. For additional help on a function, type help function_name. For
example, to get help on function doa, type help doa.

Most of the arguments in the Higher-Order Sectral Analysis Toolbox M-files
have default settings. Recall that arguments in a function have positional
significance. Thus, if you want to specify the fourth argument of a function, you
must specify (at least) the first four arguments. Function invocations of the
form function_name (a, , , b) are invalid. Vectors must be specified within
square brackets, e.g., [1,2,3]. Text or string variables must be specified within
single quotes, that is, ’biased’. For more details, see the "Tutorial" section of
the MATLAB User’s Guide. For details on the algorithms and on the theory of
cumulants and polyspectra, see the "Tutorial" section of this manual.

Prompting
Several Higher-Order Sectral Analysis Toolbox routines (such as armasyn and
qpcgen) are interactive; the routines ask the user to specify various
parameters; we refer to this as prompting.

Guided tour
Invoke the function hosademo for a guided tour of the Higher-Order Sectral
Analysis Toolbox; demo will take you through all the examples in the manual.

Addenda
See the Readme.m file, or type whatsnewhosa at the MATLAB command prompt.

armaqs

2-8

2armaqsPurpose Estimates ARMA parameters using the q-slice algorithm

Syntax [avec,bvec] = armaqs(y,p,q)
[avec,bvec] = armaqs(y,p,q,norder,maxlag,samp_seg,overlap,flag)

Description armaqs estimates the ARMA parameters of the ARMA(p,q) process, y, using the
q-slice algorithm. The AR parameters are estimated via the function arrcest;
then the impulse response is estimated, and, finally, the MA parameters are
estimated.

The AR order p must be greater than zero; function maest should be used in the
p = 0 case; the MA order q must also be specified.

Variable norder specifies the cumulant-order to be used, and should be 3 or 4;
the default value is 3.

maxlag specifies the maximum number of cumulant lags to be used; its default
value is p+q.

Variables samp_seg, overlap, and flag control the manner in which sample
cumulants are estimated:

samp_seg specifies the number of samples per segment; the default value is the
length of the time series.

overlap specifies the percentage overlap between segments; the allowed range
is [0,99]; and the default value is 0.

If flag is biased, then biased sample estimates are computed (default); if the
first letter is not ’b’, unbiased estimates are computed.

If y is a matrix, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension. Cumulants are estimated from each realization, and then
averaged.

The estimated AR and MA parameters are returned in the vectors avec and
bvec, respectively.

armaqs

2-9

Algorithm The signal is assumed to be described by

where u(n) is i.i.d. non-Gaussian, and g(n) is Gaussian.

The AR parameters are obtained as the least-squares solution to the normal
equations given by

where a(0) = 1, m = q + 1, . . ., maxlag, and ρ = q – p, . . ., q. Since one must have
at least m = q + 1, . . ., q + p [1,2], it follows from the preceding normal
equations, that the cumulant lags involved must include
q + 1 – p, . . ., q + p. The default value of maxlag follows from this.

The impulse response is then estimated via,

or via,

depending upon whether third- or fourth-order cumulants are used. We
assume b(0) = h(0) = 1.

x n() a k()x n k–()

k 1=

p

∑– b k()u n k–()

k 0=

q

∑+ h k()u n k–()

k 0=

∞

∑= =

y n() x n() g n()+=

a k()C3 m k ρ,–()

k 0=

p

∑ 0 m q>,=

a k()C4 m k ρ 0, ,–()

k 0=

p

∑ 0 m q>,=

h n()
a k()C3 q k n,–()

k 0=

p∑
a k()C3 q k 0,–()

k 0=

p∑
--- n 1 … q, ,=,=

h n()
a k()C4 q k n 0, ,–()

k 0=

p∑
a k()C4 q k 0 0, ,–()

k 0=

p∑
--- n 1 … q, ,=,=

armaqs

2-10

In our implementation, we estimate the AR and IR parameters
simultaneously; and we use the Total Least Squares (TLS) solution (see tls).

The MA parameters are then obtained via,

See Also arrcest, maest, cumest, armarts, tls

References [1] Swami, A., and J.M. Mendel, “ARMA parameter estimation using only
output cumulants,” IEEE Trans. ASSP, Vol. 38, pp. 1257-65, July 1990.

[2] Swami, A. and J.M. Mendel, “Identifiability of the AR parameters of an
ARMA process using cumulants,” IEEE Trans. on Automatic Control, Vol. 37,
pp. 268-73, Feb. 1992.

b n() a k()h n k–()

k 0=

p

∑ 0 n 1 … q., ,=,= =

armarts

2-11

2armartsPurpose Estimates ARMA parameters using the residual time series method

Syntax [avec,bvec] = armarts(y,p,q)
[avec,bvec] = armarts(y,p,q,norder,maxlag,samp_seg,

. . . overlap,flag)

Description armarts estimates the ARMA parameters of the ARMA(p,q) process, y, via a
three-step procedure. First, AR parameters are estimated (via the function
arrcest); next, the MA(q) residual time series, , is
created; and, finally, its MA parameters are estimated (via the function maest).

p and q are the AR and MA orders.

Variable norder specifies the cumulant-order to be used; norder should be ±3
or ±4; a negative value indicates that autocorrelations as well as cumulants of
order |norder| should be used to estimate the AR parameters. The default
value is 3.

maxlag specifies the maximum number of cumulant lags to be used; its default
value is q+p.

Variables samp_seg, overlap, and flag control the manner in which sample
cumulants are estimated:

samp_seg specifies the number of samples per segment; the default value is the
length of the time series.

overlap specifies the percentage overlap between segments; the allowed range
is [0,99]; and the default value is 0.

If flag is biased, then biased sample estimates are computed (default); if the
first letter is not ’b’, unbiased estimates are computed.

If y is a matrix, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension. Cumulants are estimated from each realization, and then
averaged.

The estimated AR and MA parameters are returned in the vectors avec and
bvec, respectively.

ỹ n() a k()y n k–()
k 0=

p∑=

armarts

2-12

Algorithm The signal is assumed to be described by

where u(n) is i.i.d. non-Gaussian, and g(n) is Gaussian noise.

The AR parameters are obtained as the least-squares solution to the normal
equations given by

where a(0) = 1, m = q + 1, . . ., maxlag, and ρ = q – p, . . ., q. Since one must have
at least m = q + 1, . . ., q + p [1,2], it follows that the cumulant lags involved
must include q + 1 – p, . . ., q + p; this leads to the default value of maxlag.

If the estimated AR parameters are exact, then the residual time series is an
MA(q) process,

hence, the MA parameters can now be determined via the algorithms described
in maest. Note that the even if g(n) is white, the additive noise in is no
longer white. We assume that b(0) = h(0) = 1.

See Also arrcest, maest, cumest, armaqs

x n() a k()x n k–()

k 1=

p

∑– b k()u n k–()

k 0=

q

∑+=

y n() x n() g n()+=

a k()R m k–()

k 0=

p

∑ 0 m q>,=

a k()C3 m k ρ,–()

k 0=

p

∑ 0 m q>,=

a k()C4 m k ρ 0, ,–()

k 0=

p

∑ 0 m q>,=

ỹ n() a k()y n k–()

k 0=

p

∑≈ b k()u n k–()

k 0=

q

∑ a k()g n k–();

k 0=

p

∑+=

ỹ n()

armarts

2-13

References [1] Giannakis, G.B. and J.M. Mendel, “Identification of non-minimum phase
systems using higher-order statistics,” IEEE Trans. ASSP, Vol. 37, pp. 360-77,
Mar. 1989.

[2] Swami, A. and J.M. Mendel, “Identifiability of the AR parameters of an
ARMA process using cumulants,” IEEE Trans. on Automatic Control, Vol. 37,
pp. 268-73, Feb. 1992.

armasyn

2-14

2armasynPurpose Generates ARMA synthetics

Syntax zmat = armasyn
zmat = armasyn(default)

Description armasyn generates the time series described by

where u(k) is the i.i.d. input to the ARMA(p,q) model whose AR(p) and MA(q)
polynomials are given by A(z) and B(z), respectively; g(k) is signal-independent
noise generated via

where w(k) is an i.i.d. sequence, and the polynomials An(z) and Bn(z) determine
the spectrum of the noise.

If armasyn is invoked without any input arguments, then you are prompted for
all the parameters (samples per realization; number of realizations; ARMA
parameters for the signal process; pdf of the input driving noise, u(k); noise
variance; ARMA parameters for the observation noise process, g(k); pdf of the
noise, w(n); signal-to-noise ratio).

If the function is invoked as armasyn(default), where the variable default
may take on any value(s), then, the default settings are used. Time series y in
file ar1.mat, was generated via y=armasyn(1);.

zmat returns the generated data: each column corresponds to a different
realization.

z k() B z()
A z()
------------u k() g k()+=

g k()
Bn z()
An z()
---------------w k()=

arorder

2-15

2arorderPurpose Estimates the AR order of an AR or ARMA process

Syntax p = arorder(y,norder,pmax,qmax,flag)

Description Estimates the AR order of an AR or ARMA process using second-, third-, or
fourth-order cumulants.

y is the observed ARMA process and must be a vector.

norder specifies the cumulant order(s) to be used; valid values are 2, ±3, and
±4; a value of –3 (–4) indicates that order determination should be based on the
correlation as well as the third-order (fourth-order) cumulants. The default
value is 3.

pmax specifies the maximum expected AR order; the default value is 10.

qmax specifies the maximum expected MA order; the default value is 10.

flag — if flag is 1, the internally chosen AR order is returned in p; otherwise,
the plot of the singular values of the cumulant matrix is displayed on the
graphics window, and you are prompted to choose the order. The default value
is 1.

p is the estimated AR order.

Algorithm Let and denote the maximum expected values of the AR and MA orders
(the parameters pmax and qmax, respectively). For convenience, let cky(m,ρ) :=
cum(y(n),y(n + m),y(n + ρ),y(n), . . .,y(n)), k > 2 ; note that we are suppressing (k
– 3) of the lags, all of which are set to zero. Also let

Then, the singular values of the matrix,

are computed, where k = 2, 3, or 4. If norder is specified as –3(–4), the matrices
C2 and C3 (C4) are concatenated.

p q

cky m() : cky m p–,()… cky m q,(),[]T
=

Ck

cky q 1+() … cky q p+()

cky q p+ 1+() … cky q 2p 1–+()

= … …. ..

arorder

2-16

Let s(m) denote the singular values. The AR order p is then given by the value
of n which maximizes s(n) – s(n + 1), that is, it corresponds to the index at which
the singular values show the maximum drop.

See Also maorder

Reference [1] Giannakis, G.B. and J.M. Mendel, “Cumulant-based order determination of
non-Gaussian ARMA models,” IEEE Trans. ASSP, pp. 1411-21, Aug. 1990

arrcest

2-17

2arrcestPurpose Estimates AR parameters using the normal equations based on
autocorrelations and/or cumulants

Syntax avec = arrcest(y,p)
avec =arrcest(y,p,minlag,norder,maxlag,samp_seg,overlap,flag)

Description arrcest estimates the AR parameters of the ARMA(p,q) process, y, via the
normal equations based on autocorrelations and/or cumulants.

p is the AR order and must be specified.

minlag is the minimum value of m to be used in the normal equations. If you
want to estimate the AR parameters of an ARMA(p,q) process, minlag should
be greater than q. (See the Algorithm subsection for more details.)

The absolute value of norder specifies the cumulant order to be used; if norder
is negative, least-squares solutions based on the simultaneous solution of both
autocorrelation- and cumulant-based normal equations are obtained. The
allowed values of norder are 2, ±3, ±4. The default value is 2.

maxlag specifies the maximum number of cumulant lags to be used; its default
value is p+minlag.

Variables samp_seg, overlap, and flag control the manner in which sample
cumulants are estimated:

samp_seg specifies the number of samples per segment; the default value is the
length of the time series.

overlap specifies the percentage overlap between segments; the allowed range
is [0,99]; and the default value is 0.

If flag is biased, then biased sample estimates are computed (default); if the
first letter is not ’b’, unbiased estimates are computed.

If y is a matrix, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension. Cumulants are estimated from each realization, and then
averaged.

The estimated AR parameters are returned in the p + 1 element column vector
avec.

arrcest

2-18

Algorithm In the noiseless case, the AR parameters are obtained as the least-squares
solution to the normal equations given by

The AR identifiability conditions, [1]-[2], require that ρ = qo – p, . . ., qo, for any
qo, and m = q + i + 1, . . ., q + i + p, i ≥ 0; this leads to the default value of maxlag.

If the additive noise is white (Gaussian or non-Gaussian), the
autocorrelation-based equations hold only for m > max(p,q). If the additive
noise is non-Gaussian and white, the cumulant-based equations hold only for
m > max(p,q); in these cases, choose minlag > max(p,q).

See Also armarts, armaqs, cumest

References [1] Swami, A. and J.M. Mendel, “ARMA parameter estimation using only
output cumulants,” IEEE Trans. ASSP, Vol. 38, pp. 1257-65, July 1990.

[2] Swami, A. and J.M. Mendel, “Identifiability of the AR parameters of an
ARMA process using cumulants,” IEEE Trans. on Automatic Control, Vol. 37,
pp. 268-73, Feb. 1992.

a k()R m k–()

k 0=

p

∑ 0 m q>,=

a k()C3 m k ρ,–()

k 0=

p

∑ 0 m q>,=

a k()C4 m k ρ 0, ,–()

k 0=

p

∑ 0 m q>,=

biceps

2-19

2bicepsPurpose Estimates impulse response via lag-domain bicepstral method

Syntax [hest,ceps,a,b,minh,maxh] = biceps(y,p,q)
[hest,ceps,a,b,minh,maxh] = biceps(y,p,q,samp_seg,

. . . overlap,flag,lh)

Description biceps estimates the impulse response of the linear process, y, using the
bicepstrum (lag-domain) method.

Variables p and q denote the number of causal and anticausal cepstral
parameters to be estimated. The total length of the complex cepstrum is p + q
+ 1.

Variables samp_seg, overlap, and flag control the manner in which sample
cumulants are estimated:

samp_seg specifies the number of samples per segment. Its default value is the
row dimension of y; if y is a row vector, the column dimension is used as the
default value.

overlap specifies the percentage overlap between segments; the allowed range
is [0,99]; and the default value is 0.

If y is a matrix, the columns are assumed to correspond to independent
realizations or records; in this case overlap is set to zero, and samp_seg is set
to the row dimension.

If flag is 'b', then biased sample estimates of cumulants are estimated
(default); if the first letter is not ’b’, unbiased estimates are computed; only the
first letter of flag is checked. Cumulants are estimated from each record, and
then averaged across the set of records.

lh: the default value is 2(p+q); the estimated impulse response will range from
samples –lh to lh.

hest is the estimated impulse response, h(n), n = –lh, . . . , lh; the impulse
response is normalized so that h(0) = 1. Samples of h(n), n < 0, will have
significant values if the original linear system is not minimum-phase (e.g., the
original system is an ARMA model, some of whose zeros or poles lie outside the
unit circle).

ceps is the estimated complex cepstrum , n = –q, . . ., p. ĥ n()

biceps

2-20

a is the vector of the minimum-phase cepstral parameters, A(n), n = 1, . . ., p.

b is the vector of the maximum-phase cepstral parameters, B(n), n = 1, . . ., q.

minh is the minimum-phase component of the IR;
maxh is the maximum-phase component of the IR; so that
hest = conv(minh,maxh).

The cepstral parameters and complex cepstral coefficients are related via

Any linear system can be approximated by an MA(L) model, provided L is large
enough. If the MA model has Li zeros inside the unit circle, and Lo = L – Li
zeros outside the unit circle, then, the estimated impulse response will show an
apparent shift of Losamples to the left of time zero.

Algorithm Details of the algorithm are given in the “Tutorial”.

See Also bicepsf

Reference [1] Pan, R. and C.L. Nikias, “The complex cepstrum of higher-order cumulants
and non-minimum phase system identification,” IEEE Trans ASSP, Vol. 36,
pp. 186-205, Feb. 1988.

ĥ n()
A–

n() n n 0>⁄

B n–() n n 0<⁄



=

bicepsf

2-21

2bicepsfPurpose Estimates impulse response via frequency-domain bicepstral method

Syntax [hest,ceps] = bicepsf(y,nlag,samp_seg,overlap,flag,nfft,wind)

Description bicepsf estimates the impulse response of the linear process, y, using the
bicepstrum Fast Fourier Transform (FFT) method.

y is the data vector or matrix.

nlag specifies the number of cumulant lags to be computed; the third-order
cumulants of y, C3y(m,n),will be estimated for
–nlag <= m,n <= nlag. This parameter must be specified. A useful rule of
thumb is to set nlag to nsamp/10, where nsamp is the length of the time series y.

Variables samp_seg, overlap, and flag control the manner in which sample
cumulants are estimated:

samp_seg specifies the number of samples per segment or record. Its default
value is the row dimension of y; if y is a row vector, the column dimension is
used as the default value.

overlap specifies the percentage overlap between segments. The default value
is 0. The allowed range is [0,99].

If y is a matrix, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension.

If flag is 'b', then biased sample estimates of cumulants are estimated
(default); if the first letter is not 'b', unbiased estimates are computed; only
the first letter of flag is checked.

Cumulants are estimated from each record, and then averaged across the set
of records.

nfft: specifies the FFT size to be used for computing the bispectrum and the
bicepstrum; longer FFT lengths yield better estimates, but also require more
storage (two arrays of size nfft by nfft). The default value is 128; if nfft is
smaller than 2*nlag+1, the power of 2 just larger than 2*nlag+1 will be used.

wind specifies the lag-domain smoothing window. If wind is 0, the Parzen
window will be applied. Otherwise, the usual unit hexagonal window will be
applied. The Parzen window is the default.

bicepsf

2-22

The 1-D Parzen window is defined by,

where L = nlag. The actual window applied to the estimated cumulants is given
by,

The unit hexagonal window is given by,

where d(m) = 1, |m| ≤ nlag.

hest is the estimated impulse response, h(n), n = –nƒƒt/2, . . ., nƒƒt/2 – 1.
Samples of h(n), n < 0, will have significant values if the original linear system
is not minimum-phase (e.g., the original system is an ARMA model, some of
whose zeros or poles lie outside the unit circle).

ceps is the estimated complex cepstrum, ,
n = –nƒƒt/2, . . ., nƒƒt/2 – 1.

Note that the method has an inherent scale and shift ambiguity. Any linear
system can be approximated by an MA(L) model, provided L is large enough. If
the MA model has Li zeros inside the unit circle, and
Lo= L – Li zeros outside the unit circle, then, the estimated impulse response
will show an apparent shift of Losamples to the left of time zero.

Algorithm Details of the algorithm are given in the “Tutorial”.

See Also biceps

Reference [1] Pan, R. and C.L. Nikias, “The complex cepstrum of higher-order cumulants
and non-minimum phase system identification,” IEEE Trans ASSP, Vol. 36,
pp. 186-205, Feb. 1988.

dp m()
1 6–

m
L

-------- 
  2

6 m
L

-------- 
  3

+








= 2 1 m
L

--------– 
 

3

m L 2⁄≤

0

L 2⁄ m L≤ ≤

m L>

W m n,() dp m()dp n()dp m n–().=

W m n,() d m()d n()d m n–()=

ĥ n()

bicoher

2-23

2bicoherPurpose Bicoherence estimation using the direct (FFT-based) method

Syntax [bic, waxis] = bicoher(y)
[bic, waxis] = bicoher(y,nfft,wind,samp_seg,overlap)

Description The bicoherence of the process y is estimated via the direct (FFT-based)
method.

y is the data vector or matrix.

nfft specifies the FFT length to use for computing the bicoherence; the
nominal default value is 128; if nfft is smaller than samp_seg, the power of 2
just larger than samp_seg will be used.

wind specifies the time-domain window to be used; it should be a vector of
length seg_samp. By default, the hanning window is used. Data segments are
multiplied by the time-domain window, then Fourier transformed to compute
the frequency-domain double and triple products. The Fourier transform of the
window function should be real and nonnegative.

samp_seg specifies the number of samples per segment or record. The default
value is set such that eight (possibly overlapped) records are obtained.

overlap specifies the percentage overlap between segments. The default value
is 0. The allowed range is [0,99].

If y is a matrix, the columns are assumed to correspond to independent
realizations or records; in this case overlap is set to zero, and samp_seg is set
to the row dimension.

bic is the estimated bicoherence; it is an nfft-by-nfft array, with origin at
the center, and axes pointing down and to the right.

waxis is the set of frequencies associated with the bicoherence in bic. Thus, the
ith row (or column) of bic corresponds to the frequency waxis(i), i=1,. .
.,nfft. Frequencies are normalized; that is, the sampling frequency is
assumed to be unity.

A contour plot of the magnitude of the estimated bicoherence is displayed.

Algorithm The data, y, are segmented into possibly overlapping records; the mean is
removed from each record, the time-domain window is applied, and the FFT
computed; the bispectrum of the kth record is computed as,

bicoher

2-24

, where Xk denotes the FFT of the kth
record, and the spectrum is computed as Pk(m) = |Xk(m)|2. The spectral and
bispectral estimates are averaged across records, and the bicoherence is then
estimated as

where B(ƒ1,ƒ2) is the final estimate of the bispectrum, and P(ƒ) is the final
estimate of the power spectrum.

See Also bispecd, bispeci

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984.

[2] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.

Bk m n,() Xk m()Xk n()Xk
* m n+()=

bic ƒ1 ƒ2,()
B ƒ1 ƒ2,() 2

P ƒ1()P ƒ2()P ƒ1 ƒ2+()
--=

bicoherx

2-25

2bicoherxPurpose Cross-bicoherence estimation using the direct (FFT-based) method

Syntax [bicx, waxis] = bicoherx(w,x,y)
[bicx, waxis] = bicoherx(w,x,y,nfft,wind,samp_seg,overlap)

Description The cross-bicoherence of the three processes w, x and y is estimated via the
direct (FFT-based) method.

w,x,y should all have the same dimensions.

nfft specifies the FFT length to be used for computing the cross-bicoherence;
the nominal default value is 128; if nfft is smaller than samp_seg, the power
of 2 just larger than samp_seg will be used.

wind specifies the time-domain window to be used; it should be a vector of
length samp_seg. By default, the hanning window is used. Data segments are
multiplied by the time-domain window, then Fourier transformed to compute
the frequency-domain double and triple products. The Fourier transform of the
window function should be real and nonnegative.

samp_seg specifies the number of samples per segment. The default value is set
such that eight (possibly overlapped) records are obtained.

overlap specifies the percentage overlap between segments. The default value
is 50. The allowed range is [0,99].

If w,x,y are matrices, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension.

bicx is the estimated cross-bicoherence; it is an nfft-by-nfft array, with
origin at the center, and axes pointing down and to the right.

waxis is the set of frequencies associated with the cross-bicoherence in bicx.
Thus, the ith row (or column) of bicx corresponds to the frequency waxis(i),
i=1,. . .,nfft. Frequencies are normalized; that is, the sampling frequency
is assumed to be unity.

A contour plot of the magnitude of the estimated cross-bicoherence is
displayed.

bicoherx

2-26

Algorithm The data, w,x,y, are segmented into possibly overlapping records; the mean is
removed from each record, the time-domain window is applied, and the FFT
computed; the cross-bispectrum of the kth record is computed as, Bwxy,k(m,n) =
Wk(m)Xk(n) , where Wk, Xk, and Yk denote the FFT of the kth
segments of w,x, and y. The spectra are computed as Pw,k(m) = |Wk(m)|2,
Px,k(m) = |Xl(m)|2, and
Py,k(m) = |Yk(m)|2. The spectral and cross-bispectral estimates are averaged
across records, and the cross-bicoherence is then estimated as

where Bwxy(ƒ1,ƒ2) is the averaged estimate of the cross-bispectrum, and Pw(ƒ),
Px(ƒ), and Py(ƒ) are the averaged estimates of the power spectra of w,x and y.

See Also bicoher, bispecdx

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984.

[2] Nikias, C.L. and A. Petropulu, Higher-Order Spectra Analysis: A Nonlinear
Signal Processing Framework, New Jersey: Prentice-Hall, 1993.

Yk
* m n+()

bic ƒ1 ƒ2,()
Bwxy ƒ1 ƒ2,() 2

Pw ƒ1()Px ƒ2()Py ƒ1 ƒ2+()
---=

bispecd

2-27

2bispecdPurpose Bispectrum estimation using the direct (FFT-based) method

Syntax [bspec, waxis] = bispecd(y)
[bspec, waxis] = bispecd(y,nfft,wind,samp_seg,overlap)

Description The bispectrum of the process y is estimated via the direct (FFT-based)
method.

y is the data vector or matrix.

nfft specifies the FFT length to be used for computing the bispectrum; the
nominal default value is 128; if nfft is smaller than samp_seg, the power of 2
just larger than samp_seg will be used.

wind specifies the frequency-domain smoothing window.

If wind is a scalar, the Rao-Gabr window of length wind will be used. This
window is defined by [2],

where N is half the FFT length, nfft, and G is the set of points, (m,n),
satisfying,

• A unity value for wind results in no windowing.

• If wind <= 0, the default value of 5 will be used.

• If wind is a vector, it is assumed to specify a 1-D window from which a 2-D
window is computed, W(m,n) = w(m)w(n)w(m + n)[1]-[2].

• If wind is a 2-D matrix, it is assumed to specify the 2-D smoother directly.
The bispectrum estimate averaged across records is smoothed by convolving
with the 2-D window function. The window function should be real and
nonnegative.

samp_seg specifies the number of samples per segment. The default value is set
such that eight (possibly overlapped) records are obtained.

W m n,() 3

π3
------- 1 m2 n2 mn+ +

N2
------------------------------------– m n,() G∈,=

m2 n2 mn+ + wind
2

nfft 2⁄()2
-----------------------.≤

bispecd

2-28

overlap specifies the percentage overlap between segments. The default value
is 50. The allowed range is [0,99].

If y is a matrix, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension.

bspec is the estimated bispectrum; it is an nfft-by-nfft array, with origin at
the center, and axes pointing down and to the right.

waxis is the set of frequencies associated with the bispectrum in bspec. Thus,
the ith row (or column) of bspec corresponds to the frequency waxis(i), i=1,.
. .,nfft. Frequencies are normalized; that is, the sampling frequency is
assumed to be unity.

A contour plot of the magnitude of the estimated bispectrum is displayed.

Algorithm The data, y, are segmented into possibly overlapping records; the mean is
removed from each record, and the FFT computed; the bispectrum of the kth
record is computed as, , where Xk denotes
the FFT of the kth record, where denotes the FFT of the kth record. The
bispectral estimates are averaged across records, and an optional
frequency-domain smoother (specified by parameter wind) is applied.

See Also bispeci

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984.

[2] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.

Bk m n,() Xk m()Xk n()Xk
* m n+()=

bispecdx

2-29

2bispecdxPurpose Cross-bispectrum estimation using the direct (FFT) method

Syntax [bspec,waxis]=bispecdx(x,y,z,nfft,wind,samp_seg,overlap,flag)

Description The cross-bispectrum of the three processes, x, y, and z, Bxyz(ω1,ω2), is
estimated via the direct (FFT) method.

x, y, and z should have the same dimensions.

nfft specifies the FFT length to be used for computing the cross-bispectrum;
the nominal default value is 128; the actual FFT size used will be
max(samp_seg, nfft).

wind specifies the frequency-domain smoothing window. If wind is a scalar, the
Rao-Gabr window [2]

of length wind will be used; here is half the FFT length, nfft, and is the set of
points, (m,n), satisfying,

• A unity value for wind results in no windowing.

• If wind <=0, the default value of 5 will be used.

• If wind is a vector, it is assumed to specify a 1-D window from which a 2-D
window is computed, W(m,n) = w(m)w(n)w(m + n) [1]-[2].

• If wind is a 2-D matrix, it is assumed to specify the 2-D smoother directly.
The bispectrum estimate averaged across records is smoothed by convolving
with the 2-D window function.

samp_seg specifies the number of samples per segment. The default value is set
such that eight (possibly overlapped) records are obtained.

overlap specifies the percentage overlap between segments. The default value
is 50. The allowed range is [0,99].

If y is a matrix, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension.

W m n,() 3

π3
------- 1 m2 n2 mn+ +

N2
------------------------------------– m n,() G∈,=

m2 n2 mn+ + wind
2

nfft 2⁄()2
-----------------------.≤

bispecdx

2-30

flag — a contour plot of the estimated cross-bispectrum will be displayed only
if flag is nonzero; the default value is 1.

bspec is the estimated cross-bispectrum. It is an nfft-by-nfft array, with
origin at the center, and axes pointing down and to the right.

waxis is the set of frequencies associated with the cross-bispectrum in bspec;
thus, the ith row (or column) of bspec corresponds to the frequency waxis(i),
i=1,. . .,nfft. Frequencies are normalized; that is, the sampling frequency
is assumed to be unity.

Algorithm The cross-bispectrum definition used in this routine is given by,

and is the 2-D Fourier transform of the cross-cumulant defined by

For a complex process, the cross-cumulant may also be defined by conjugating
one or more of the terms x, y, and z. This is readily accomplished by using the
MATLAB function conj.

x, y, and z are segmented into possibly overlapping records; the mean is
removed from each record, and the FFT computed. The cross-bispectrum of the
kth record is computed as,

where Xk, Yk and Zk are the FFT’s of the kth segments of x, y, and z. The
bispectral estimates are averaged across records, and an optional
frequency-domain smoother (specified by parameter wind) is applied.

See Also bispecd

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984.

[2] Nikias, C.L. and A. Petropulu, Higher-Order Spectra Analysis: A Nonlinear
Signal Processing Framework, New Jersey: Prentice-Hall, 1993.

Bxyz ω1 ω2,() : E X ω1()Y ω2()Z* ω1 ω2+(){ },=

Cxyz m n,() : E x t m+()y t n+()z* t(){ }.=

Bxyz k, m n,() Xk m()Yk n()Zk
* m n+()=

bispeci

2-31

2bispeciPurpose Bispectrum estimation using the indirect method

Syntax [bspec,waxis] = bispeci(y,nlag)
[bspec,waxis] = bispeci(y,nlag,samp_seg,
 overlap,flag,nfft,wind)

Description The bispectrum of the process y is estimated via the indirect method.

y is the data vector or matrix.

nlag specifies the number of cumulant lags to be computed; the third-order
cumulants of y, C3y(m,n), will be estimated for –nlag <=m, n <= nlag. This
parameter must be specified. A useful rule of thumb is to set nlag to nsamp/10,
where nsamp is the length of the time series y.

samp_seg specifies the number of samples per segment or record. The default
value of samp_seg is the length of the time series.

overlap specifies the percentage overlap between segments. The default value
is 0. The allowed range is [0,99].

If y is a matrix, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension.

flag should be either biased (unbiased) for biased(unbiased) sample estimates
of cumulants. By default, biased estimates are computed.

If the first letter is not 'b', unbiased estimates are computed.

nfft specifies the FFT length to be used for computing the bispectrum; the
default value is 128; if nfft is smaller than 2*nlag+1, the power of 2 just larger
than 2*nlag+1 will be used.

wind specifies the lag-domain smoothing window. If wind is 0, the Parzen
window will be applied. Otherwise, the usual unit hexagonal window will be
applied. The Parzen window is the default.

bispeci

2-32

The 1-D Parzen window is defined by,

where L = nlag. The actual window applied to the estimated cumulants is given
by,

W(m,n) = dp(m)dp(n)dp(m – n).

The unit hexagonal window is given by,

W(m,n) = d(m)d(n)d(m – n).

where d(m) = 1, |m| ≤ nlag.

bspec is the estimated bispectrum; it is an nfft-by-nfft array, with origin at
the center, and axes pointing down and to the right.

waxis is the set of frequencies associated with the bispectrum in bspec. Thus,
the ith row (or column) of bspec corresponds to the frequency waxis(i).
Frequencies are normalized; that is, the sampling frequency is assumed to be
unity.

Algorithm The data, y, are segmented into possibly overlapping records; biased or
unbiased sample estimates of third-order cumulants are computed for each
record and then averaged across records; a lag window is applied to the
estimated cumulants, and the bispectrum is obtained as the 2-D FFT of the
windowed cumulant function.

See Also bispecd

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984.

[2] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.

dp m()
1 6–

m
L

-------- 
  2

6 m
L

-------- 
  3

+









=
2 1 m

L
--------– 

  3

m L 2⁄≤

0

L 2⁄ m L≤ ≤

m L>

bispect

2-33

2bispectPurpose Theoretical bispectrum of an ARMA process

Syntax [bspec, waxis] = bispect(ma,ar,nfft)

Description The theoretical bispectrum corresponding to an ARMA process is computed.

ma is the MA parameter vector, and must be specified.

ar is the AR parameter vector; its default value is [1.0].

nfft specifies the FFT length to be used for computing the bispectrum; the
default value is 512.

bspec is the bispectrum corresponding to the ARMA model. It is an
nfft-by-nfft array, with origin at the center, and axes pointing down and to
the right.

waxis is the set of frequencies associated with the bispectrum in bspec; thus,
the ith row (or column) of bspec corresponds to the frequency waxis(i). The
sampling frequency is assumed to be unity.

Algorithm Let H(ƒ) = B(ƒ)/A(ƒ) denote the transfer function of the ARMA filter; then, the
bispectrum is given by,

B(ƒ1,ƒ2) = H(ƒ1)H(ƒ2)H*(ƒ1 + ƒ2).

See Also cumtrue, trispect

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984.

[2] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.

cum2x

2-34

2cum2xPurpose Computes the cross-cumulant (covariance) of two signals

Syntax cvec = cum2x(x,y,maxlag,samp_seg,overlap,flag)

Description Computes the second-order cross-cumulant (covariance) of the two signals, x
and y.

x, y should have identical dimensions.

maxlag specifies the maximum lag of the cumulant to be computed; its default
value is 0.

samp_seg specifies the number of samples per segment. Its default value is the
row dimension of y; if y is a row vector, the column dimension is used as the
default value.

overlap specifies the percentage overlap between segments; the allowed range
is [0,99]; the default value is 0.

If flag is biased, then biased sample estimates are computed (default); if the
first letter is not ’b’, unbiased estimates are computed.

cvec will contain the sample estimates of

E{ }, m = –maxlag, . . . , maxlag.

Here µx denotes the mean of process x, and the superscript * denotes complex
conjugation.

If x, y are matrices, columns are assumed to correspond to different
realizations; in this case, overlap is set to 0, and samp_seg to the row
dimension; the cross-cumulant is estimated from each realization, and then
averaged across the suite of realizations.

x* n() µx
*

–() y n m+() µy–()

cum2x

2-35

Algorithm Let x(n) and y(n), n = 1, . . ., N, denote the two time series. Let M denote the
number of samples per segment (the value of the variable samp_seg). Let O
denote the percentage overlap between segments (the value of the variable
overlap). Let M1 = M – M * O/100. Then, the time series, x and y, are
segmented into K records of M samples each, where
K = (N – M * O/100)/M. The kth record or segment of x consists of the samples

xk(i) = x(i + (k – 1) * M1), i = 1, . . ., M; k = 1, . . ., K;

yk(i) is defined similarly.

The sample mean is removed from each record, and sample estimates of the
cross-covariance are computed as

where the summation over i extends from 1 + max(0, –m) to
M – max(0, m). The normalizing parameter M(m) is identically equal to M for
biased estimates, and equals M – max(0, m) – max(0, –m) for unbiased
estimates. The cumulants estimated from the K records are then averaged to
obtain the final estimate,

See Also cum3x, cum4x, cumest

Ck m() 1
M m()
---------------- xk

*

i
∑ i()yk i m+(),=

C m() 1
K
---- Ck m()

k 1=

K

∑ .=

cum3x

2-36

2cum3xPurpose Computes the third-order cross-cumulant of three signals

Syntax cvec = cum3x(x,y,z,maxlag,samp_seg,overlap,flag,k1)

Description Computes the third-order cross-cumulant of the three signals, x, y, and z,
which should have identical dimensions.

maxlag specifies the maximum lag of the cumulant to be computed; its default
value is 0.

samp_seg specifies the number of samples per segment. Its default value is the
row dimension of y; if y is a row vector, the column dimension is used as the
default value.

overlap specifies the percentage overlap between segments; the allowed range
is [0,99]; and the default value is 0.

If flag is biased, then biased sample estimates are computed (default); if the
first letter is not 'b', unbiased estimates are computed.

Parameter k1 controls which 1-D slice of the cross-cumulant is computed; the
default value is 0. By varying k1, we can obtain the entire third-order cross
cumulants.

cvec will contain the sample estimates of

E{ (z(n + k1) – µz}, m = –maxlag, . . . , maxlag.

Here µx denotes the mean of process x, and the superscript * denotes complex
conjugation.

If x, y, z are matrices, columns are assumed to correspond to different
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension; the cross-cumulant is estimated from each realization, and then
averaged across the suite of realizations.

x* n() µx
*

–() y n m+() µy–()

cum3x

2-37

Algorithm Let x(n), y(n), and z(n), n = 1, . . ., N denote the three time series. Let M denote
the number of samples per segment (the value of the variable samp_seg). Let O
denote the percentage overlap between segments (the value of the variable
overlap). Let M1 = M – M * O/100. Then, the time series, x, y, and z, are
segmented into K records of M samples each, where K = (N – M * O/100)/M. The
kth record or segment of x consists of the samples

xk(i) = x(i + (k – 1) * M1), i = 1, . . ., M; k = 1, . . ., K;

yk(i) and zk(i) are defined similarly.

The sample mean is removed from each record, and sample estimates of the
third-order cross-cumulants are obtained as,

where the summation over i extends from 1 + max(0,-m,-n) to M – max(0, m,n).
The normalizing parameter M(m,n) is identically equal to M for biased
estimates, and equals M – max(0,m,n) – max(0,-m,-n) for unbiased estimates.
The cumulants estimated from the K records are then averaged to obtain the
final estimate,

See Also cum2x, cum4x, cumest

Ck m n,() 1
M m n,()
---------------------- xk

*

i
∑ i()yk i m+()zk i n+(),=

C m n,() 1
K
---- Ck m n,()

k 1=

K

∑ .=

cum4x

2-38

2cum4xPurpose Computes the fourth-order cross-cumulant of four signals

Syntax cvec = cum4x(w,x,y,z,maxlag,samp_seg,overlap,flag,k1,k2)

Description Computes the fourth-order cross-cumulant of the four signals, w, x,y, and z,
which should have identical dimensions.

maxlag specifies the maximum lag of the cumulant to be computed; its default
value is 0.

samp_seg specifies the number of samples per segment. Its default value is the
row dimension of y; if y is a row vector, the column dimension is used as the
default value.

overlap specifies the percentage overlap between segments; the allowed range
is [0,99]; and the default value is 0.

If flag is biased, then biased sample estimates are computed (default); if the
first letter is not 'b', unbiased estimates are computed.

Parameters k1 and k2 control which 1-D slice of the cross-cumulant is
computed; the default value for both the parameters is 0. By varying k1 and k2,
we can obtain the entire fourth-order cross-cumulant.

cvec will contain the sample estimates of

cum(w*(n), x(n + m), y(n + k1), z*(n + k2)), m = –maxlag, . . ., maxlag,

where the superscript * denotes complex conjugation, and
cum(a,b,c,d) = E(abcd) – E(ab)E(cd) – E(ac)E(bd) – E(ad)E(bc), and it is
assumed that a,b,c,d are zero-mean random variables.

If w, x, y, z are matrices, columns are assumed to correspond to different
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension; the cross-cumulant is estimated from each realization, and then
averaged across the suite of realizations.

cum4x

2-39

Algorithm Let w(n), x(n), y(n) and z(n), n = 1, . . ., N denote the three time series. Let M
denote the number of samples per segment (the value of the variable
samp_seg). Let O denote the percentage overlap between segments (the value
of the variable overlap). Let M1 = M – M * O/100. Then, the time series, w, x,y,
and z, are segmented into K records of M samples each, where K = (N – M * O/
100)/M. The kth record or segment of x consists of the samples

xk(i) = x(i + (k – 1) * M1), i = 1, . . ., M; k = 1, . . ., K;

wk(i), yk(i) and zk(i) are defined similarly.

The sample mean is removed from each record, and sample estimates of the
fourth-order cross-cumulants are obtained as,

where the summation over i is such that the indices of w(⋅), x(⋅), y(⋅), and z(⋅) are
all in the range [1,M]. The normalizing parameter M(m,n,t) is identically equal
to M for biased estimates, and equals
M – max(0,m,n,t) – max(0,-m,-n,-t) for unbiased estimates, and the normalizing
parameter M(m) is identically equal to M for biased estimates, and equals M –
max(0,m) – max(0,-m) for unbiased estimates. The cumulants estimated from
the K records are then averaged to obtain the final estimate,

See Also cum2x, cum3x, cumest

Ck m n t, ,()

= 1
M m n t, ,()
---------------------------- wk

*

i
∑ i()xk i m+()yk i n+()zk

* i t+()

– 1
M m()
---------------- wk

*

i
∑ i()xk i m+()

 
 
 

 1
M t n–()
---------------------- yk i()zk

* i t n–+()
i

∑ 
 
 

– 1
M n()
-------------- wk

*

i
∑ i()yk i n+()

 
 
 

 1
M t m–()
------------------------ xk i()zk

* i t m–+()
i

∑ 
 
 

– 1
M t()
------------ wk

*

i
∑ i()zk

* i t+()
 
 
 

 1
M n m–()
------------------------- xk i()yk i n m–+()

i
∑ 

 
 

C m n t, ,() 1
K
---- Ck m n t, ,()

k 1=

K

∑ .=

cumest

2-40

2cumestPurpose Computes sample estimates of cumulants using the overlapped-segment
method

Syntax cvec = cumest(y)
cvec = cumest(y,norder,maxlag,samp_seg,overlap,flag,k1,k2)

Description cumest computes sample estimates of a 1-D slice of the cumulants of the
process y.

y is the data matrix or vector.

norder specifies the cumulant order, and should be 2, 3, or 4; the default value
is 2.

maxlag specifies the maximum lag of the cumulant to be computed; its default
value is 0.

samp_seg specifies the number of samples per segment; the default value is the
length of the time series.

overlap specifies the percentage overlap between segments; maximum
allowed value is 99; default value is 0.

If flag is biased, then biased sample estimates are computed (default); if the
first letter is not 'b', unbiased estimates are computed.

If y is a matrix, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension. Cumulants are estimated from each realization, and then
averaged.

Parameters k1 and k2 control which 1-D slice of the cumulant function is
computed; their default values are zero.

cvec will contain C2(m), C3(m,k1) or C4(m,k1,k2),
m = –maxlag, . . . , maxlag, depending upon the specified cumulant order.

Note that cumest estimates a 1-D slice of the cumulant.

cumest

2-41

Algorithm Let y(n), n = 1, . . ., N denote the three time series. Let M denote the number of
samples per segment (the value of the variable samp_seg). Let O denote the
percentage overlap between segments (variable overlap). Let M1 = M – M * O/
100. Then, the time series, y, is segmented into K records of M samples each,
where K = (N – M * O/100)/M. The kth record or segment of x consists of the
samples

yk(i) = y(i + (k – 1) * M1), i = 1, . . ., M; k = 1, . . ., K.

The sample mean is removed from the kth record, and sample estimates of the
cumulants are computed. For example, sample estimates of third-order
cumulants are obtained as,

where M(m,n) ≡ M for biased estimates, and M – max(0,m,n) + min(0,m,n) for
unbiased estimates. The final estimate is given by Second- and fourth-order

cumulant estimates are obtained similarly; see also the algorithm descriptions
for M-files cum2x, and and cum4x.

See Also cumtrue, cum2x, cum3x, cum4x

Reference [1] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.

C3y k, m n,() 1
M m n,()
---------------------- yk

*

i 1= max 0 m– n–, ,()+

M max 0 m n, ,()–

∑ i()yk i m+()yk i n+()=

C3y m n,() 1
K
---- C3y k, m n,()

k 1=

K

∑ .=

cumtrue

2-42

2cumtruePurpose Computes theoretical (that is, true) cumulants of a linear process

Syntax cmat = cumtrue(ma)
cmat = cumtrue(ma,ar,norder,nlags,k)

Description cumtrue computes the theoretical (that is, true) cumulants of a linear (ARMA)
process.

ma is the MA parameter vector, and must be specified. If q is the MA order, then
ma will be of length q+1.

ar is the AR parameter vector; its default value is [1]. If p is the AR order, then
ar will be of length p+1.

norder is the cumulant order; allowed values are 2, 3 and 4; the default value
is 3.

nlags is the maximum number of cumulant lags to be computed. The default
value of nlags is q+p.

If fourth-order cumulants are requested, that is, norder is 4, then, k refers to
the third-lag of the fourth-order cumulant C4(i,j,k). Its default value is 0.

cmat is the vector or matrix of theoretical cumulants. If norder is 2, cmat is a
column vector of length 2*nlags + 1, and consists of C2(m),
m = nlags,. . ., nlags.

If norder is 3 or 4, cmat is a 2*nlags + 1 by 2*nlags + 1 matrix. If norder is
3, the (i,j) element of the matrix is C3(i – nlags – 1, j – nlags – 1), and, if norder
is 4, the (i,j) element of the matrix is C4(i – nlags – 1,
j – nlags – 1,k). Note that the (nlags+1,nlags+1) element of the matrix cmat
contains C3(0,0) or C4(0,0,k).

cumtrue

2-43

Algorithm Let h(n) denote the impulse response of a linear system, excited by an i.i.d.
process, u(n), with kth order cumulant, γku. Then, the kth order cumulant of the
output of the linear system is given by the Bartlett-Brillinger-Rosenblatt
formula,

In this module, γku is assumed to be unity.

See Also bispect, trispect

Reference [1] Mendel, J.M., “Tutorial on higher-order statistics (spectra) in signal
processing and system theory: Theoretical results and some applications,”
Proc. IEEE, Vol. 79, pp. 278-305, 1991.

Cky τ1 … τk 1–, ,() γku h

n 0=

∞

∑ n()h n τ1+()…h n τk 1–+()=

doa

2-44

2doaPurpose Direction of arrival estimation, based on spatial covariance or fourth-order
cumulant matrix

Syntax [spec,theta,dvec] = doa(ymat)
[spec,theta,dvec] = doa(ymat,dspace,dtheta,nsource,order,delta)

Description doa estimates the angular spectra (of source bearings), for a uniformly spaced
linear array, using the Eigenvector, Music, Pisarenko, ML (Capon), AR,
minimum-norm, beamformer, and ESPRIT methods based either on
fourth-order cumulants or the spatial covariance matrix. The peaks in the
angular spectra nominally indicate the direction of arrival (DOA).

various algorithms based on the diagonal slice of the fourth-order cumulant or
the spatial cross-correlation.

ymat is the data array; each column corresponds to a different sensor; the rows
correspond to “snapshots.”

dspace is the element spacing in wavelength units; the default value is 0.5 (half
wavelength spacing)

dtheta is the angular spacing (in degrees) at which the “spectra” are to be
computed; the default value is 2 degrees.

nsource is the number of sources; the default value is 0. If nsource is not
positive you are prompted to choose the number of sources. This value can be
inferred from the display of the singular values of the covariance or the
fourth-order cumulant matrix as follows. If the singular values, σ(k), are more
or less constant for k > p, then, a useful rule-of-thumb is to choose p as the
number of sources. (With finite data records, you can expect a slow decrease in
the smaller singular values.) Usually, there will be a significant drop in the
singular value from σ(p) to σ(p + 1).

order specifies the cumulant order to use; it should be either 2 (for
cross-correlation based estimates) or 4 (for estimates based on the diagonal
slice of the fourth-order cross-cumulant). The default value is 4.

delta is the displacement between the two subarrays for ESPRIT; here, we
assume that the two subarrays are obtained by partitioning a single array. If
there are m sensors (the column dimension of array ymat), then, the first array

doa

2-45

will consist of sensors 1,2, . . .,m-delta, and the second array will consist
of sensors delta, delta+1, . . ., m. The default value of delta is 1.

spec is the array of estimated “spectra”; the columns correspond to estimates
based on the Eigenvector, Music, Pisarenko, ML (Capon), AR, minimum-norm
and beamformer methods; the rows correspond to bearing angles, which are
returned in the vector theta. All estimated spectra are normalized to a
maximum value of unity.

theta is the vector of bearings, corresponding to the rows of spec.

dvec is the vector of bearings estimated by ESPRIT.

Algorithm Details of the algorithm are given in the “Tutorial”.

See Also harmest

References [1] Johnson, D.H., “The application of spectrum estimation methods to bearing
estimation problems,” Proc. IEEE, Vol. 70, pp. 975-89, 1982.

[2] Pan, R. and C.L. Nikias, “Harmonic decomposition methods in cumulant
domains,” Proc. ICASSP-88, pp. 2356-59, New York, 1988.

[3] Roy, R. and T. Kailath, “ESPRIT – Estimation of signal parameters via
rotational invariance techniques,” IEEE Trans ASSP, Vol. 37, pp. 984-95, July
1989.

[4] Swami, A. and J.M. Mendel, “Cumulant-based approach to the harmonic
retrieval and related problems,” IEEE Trans. ASSP, Vol. 39, pp. 1099-1109,
May 1991.

doagen

2-46

2doagenPurpose Generates synthetics for the direction of arrival (DOA) problem, using a
uniform linear array

Syntax ymat = doagen
ymat = doagen(default)

Description doagen generates synthetics for the DOA problem. The sensor array is assumed
to be linear and equispaced (uniform).

zmat returns the generated data: each column corresponds to a different
realization.

If doagen is invoked without any input arguments, then you are prompted for
all parameters: the source bearings, number of sensors (msens), sensor spacing,
number of samples per sensor record (nsamp), pdf of source signal, variance of
additive noise, pdf of additive noise, and ARMA parameters for the noise
spectrum. The sensor array is assumed to be linear and uniformly spaced.

If the user-specified noise variance is greater than zero, the sensor signals are
standardized to unity variance, before the additive noise is added to them.

If the function is invoked as doagen(default), where the variable default
may take on any value(s), then, the default settings are used. Matrix ymat in
file doa1.mat was generated via ymat = doagen(1);.

ymat is an nsamp-by-msens array, where nsamp is the number of samples per
sensor record, and msens is the number of sensors. The kth column contains the
signal observed at the kth sensor.

glstat

2-47

2glstatPurpose Computes decision statistics for Hinich’s Gaussianity and linearity tests

Syntax [sg, sl] = glstat(y)
[sg, sl] = glstat(y,cparm,nfft)

Description glstat estimates the decision statistics for Hinich’s Gaussianity and linearity
tests.

The bispectrum is estimated using the direct method, and a frequency-
domain 2-D boxcar smoother is applied. The power spectrum is estimated via
the direct method, and a boxcar smoother is applied. The bicoherence is then
estimated. The Gaussianity test (actually zero-skewness test) basically
involves deciding whether or not the estimated bicoherence is zero. The
linearity test involves deciding whether or not the estimated bicoherence is
constant.

y is the time series (should be a vector).

cparm is the resolution parameter; it should lie between 0.5 and 1.0, if a single
record is used; the default value is 0.51. Increasing cparm decreases the
variance of the smoothed bispectral and spectral estimates, but at the expense
of poorer resolution.

nfft is the FFT length to be used; the default length is 128. If the length of y
is greater than nfft, y is segmented into records of length nfft.

The boxcar window length, M, is the value obtained by rounding off (nfft)cparm.

sg, the statistic for the Gaussianity test, is a three-element vector:

sg(1) is the estimated statistic S.

sg(2) is the number of degrees of freedom (df), p.

sg(3) is the probability of false alarm (Pfa).

More specifically, it is the probability that a χ2 random variable with p degrees
of freedom could have a value larger than the estimated S in sg(1). If this
probability is small, say, 0.05, then we may reject the hypothesis of zero
skewness at a Pfa (or significance level) of 0.05. In other words, if you decide to
accept the hypothesis that the data have nonzero skewness, then the
probability that the data may actually have zero skewness is given by sg(3). If
Pfa is large, then the hypothesis of zero skewness cannot be easily rejected.

glstat

2-48

sl, the statistic for the linearity test, is a three-element vector: (see below for
more details):
sl(1) is the estimated statistic R.
sl(2) is the estimated parameter λ (this parameter is called λo in Hinich’s
paper).
sl(3) is the theoretical value of R.

The linearity hypothesis should be rejected if the estimated statistic, R, is much
larger or much smaller than the interquartile range of (the χ2
distributed random variable, with 2 degrees of freedom, and noncentrality
parameter, λ) [1]. In practice, for a nonlinear process, the estimated R value
may be expected to be much larger than the theoretical R value [1]. The number
of samples available to estimate the interquartile range is also printed; note
that the estimate cannot be reliable if the number of samples is small.

Algorithm Let B3y(ω1,ω2) denote the bispectrum, and let Pyy(ω) denote the power
spectrum. The normalized bispectrum (or bicoherence) is defined as

Under the Gaussianity (zero skewness) assumption, the expected value of the
bicoherence is zero, that is, E{bicy(ω1,ω2)} = 0. The test of Gaussianity is based
on the mean bicoherence power,

where the summation is performed over the nonredundant region of the
bispectrum; details are given in [1]. The statistic S is χ2 distributed, with p
degrees of freedom, where p is a function of the FFT length, nfft, and the
resolution parameter, cparm [1].

Under the linearity assumption, Bn(ω1,ω2) is constant for all ω1 and ω2.

Let

χ2
2 λ()

bicy ω1 ω2,() =
B3y ω1 ω2,()

Pyy ω1()Pyy ω2()Pyy ω1 ω2+()()1 2⁄--.

S bicy ω1 ω2,() 2,∑=

X ω1 ω2,() 1

N1 2*cparm–
-------------------------------------Bn ω1 ω2,().=

glstat

2-49

An estimate of λ := (2N2*cparm-1)γ3x is obtained. Note that X(ω1,ω2) is
chi-squared distributed with noncentrality parameter λ. The sample
interquartile range R of the X(m,n)’s is estimated, and should be compared with
the theoretical interquartile range of a chi-squared distribution with two
degrees of freedom and noncentrality parameter λ.

These statistics are defined in Hinich’s paper [1]. Sankaran’s approximations
in [2] are used to estimate the Pfa and the theoretical interquartile value of

.

References [1] Hinich, M.J., “Testing for Gaussianity and linearity of a stationary time
series,” J. Time Series Analysis, Vol. 3, pp. 169-76, 1982.

[2] Patel, J.K. and C.B. Read, Handbook of the Normal Distribution, Sec 7.9.4,
M. Dekker, New York, 1982.

χ2
2 λ()

harmest

2-50

2harmestPurpose Estimation of frequencies of harmonics in colored Gaussian noise, and power
spectra

Syntax [Pxx,ar1,ar2] = harmest(y)
[Pxx,ar1,ar2] = harmest(y,maxlag,p_order,flag,nfft,norder)

Description harmest estimates the frequencies of real harmonics in noise, and power
spectra using the MUSIC, Eigenvector, Pisarenko, ML (Capon), AR and
minimum-norm methods based either on the diagonal slice of fourth-order
cumulants, or on the covariance; it also estimates the conventional
periodogram.

y is the data matrix; each of its columns is assumed to correspond to a different
realization.

maxlag specifies the number of cumulant lags to be computed;

maxlag should be greater than twice the maximum number of harmonics
expected. The default value of maxlag is arbitrarily set to nsamp/12, where
nsamp is the row dimension of the data matrix.

p_order specifies the order (must be greater than or equal to twice the number
of harmonics); if this parameter is not specified, or is not positive, you are
prompted for the value of p_order. The order can be inferred from the display
of the the singular values of the cumulant matrix as follows. If the singular
values, σ(k), are more or less constant for k > p, then, a useful rule-of-thumb is
to choose p as the number of harmonics. (With finite data records, one should
expect a slow decrease in the singular values.) Usually, there will be a
significant drop in the singular value from σ(p) to σ(p + 1).

If flag is biased, biased sample estimates of cumulants are computed
(default); if the first letter is not 'b', unbiased estimates are computed.

nfft specifies the FFT length; its default value is 256.

norder specifies the cumulant order to use; it should be either 2 (for covariance
based estimates) or 4 (for estimates based on the diagonal slice of the
fourth-order cumulant). The default value is 4.

Pxx is an nfft/2 × 7 matrix, whose first five columns, respectively contain
estimates of “power spectra” obtained via the MUSIC, Eigenvector, Pisarenko,
ML (Capon) and AR methods based on the diagonal slice of the fourth-order

harmest

2-51

cumulant or the covariance function. The sixth column contains the standard
power spectrum estimate obtained via the periodogram method. The last
column is the estimate obtained by applying the minimum norm algorithm. All
estimated spectra are normalized to a maximum value of unity for purposes of
display only. The estimated “power spectra” are displayed on the MATLAB
graphics window.

ar1 is the estimated parameter vector for the AR method.

ar2 is the estimated parameter vector for the minimum-norm method.

Algorithm Let C denote the maxlag by maxlag matrix, with entries,
C(i,j) = C4y(i – j,0,0) or C(i,j) = C2y(i – j). Also, let C = VSV′ denote the eigen
decomposition, where S is the diagonal matrix of eigenvalues, λ(k), and V is the
matrix of eigenvectors, vk, k = 1, . . ., maxlag. Let

e(ω) := [1,exp(–jω) , . . ., exp(–j(maxlag – 1)ω)]′

denote the FFT vector; and let p denote the chosen order (the parameter
p_order). Then, the “power spectral” estimates are obtained as follows.

where,

where δ(k) is the Kronecker delta function.

The AR power spectrum is obtained as follows: First, a rank approximation of
the matrix C is obtained, as , where is obtained from S by setting
λ(k) = 0, k = p + 1, . . ., M. The AR parameter vector is then obtained as the
solution to ; the method in [5] is used, and the solution is forced to have
unity modulus.

P ω() w k() e′ ω()vk
2

k p= 1+

M

∑
 
 
 
 

=

w k)()
1 MUSIC
1 λ k() Eigenvector⁄
δ k m–() Pisarenko





=

Ĉ VŜV′= Ŝ

Ĉa 0=

harmest

2-52

The ML(Capon) solution is given by,

Let V denote the matrix of eigenvectors corresponding to the p largest
eigenvalues of R. Partition matrix V as,

The AR parameter vector for the minimum-norm solution is given by

The power spectrum is given by

References [1] Pan, R., and C.L. Nikias, “Harmonic decomposition methods incumulant
domains,” Proc. IEEE ICASSP-88, pp. 2356-59, 1988.

[2] Swami, A., and J.M. Mendel, “Cumulant-based approach to the harmonic
retrieval and related problems,” IEEE Trans. ASSP, Vol. 39, pp. 1099-1109,
May 1991; see also Proc. ICASSP-88, pp. 2264-67, 1988.

[3] Cadzow, J.A., “Spectral Estimation: An Overdetermined Rational Model
Equation Approach,” Proc. IEEE, Vol. 70, pp. 907-38, 1982.

[4] Haykin, S., Adaptive Filter Theory, New Jersey: Prentice-Hall, pp. 464-70,
2nd ed., 1991.

[5] Kumaresan, R. and D.W. Tufts, “Estimating the angles of arrival of multiple
plane waves,” IEEE Trans. AES, Vol. 19, pp. 134-39, 1983.

PML ω() 1
λ k()
----------- e′ ω()vk

2

k 1=

p

∑
 
 
 
 

=

1–

V v1
T

Vr

.=

a
1

V– r
*v1 1 vHv–()⁄

.=

S ω() 1/ a k() jkω–()exp

k 0=

p

∑
2

.=

harmgen

2-53

2harmgenPurpose Generates harmonics in colored Gaussian noise

Syntax zmat = harmgen
zmat = harmgen(default)

Description harmgen generates independent realizations of the signal

If harmgen is invoked without any input arguments, then you are prompted for
the length of the realizations, the number of realizations, the number of
harmonics (p), their frequencies (λk) and amplitudes (αk), and the variance of
the additive colored Gaussian noise, g(n).

The additive colored Gaussian noise, g(n), is generated by passing a white
Gaussian noise sequence through an user-specified ARMA filter (you are
prompted for these ARMA parameters). For each realization, the phases φk are
chosen randomly from an uniform distribution. Note that noise-free
realizations can be obtained by specifying a value of zero for the noise variance
(when prompted).

If the function is invoked as harmgen(default), where the variable default
may take on any value(s), then, the default settings are used (see Examples
below).

Each column of zmat corresponds to a different realization.

The matrix zmat in the file harm.mat can be regenerated via
zmat = harmgen(1);.

y n() ak 2πλkn φk+()cos

k 1=

p

∑ g n()+=

hosademo

2-54

2hosademoPurpose A guided tour of the Higher-Order Spectral Analysis Toolbox

Syntax hosademo

Description hosademo takes you on a guided tour of the Higher-Order Spectral Analysis
Toolbox; hosademo also offers a brief introduction to the area of higher-order
statistics.

hosahelp

2-55

2hosahelpPurpose Gives a one-line synopsis for all M-files in the Higher-Order Spectral Analysis
Toolbox

Syntax hosahelp

Description hosahelp gives a one-line synopsis for all the documented M-files in the
Higher-Order Spectral Analysis Toolbox.

hprony

2-56

2hpronyPurpose Estimates the parameters of a complex transient signal modeled as the sum of
complex exponentials with decaying amplitudes

Syntax [a,theta,alpha,fr] = hprony(x,p)

Description Models a complex transient signal as the sum of complex exponentials with
decaying amplitudes,

where p is the order; the a(k)’s are amplitudes, θ(k)’s are the initial phases,
α(k)’s are the damping factors, and ƒ(k)’s are the frequencies.

x is the time series; it must be a vector.

p is the order; default value is n/10, where n is the length of x.

a is the vector of estimated amplitudes.

theta is the vector of estimated initial phases.

alpha is the vector of estimated damping factors.

fr is the vector of estimated frequencies.

The input time series, and the time series corresponding to the estimated
parameters are plotted.

Algorithm The Signal Processing Toolbox function prony is used to fit an ARMA(p,p-1)
model to the transient signal; the MATLAB function residue is used to convert
the ARMA parameters to the pole-residue form; these are then converted to the
amplitude, phase, frequency, and damping factor terms.

Note that estimates of the amplitude and starting phase are sensitive to the
presence of additive noise.

Reference [1] Krauss, T., J.N. Little, and L. Shure, MATLAB Signal Processing Toolbox
User’s Guide, The MathWorks Inc., 1994.

x n() a k()ejθ k() n α k) j2πƒ k(+()()()exp ,

k 1=

p

∑=

ivcal

2-57

2ivcalPurpose Computes instrumental variables. Used by rivdl and rivtr

Syntax z = ivcal(y)
z = ivcal(y,morder,lambda)

Description ivcal computes the instrumental variable corresponding to the correlation, or
to the diagonal slice of third- or fourth-order cumulants.

y is the time series. If y is a matrix, each column is treated independently.

morder is the cumulant order: it should be less than 5; default value is 3.

lambda is the forgetting factor; 0 < lambda ≤ 1; the default value is 1.

z is the computed instrumental variable. z(n) is obtained from y(n) as follows:

where, for 0 < λ < 1,

s(n) = s(n – 1) + λy2(n), s(1) = y2(1).

and, for λ = 1,

Reference [1] Swami, A., and J.M. Mendel, “Adaptive Cumulant-Based Estimation of
ARMA Parameters,” Proc. Amer. Control Conf., ACC-88, Atlanta, GA, 2114-19,
June 1988.

morder z(n)

q <= 0 y(n+q)

 1 sign (y(n))

2 y(n)

3 y2(n)

4 y3(n) – 3s(n) * y(n)

s n() 1
n
--- y2 k()

k 1=

n

∑=

maest

2-58

2maestPurpose Estimates MA parameters using the modified GM method

Syntax bvec = maest(y,q)
bvec = maest(y,q,norder,samp_seg,overlap,flag)

Description maest estimates the parameters of the MA(q) process, y, via the modified GM
method, based on cumulants of order norder and the autocorrelation.

y is the data vector or matrix.

q is the MA order.

norder should be 3 or 4; the default value is 3.

Variables samp_seg, overlap, and flag control the manner in which sample
cumulants are estimated:

samp_seg specifies the number of samples per segment; the default value is the
length of the time series.

overlap specifies the percentage overlap between segments; maximum
allowed value is 99; default value is 0.

If flag is biased, then biased sample estimates are computed; (default); if the
first letter is not 'b', unbiased estimates are computed.

If y is a matrix, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension. Cumulants are estimated from each realization, and then
averaged.

The estimated MA parameters are returned in the q + 1 element column vector
bvec.

Algorithm The GM method obtains the least-squares solution to the set of equations,

where n = –q, . . ., 2q, and norder = 3. For norder = 4, the equations are

εb k()C3 n k– n k–,()

k 0=

q

∑ b2 k()R n k–()

k 1=

q

∑ R n(),=–

maest

2-59

where n = –q, . . ., 2q. Here, R, C3, and C4 are the second-, third- and
fourth-order cumulants, respectively.

In order to handle additive white noise, equations involving R(0) are
eliminated, since the variance of the noise is unknown.

The modified GM method incorporates a fix, due to Tugnait [2], which appends
the following set of equations to the preceding set of equations for

n = –q, . . .,q, or,

depending upon the specified cumulant order. The least-squares solution to the
combined system of equations is obtained. Here, , and

.

When third-order cumulants are used, the method estimates both b(k) and
b2(k). Let b1(k) and b2(k) denote the estimates of b(k) and b2(k). If all the
estimated b2(k)’s are nonnegative, the final MA parameter estimate is obtained
as,

otherwise, .

When fourth-order cumulants are used, the method estimates both b(k) and
b3(k). Let b1(k) and b3(k) denote the estimates of b(k) and b3(k). If all the

εb k()C4 n k– n k– n k–, ,()

k 0=

q

∑ b3 k()R n k–()

k 1=

q

∑ R n(),=–

ε3R n() b k()C3 k n q,–()

k 1=

q

∑– C3 n q,–()=

ε4R n() b k()C4 k n q 0, ,–()

k 1=

q

∑– C4 n q 0, ,–()=

ε3 γ3ub q() σu
2⁄=

ε4 γ4ub q() σu
2⁄=

b̂ k() sign b1 k()()* 0.5 b1
2 k() b2 k()+();=

b̂ k() b1 k()=

maest

2-60

estimated b3(k)’s have the same sign as the corresponding b1(k)’s, then the final
MA parameter estimate is obtained as,

otherwise, .

References [1] Giannakis, G.B. and J.M. Mendel, “Identification of non-minimum phase
systems using higher-order statistics,” IEEE Trans. ASSP, Vol. 37, pp. 360-77,
Mar. 1989.

[2] Tugnait, J.K., “Approaches to FIR system identification with noisy data
using higher-order statistics,” IEEE Trans. ASSP, Vol. 38, pp. 1307-17, July
1990.

b̂ k() sign b1 k()()* b1 k() b3 k() 1 3⁄
+()/2;=

b̂ k() b1 k()=

maorder

2-61

2maorderPurpose Estimates the order of an MA process

Syntax q = maorder(y,qmin,qmax,pfa,flag)

Description Estimates the order of an MA process using third-order cumulants.

y is the observed MA process and must be a vector.

qmin specifies the minimum expected MA order; the default value is 0.

qmax specifies the maximum expected MA order; the default value is 10.

pfa specifies the probability of false alarm for the hypthesis testing procedure;
the default value is 0.05.

flag — if flag is nonzero, the sample estimate of C3(q,k), its estimated
variance, the threshold corresponding to the specified pfa, and whether the
absolute value of the estimated C3(q,k) is less than the threshold are displayed
on the command window. The default value is 1.

q is the estimated MA order.

Algorithm The basic idea is that for an MA(q) process, the true values of the cumulant
c3y(m,0) will be identically zero, if m > q. When the true cumulants are replaced
by sample estimates, the estimated values of c3y(q + 1,0),
i > 0 will not be identically zero; a statistical test is used to determine whether
the estimated values are close to zero. The test is based on estimating the
theoretical variance of the sample estimates of c3y(m,0).

Sample estimates, , and their variances are estimated for m ranging
from qmin to qmax.

For an MA(q) process, the asymptotic variance of the sample estimate of c3y(q
+ 1,0) is given by,

ĉ3y m 0,()

σ2 q 1+() 1

N2
------- 1 j

N
----– 

 

j q–=

2q 1+

∑
i 1=

N

∑=

y2 i()y i q 1+ +() ĉ3y q 1 0,+()–[]

y2 i j+()y i j q 1+ + +() ĉ3y q 1 0,+()–[]

maorder

2-62

where N is the length of the time series.

The sample estimates are asymptotically normal and unbiased: hence, the
threshold tc in

is given by

where erfinv is the MATLAB inverse error function. Let mo denote the largest
value of m in the range qmin to qmax for which |c3y(m + 1,0)| > tc(m + 1) (so
that the hypothesis of MA(mo) model fails). Then, the MA order is declared to
be mo + 1. In the example, mo is 2, and the MA order was declared to be 3.

This is a statistical test, and pfa specifies the fraction of the time that the test
results will be wrong. In other words, in a Monte Carlo simulation of 1000
trials, you should expect the test results to be wrong 1000*pfa times.
Additionally note that the test condition is necessary, but not sufficient.

See Also arorder

Reference [1] Giannakis, G.B. and J.M. Mendel, “Cumulant-based order determination of
non-Gaussian ARMA models,” IEEE Trans. ASSP, pp. 1411-21, Aug. 1990.

Pr ĉ3y m 1 0,+() tc m 1+()≤{ } 1 pfa–=

tc m 1+() inverƒ 1 pfa–()* 2*σ2 m 1+()=

matul

2-63

2matulPurpose Nonparametric magnitude and phase retrieval using the Matsuoka-Ulrych
algorithm

Syntax hest = matul(bspec)

Description The phase and log magnitude of the transfer function are estimated via the
Matsuoka-Ulrych algorithm, and then converted to the time-domain impulse
response.

bspec is the bispectrum array (such as that computed by bispeci or bispecd).

hest is the estimated impulse response.

Algorithm The phase unwrapping algorithm in [2] is used to resolve the phase ambiguity
in the basic algorithm reported in [1].

See Also bispecd, bispeci, biceps

References [1] Matsuoka, T. and T.J. Ulrych, “Phase estimation using the bispectrum,”
Proc. IEEE, Vol. 72, pp. 1403-11, 1984.

[2] Rangoussi, M. and G.B. Giannakis, “FIR modeling using log-bispectra:
Weighted least-squares algorithms and performance analysis,” IEEE Trans.
Cir Sys, Vol. 38, pp. 281-96, 1991.

nlgen

2-64

2nlgenPurpose Computes the output of a second-order Volterra system

Syntax y = nlgen(x,h,q)

Description Computes the output of a second-order Volterra system.

x is the input to the nonlinear system; it may be a vector or a matrix; if it is a
matrix, columns are assumed to correspond to different realizations, and each
column is processed separately.

h is the impulse response of the linear part; it should be a vector.

q is the impulse response of the quadratic part; it should be a matrix. Note that
functions nltick and nlpow assume that q is symmetric.

y is the output of the nonlinear system, and will have the same dimensions as
x; it is computed via,

where L is the length of h, and q is M-by-N .

The data files nl1.mat and nl2.mat were generated via this function.

See Also nltick, nlpow

y n() h k()x n k–()

k 0=

L 1–

∑ q k l,()x n k–()x n l–(),

l 0=

N 1–

∑
k 0=

M 1–

∑+=

nlpow

2-65

2nlpowPurpose Nonparametric second-order Volterra System Identification method for
arbitrary input signals

Syntax [h, q] = nlpow(x,y,nfft)

Description Implements the nonparametric method of Powers et al [1] for the identification
of a second-order Volterra system, given both the input and output signals.

x is the input to the nonlinear system.

y is the output process; it must have the same dimensions as x. If y is a matrix,
columns are assumed to correspond to independent realizations.

nfft is the FFT length to be used; the default value is the power of 2 greater
than the length of the time series (row dimension for matrices).

h is the estimated impulse response of the linear part.

q is the estimated impulse response of the quadratic part.

Algorithm The frequency-domain input-output relationship of the second-order Volterra
system under consideration is,

It is assumed that Q(ƒ1,ƒ2) =Q(ƒ2,ƒ1) = Q*(–ƒ1,–ƒ2).

Transfer functions H(ƒ) and Q(ƒ1,ƒ2) are obtained as the least squares solution
to the set of equations, Y(m) = ATb(m), where,

and

Here, M is the FFT length nfft, and m = 0, . . ., M/2 .

See Also nltick

Y ƒ() H ƒ()X ƒ() Q ƒ1 ƒ2,()X ƒ1()X ƒ2()
ƒ1 ƒ2 ƒ=+

∑+=

b m() H m() Q m 1+
2

m 1–

2
--------------, 

  Q m 3+
2

m 3–

2
--------------, 

  … Q M
4
----- m M

4
-----–, 

 , , , ,
T

=

A X m() X m 1+
2

--------------- 
  X m 1–

2
-------------- 

  X m 3+
2

--------------- 
  X m 3–

2
-------------- 

  …X M
4
----- 

  X m M
4
-----– 

 , , ,
T

.=

nlpow

2-66

Reference [1] Powers, E.J., Ch.P. Ritz, C.K. An, S.B. Kim, R.W. Miksad and S.W. Nam,
“Applications of digital polyspectral analysis to nonlinear systems modeling
and nonlinear wave phenomena,” Proc. Workshop on Higher-Order Spectral
Analysis, pp. 73-77, Vail, Colorado, June 1989.

nltick

2-67

2nltickPurpose Nonparametric second-order Volterra System Identification Method for
Gaussian input signals

Syntax [h, q] = nltick(x,y,nfft,wind,samp_seg,overlap)

Description Implements Tick’s nonparametric method for the identification of a
second-order Volterra system, given both inputs and outputs. The inputs are
assumed to be Gaussian.

x is the input to the nonlinear system.

y is the output process; it must have the same dimensions as x. If y is a matrix,
columns are assumed to correspond to independent realizations.

nfft is the FFT length for computing power spectra and cross-bispectra; the
default value is the power of 2 greater than the length of the time series (row
dimension for matrices).

wind specifies the frequency-domain smoothing window. If wind is a scalar, the
Rao-Gabr window of length wind will be used. This window is defined by [2],

where N is half the FFT length, nfft, and G is the set of points, (m,n),
satisfying,

• A unity value for wind results in no windowing.

• If wind <= 0, the default value of 5 will be used.

• If wind is a vector, it is assumed to specify a 1-D window from which a 2-D
window is computed, W(m,n) = w(m)w(n)w(m + n) [1]-[2].

• If wind is a 2-D matrix, it is assumed to specify the 2-D smoother directly.
The bispectrum estimate averaged across records is smoothed by convolving
with the 2-D window function. The window function should be real and
nonnegative.

W m n,() 3

π3
------- 1 m2 n2 mn+ +

N2
------------------------------------– , m n,() G∈=

m2 n2 mn <+ + wind
2

nfft 2⁄()2
-----------------------=

nltick

2-68

samp_seg specifies the number of samples per segment. The default value is set
such that eight (possibly overlapped) records are obtained.

overlap specifies the percentage overlap between segments. The default value
is 50. The allowed range is [0,99].

h is the estimated impulse response of the linear part.

q is the estimated impulse response of the quadratic part.

Algorithm The output of a second-order Volterra system is given by,

The linear part, h(k), is estimated in the frequency domain from,

Syx(ω) = H(ω)Sxx(ω)

where Sxx(ω) is the power spectrum of process x(n), and Sxy(ω) is the
cross-spectrum of the processes x(n) and y(n). This relationship assumes that
x(n) is symmetrically distributed.

The quadratic part, q(k,l), is estimated in the frequency domain from,

Syxx(ω1,ω2) = 2Q(ω1,ω2)Sxx(ω1)Sxx(ω2) + Sxx(ω2)δ(ω1 + ω2)E{y(n)}

which is obtained under the assumption that q(k,l) = q(l,k), and that x(n) is
Gaussian.

The cross-bispectrum, Syxx(ω1,ω2), is estimated via the direct (FFT) method,
using function bispecdx.

See Also nlpow, bispecdx

Reference [1] Tick, L.J., “The estimation of transfer functions of quadraticsystems,”
Technometrics, 3, 563-67, Nov 1961.

y n() h k()x n k–()

k 0=

∞

∑ q k l,()x n k–()x n l–()

l 0=

∞

∑
k 0=

∞

∑+=

pickpeak

2-69

2pickpeakPurpose Picks peaks subject to a separation criterion

Syntax [loc, val] = pickpeak(spec,npicks,rdiff)

Description pickpeak picks the largest npicks peaks in the data vector spec such that the
peaks are separated by at least rdiff samples. The default values are npicks
= 2 and rdiff = 5. If spec is a matrix, each column is treated independently.

loc is the matrix of locations (indices) of the picked peaks; the kth column
corresponds to the kth column of spec.

val is the matrix of the amplitudes of the picked peaks; the kth column
corresponds to the kth column of spec.

A 0 in location (i,j) of array loc (or a NaN in array val) indicates that the jth
data vector has less than i peaks with a separation of rdiff or more.

qpcgen

2-70

2qpcgenPurpose Generates synthetics for the quadratically phase-coupled harmonics in colored
Gaussian noise problem

Syntax zmat = qpcgen
zmat = qpcgen(default)

Description qpcgen generates independent realizations of the signal

where λk3 = λk2 + λk1, and φk3 = φk2 + φk1; φk1, φk2, are mutually
independent, and uniformly distributed over [0,2π].

If qpcgen is invoked without any input arguments, then you are prompted for
the length of the realizations, the number of realizations, the number of
phase-coupled triplets (p), their frequencies (λk1 and λk2) and amplitudes (αki),
as well as the corresponding parameters in the uncoupled case (the terms with
an overbar), and the variance of the colored Gaussian noise, g(n). The colored
noise is generated by passing a white Gaussian noise sequence through an
user-specified ARMA filter (you are prompted for these ARMA parameters).
The phases φk1, φk2, and , i = 1,2,3 are chosen randomly for each realization.
Note that noise-free realizations can be obtained by specifying a value of zero
for the noise variance.

If the function is invoked as qpcgen(default), where the variable default
may take on any value(s), then, the default settings are used (see Examples
below).

Each column of zmat corresponds to a different realization.

The matrix zmat in the file qpc.mat can be regenerated via
zmat = qpcgen(1);.

y n() αki 2πλkin φki+()cos

i 1=

3

∑
k 1=

p

∑=

+ αk 2πλkn φk+()cos

k 1=

p

∑ g n()+

φk

φki

qpctor

2-71

2qpctorPurpose Detection of quadratic phase coupling using the TOR method

Syntax [arvec,bspec] = qpctor(y)
[arvec,bspec] = qpctor(y,maxlag,arorder,nfft,samp_seg, . . .
 overlap,flag)

Description qpctor detects quadratically phase coupled harmonics using the TOR method.

y is the data matrix; each column of y is assumed to correspond to a different
realization.

maxlag specifies the maximum number of third-order cumulant lags, C3x(m,m),
to be used.

ar_order specifies the AR order to use.If this parameter is not specified, or is
not positive, a plot of the singular values of the cumulant matrix is displayed,
and you are prompted to choose an order.

nfft specifies the FFT length; its default value is 64.

samp_seg specifies the number of samples per segment; the default value is the
length of the time series, or the row dimension if y is a matrix.

overlap specifies the percentage overlap between segments; maximum
allowed value is 99; default value is 0; the parameter is ignored if y is a matrix.

If flag is biased, then biased sample estimates of cumulants are computed
(default); if the first letter is not ’b’, unbiased estimates are computed.

arvec is the vector of estimated AR parameters.

bspec is the estimated parametric bispectrum.It is an nfft/2-by-nfft array
whose upper-left handcornercorresponds to the origin in the bispectral plane;
the frequenciesincrease downwards and to the right.

Algorithm Details of the algorithm are given in the “Tutorial”.

Reference [1] Raghuveer, M.R., and C.L. Nikias, “Bispectrum estimation: a parametric
approach,” IEEE Trans. ASSP, Vol. 33, pp. 1213-30, Oct. 1985.

rivdl

2-72

2rivdlPurpose Adaptive AR parameter estimation using the double lattice form of the
recursive instrumental variable algorithm

Syntax [arvec, fref, bref, fpe] = rivdl(y)
[arvec, fref, bref, fpe] = rivdl(y,morder,arorder, . . .

 lambda,delta,thres,nsmuth)

Description The recursive instrumental variable double lattice algorithm is applied to
estimate the AR parameters of a possibly nonstationary time series.The model
is assumed to be causal.

y is the time series (must be a vector).

morder specifies the cumulant-order to be used; it should be 2, 3, or 4. The
default value is 4.

arorder is the AR order (the number of stages in the lattice). The default value
is 2.

lambda is the forgetting parameter; 0 < lambda <= 1. The default value is 0.998.

delta is the initialization value for F(0) and B(0). Its default value is 0.01.

thres is the threshold check for division by zero.If |x| < thres, 1/x is set to
zero. The default value is 0.0001 [1].

nsmuth is the window length for estimating the “steady-state” AR parameters.
Its default value is min(length(y)/4, 50).

arvec is the steady-state AR parameter vector of length arorder + 1. The last
nsmuth samples of the reflection coefficients, fref and bref, are averaged, and
then converted to the AR parameters.

fref is an nsamp × arorder array containing the forward reflection coefficients
of the upper lattice,where nsamp is the length of the time series y.

bref is an nsamp × arorder array containing the backward reflection
coefficients of the upper lattice.

fpe is the final prediction error.

Algorithm Details of the algorithm are given in the “Tutorial”.

rivdl

2-73

See Also ivcal, rivtr

References [1] Swami, A., and J.M. Mendel, “Adaptive Cumulant-Based Estimation of
ARMA Parameters,” Proc. Amer. Control Conf., ACC-88, Atlanta, GA, pp.
2114-19, June 1988.

[2] Porat, B., B. Friedlander, and M. Morf, “Square-root covariance ladder
algorithms,” in Proc. ICASSP-81, Atlanta, GA, pp. 877-880, March 1981.

rivtr

2-74

2rivtrPurpose Adaptive AR parameter estimation using the transversal form of the recursive
instrumental variable algorithm

Syntax [arvec,fpe,wt] = rivtr(y)
[arvec,fpe,wt] = rivtr(y,morder,arorder,lambda,delta,nsmuth)

Description The transversal form of the recursive instrumental variable algorithm
isapplied to estimate the AR parameters of a possibly nonstationary time
series.The model is assumed to be causal.

y is the time series (must be a vector).

morder specifies the cumulant-order to be used; it should be 2, 3, or 4. The
default value is 4.

arorder is the AR order; the default value is 2.

lambda is the forgetting parameter; 0 < lambda <= 1. The default value is 0.998.

delta is the initialization value for F(0) and B(0). Its default value is ±1, where
the sign is the sign of the cross-correlation between the time series y and the
corresponding instrumental variable, z, corresponding to order morder and
unity value for lambda (z is computed via
z = ivcal(y,morder,1)).

nsmuth is the window length for estimating the “steady-state” AR parameters.
Its default value is min(length(y)/4, 50).

arvec is the AR parameter vector corresponding to the steady-state (final)
weight vector, and has length arorder + 1. The last nsmuth samples of the
time-varying weights, wt, are averaged, and then converted to the AR
parameters.

fpe is the final prediction error.

wt is a nsamp × arorder array of the estimated weights of the adaptive filter as
a function of time; here nsamp is the length of the time series, y.

Algorithm Details of the algorithm are given in the “Tutorial”.

See Also ivcal, rivdl

rivtr

2-75

References [1] Swami, A., and J.M. Mendel, “Lattice Algorithms for Recursive
Instrumental Variable Methods,” USC-SIPI Report-117, University of
Southern California, Los Angeles, Dec. 1987.

[2] Swami, A., System Identification Using Cumulants, Ph.D. Dissertation,
University of Southern California, pp. 107-8, 1988.

rpiid

2-76

2rpiidPurpose Generates i.i.d. random sequence

Syntax u = rpiid(nsamp)
u = rpiid(nsamp,in_type,pspike)

Description rpiid generates a sequence of nsamp i.i.d. random variables, of the type
described by in_type.

The default distribution is “nor.”

p_spike specifies the event probability for the Bernoulli-Gaussian distribution;
the default value is 0.1.

The output sequence, u, is normalized to zero-mean, by subtracting the
theoretical (not the sample) mean. Note that the mean of any vector u can be
set to a and its standard deviation to b via,

u = a + b * (u – mean(u))/std(u).

in_type density function

“exp” Single-sided exponential

“lap” Double-sided exponential (Laplacian)

“nor” Normal (Gaussian)

“bga” Bernoulli-Gaussian

“uni” Uniform

tde

2-77

2tdePurpose Time-delay estimation (TDE) using the parametric third-order cross-cumulant
method

Syntax [delay,avec] = tde(x,y,max_delay)
[delay,avec] = tde(x,y,max_delay,samp_seg,svdflag)

Description The time delay between two signals, possibly corrupted with spatially
correlated colored Gaussian noise, is estimated using the parametric
third-order cross-cumulant method.

x and y are the signals at the two sensors; they must have identical dimensions;
if they are matrices, it is assumed that the columns correspond to different
realizations.

max_delay is the absolute value of the maximum expected delay.

samp_seg specifies the number of samples per segment for estimating of
cumulants; it defaults to the length of the time series (row dimension if x is a
matrix).

svdflag is an optional parameter with a default value of zero; if its value is not
zero, the SVD of the cumulant matrix (see the Algorithm section for details) is
computed, and you are prompted to choose an order for the SVD low-rank
approximation. The singular values of the cumulant matrix associated with the
TDE problem rarely show a clean break (in contrast with those associated with
the harmonic retrieval problem, solved by harmest, or the DOA problem, solved
by doa); it is recommended that the order chosen for the SVD low-rank
approximation be greater than the value of max_delay.

delay is the estimated delay of signal y with respect to signal x.

avec is the estimated parameter vector; it is a vector of length
2-by-max_delay + 1, and corresponds to time samples, –max_delay, . . . ,
max_delay. The estimated delay is the time sample at which avec attains its
maximum absolute value.

tde

2-78

Algorithm Let x(n) = s(n) + w1(n), and y(n) = As(n – D) + w2(n), denote the two observed
signals, where A is the amplitude gain, D is the signal delay between the two
sensors, and w1(n) and w2(n) are assumed to be jointly Gaussian. Let P be the
maximum expected delay. Then,

where a(n) = 0, n ≠ D, and a(D) = A. Let
Cyxx(τ,ρ) := E{y(n)x(n + τ)x(n + ρ)},
and Cyxx(τ,ρ) := E{x(n)x(n + τ)x(n + ρ)}. We obtain the third-order recursion,

Using this equation for various values of ρ and τ, we get a system of linear
equations in the a(i)’s, Cxxxa = cyxx. The estimated delay is the index n, which
maximizes |a(n)|. A low rank approximation of the cumulant matrix Cxxx may
be used.

See Also tdeb, tder

Reference [1] Nikias, C.L. and R. Pan, “Time delay estimation in unknown Gaussian
spatially correlated noise,” IEEE Trans. ASSP, Vol. 36, pp. 1706-14, Nov. 1988.

y n() a i()x n i–() w n()+

i P–=

P

∑=

Cyxx τ ρ,() a i()Cxxx τ i+ ρ i+,().

i P–=

P

∑=

tdeb

2-79

2tdebPurpose Time-delay estimation (TDE) using the conventional bispectrum method

Syntax [delay,h] = tdeb(x,y,max_delay,nfft,wind,samp_seg,overlap)

Description The time delay between two signals, possibly corrupted by colored Gaussian
noise, is estimated using the conventional bispectrum method. This involves
computing the third-order hologram (described below) that exhibits a peak at
the true delay.

x and y should both be vectors or matrices with identical dimensions. If they
are matrices, each column is assumed to be a different realization. These are
the signals at the two sensors. The signals are assumed to have nonzero
third-order cumulants; for example, they cannot be symmetrically distributed.

max_delay is the absolute value of the maximum expected delay.

nfft specifies the FFT size to be used; the nominal default value is 128; the
actual FFT size used will be max(samp_seg, nfft).

wind specifies the frequency-domain smoothing window. If wind is a scalar, the
Rao-Gabr window [2]

of length wind will be used; here N is half the FFT length, nfft, and G is the
set of points, (m,n), satisfying,

• A unity value for wind results in no windowing.

• If wind <= 0, the default value of 5 will be used.

• If wind is a vector, it is assumed to specify a 1-D window from which a 2-D
window is computed, W(m,n) = w(m)w(n)w(m + n) [1]-[2].

• If wind is a 2-D matrix, it is assumed to specify the 2-D smoother directly.
The bispectrum estimate averaged across records is smoothed by convolving
with the 2-D window function. The window function should be real and
nonnegative.

W m n,() 3

π3
------- 1 m2 n2 mn+ +

N2
------------------------------------– , m n,() G∈=

m2 n2 mn <+ + wind
2

nfft 2⁄()2
-----------------------.=

tdeb

2-80

samp_seg specifies the number of samples per segment. The default value is the
power of 2 equal to or greater than 4*max_delay+1.

overlap specifies the percentage overlap between segments. The default value
is 50. The allowed range is [0,99].

If y is a matrix, the columns are assumed to correspond to independent
realizations; in this case overlap is set to zero, and samp_seg is set to the row
dimension.

delay is the estimated delay of signal y with respect to signal x.

h is the estimated third-order hologram (defined below); it is a vector of length
nfft, corresponding to indices of –nfft/2 to nfft/2–1, where nfft is the FFT
length.

Algorithm Define auto- and cross-bispectra via,

Bxxx(ω1,ω2) = E{X(ω1)X(ω2)X*(ω1 + ω2)},

Bxyx(ω1,ω2) = E{X(ω1)Y(ω2)X*(ω1 + ω2)}.

The third-order hologram, h(τ), is then defined by

The absolute value of the hologram should display a strong peak at the location
of the true delay. Since third-order statistics are used, the method is
insensitive (in theory) to both spatially and temporally colored Gaussian noise.

Sample estimates of the auto- and cross-bispectra are obtained via routine
bispecdx: the data is segmented; each segment is Fourier transformed, and the
triple frequency product is computed; these products are then averaged across
the suite of segments to give the final cross- and auto-bispectral estimates. In
order to obtain good estimates, it is critical that the data length be much larger
than the specified maximum delay. The estimated delay will range from –
nfft/2 to nfft/2–1.

See Also tde, tder

Reference [1] Nikias, C.L. and R. Pan, “Time delay estimation in unknown Gaussian
spatially correlated noise,” IEEE Trans. ASSP, Vol. 36, pp. 1706-14, Nov. 1988.

h τ() dω1 dω2 jω2τ()exp
Bxyx ω1 ω2,()
Bxxx ω1 ω2,()
----------------------------------.∫∫=

tdegen

2-81

2tdegenPurpose Generates synthetic sequences for the time-delay estimation (TDE) problem

Syntax [s1,s2] = tdegen
[s1,s2] = tdegen(default)

Description tdegen generates the data sequences:

s1(n) = x(n) + g1(n); s2(n) = Ax(n – D) + g2(n);

where x(n) is a zero-mean i.i.d. random sequence, with single-sided exponential
density function; g1(n) and g2(n) are zero-mean colored noise sequences; A is
the amplitude gain from sensor 1 to sensor 2; and D is the delay of the signal
at the second sensor with respect to that at the first sensor.

If the function is invoked without any input arguments, then you are prompted
for all parameters; otherwise, default settings are used.

If the function is invoked as tdegen(default), where the variable default
may take on any value(s), then, the default settings are used.

The colored noise sequence, g1(n), is obtained by passing an i.i.d. sequence
(Laplace, uniform, or normally distributed), through an ARMA filter. The
colored noise sequence, g2(n), is obtained by passing the noise, g1(n), through
another ARMA filter. Note that the two noise sequences are correlated with
each other.

Noise-free signals can be generated by specifying a noise variance of zero when
prompted.

Vectors s1 and s2 contain the simulated signals at the two sensors.

The vectors s1 and s2 in the file tde1.mat can be regenerated via,
[s1,s2] = tdegen(1);.

tder

2-82

2tderPurpose Time-delay estimation (TDE) using the ML-windowed cross-correlation
method

Syntax [delay,rxy] = tder(x,y,max_delay,samp_seg,overlap,nfft)

Description The time delay between two signals, possibly corrupted by colored Gaussian
noise, is estimated using the Maximum Likelihood (ML) windowed
cross-correlation method.

x and y should both be vectors or matrices with identical dimensions. If they
are matrices, each column is assumed to be a different realization. These are
the signals at the two sensors.

max_delay is the absolute value of the maximum expected delay.

samp_seg specifies the number of samples per segment; the default value is the
power of 2 just greater than or equal to 4*max_delay + 1.

overlap specifies the percentage overlap between segments. The default value
is 50. The allowed range is [0,99].

If x,y are matrices, samp_seg is set to the row dimension of x and overlap is set
to zero.

nfft specifies the FFT length to use; the default value is the power of 2 just
greater than samp_seg.

delay is the estimated delay of signal y with respect to signal x.

rxy is the estimate of the windowed autocorrelation (described below); it is a
vector of length nfft, corresponding to indices of –nfft/2 to nfft/2–1.

Algorithm Let Sxy(ω) denote the cross-spectrum between the two signals, x and y; and let
Sxx(ω) and Syy(ω) denote the auto-spectra of x and y. The squared coherence
function is defined by

Cxy ω()
Sxy ω() 2

Sxx ω()Syy ω()
-------------------------------------.=

tder

2-83

The optimal-ML window is then

and the windowed cross-correlation, Rxy(m), is the inverse Fourier transform of
W(ω)Sxy(ω).

Estimates of Sxx, Sxy and Cxy are obtained via the Signal Processing Toolbox
routine spectrum [R1]; the data is segmented, and spectrum estimates from
individual segments are averaged; the segment length is taken to be the
smallest power of 2 larger than twice the maximum delay. Since good estimates
demand a large number of segments, it is critical that the lengths of the time
series, x and y, be much larger than max_delay. The estimated delay will range
from –nfft/2 to nfft/2–1.

The raw delay, d, is estimated as the location of the peak of |Rxy(m)|. A
three-point interpolation is used to improve the delay estimate:

See Also tde, tdeb

References [1] Krauss, T., J.N. Little, and L. Shure, MATLAB Signal Processing Toolbox
User’s Guide, The MathWorks Inc., 1994.

[2] Nikias, C.L. and R. Pan, “Time delay estimation in unknown Gaussian
spatially correlated noise,” IEEE Trans. ASSP, Vol. 36, pp. 1706-14, Nov. 1988.

W ω() 1
Sxy ω()

Cxy ω()
1 Cxy ω()–
----------------------------,=

di d 1
2

Rxy d 1+() Rxy d 1–()–

Rxy d 1+() 2∗Rxy d() Rxy d 1–()+–
--.–=

tls

2-84

2tlsPurpose Total Least Squares solution to a system of linear equations

Syntax [x, flag] = tls(A,b)

Description tls obtains the Total Least Squares (TLS) solution to the linear system of
equations, Ax = b. If A is m -by- n, and b is m-by- k, it is required that m ≥ n +
k (that is, in the usual case, where b is a vector, we have k = 1, so that the
system of equations should be overdetermined). If the problem does not have a
unique solution, flag will be set to unity. TLS is useful when both A and b have
“errors.” For example, sample estimates of cumulants have errors in them due
to finite record lengths.

Algorithm The least squares solution, xls, to the set of linear equations Ax ≈ b minimizes
the norm of the residual vector r = Ax – b, subject to the condition that b + r
is in the range space of A; the implicit assumption is that A is “clean,” but b is
noisy.

The TLSquares solution [1] assumes that both A and b may be noisy; the TLS
solution, if one exists, minimizes the Frobenius norm of the matrix [E r] subject
to the condition that b + r is in the range space of A + E. Here, E and A have
the same dimensions.

Let A be m × n, b be m × k, and m ≥ n + k. Consider the SVD of the composite
matrix [Ab] = UΣV′ where Σ is the diagonal matrix of singular values, σ(t), t =
1, . . ., n + k. In [1], it is shown that if s(n) > s(n + 1), then the TLS solution
exists, is unique, and is given by

where the n -by-n matrix and the k -by-k matrix V22 are defined by

Weighted solutions and other details are discussed in [1].

Reference [1] Golub, G.H. and C.F. Van Loan, Matrix Computations, pp. 420-5, Baltimore:
The Johns Hopkins University Press, 1983.

x V12V22
1– ,–=

V
V11 V12

V21 V22

.=

trench

2-85

2trenchPurpose Estimates the AR parameters and the reflection coefficients given a slice of a
cumulant sequence

Syntax [amat,cmat,pf,gamf,gamb] = trench(c,r)

Description Given a nonsymmetric Toeplitz matrix, A, described by the first column vector,
c, and the first row vector, r, obtains the solutions to the set of equations

Ak,kak = [Pk,0]′,

k = 1, . . ., M, where M + 1 is the length of vectors c and r, and Ak,k is the leading
k × k submatrix of A. If r is not specified, it is set to c′, the conjugate transpose
of c.

The typical situation is the estimation of AR parameters based on correlation
or cumulant sequenes.

amat is the matrix of estimated forward AR prediction vectors, for orders 1
through M; the kth column corresponds to the AR(k) model.

cmat is the matrix of estimated backward AR prediction vectors, for orders 1
through M; the kth column corresponds to the AR(k) model.

pf is the final prediction error variance, for orders 1 through M;

gamf is the vector of forward reflection coefficients.

gamb is the vector of backward reflection coefficients.

Algorithm The standard Trench algorithm [2] is implemented; the Levinson-Durbin
algorithm [1] is obtained when r = c′.

References [1] Haykin, S., Adaptive Filter Theory, New Jersey: Prentice-Hall, pp. 198-205,
2nd ed., 1991.

[2] Zohar, S., “Toeplitz Matrix Inversion: the Algorithm of W.F. Trench,” J.
Assoc. Comp. Mach., Vol. 16, pp. 592-601, 1968.

trispect

2-86

2trispectPurpose Computes a 2-D slice of the theoretical trispectrum of an ARMA process

Syntax [tspec, waxis] = trispect(ma,ar,nfft,f3)

Description A 2-D slice of the theoretical trispectrum corresponding to an ARMA process is
computed.

ma is the MA parameter vector, and must be specified.

ar is the AR parameter vector; its default value is [1].

nfft is the FFT length to use; its default value is 512.

f3 specifies the fixed value of the third-frequency, ƒ3, of the trispectrum,
S3(ƒ1,ƒ2,ƒ3). The default value is 0; the nominal range is [-0.5,0.5]; values
outside this range are folded back into it.

tspec is the 2-D slice of the trispectrum corresponding to the ARMA model,
with fixed ƒ3 = f3. It is an nfft-by-nfft array, with origin at the center, and
axes pointing down and to the right.

waxis is the set of frequencies associated with the tspec; thus, the ith row (or
column) of tspec corresponds to the frequency waxis(i). Frequencies are
normalized; that is, the sampling frequency is assumed to be unity.

Algorithm Let H(ƒ) = B(ƒ)/A(ƒ) denote the transfer function of the ARMA filter; then, the
trispectrum is given by,

S3(ƒ1,ƒ2,ƒ3) = H(ƒ1)H(ƒ2)H(ƒ3)H*(ƒ1 + ƒ2 + ƒ3).

In this routine, frequency ƒ3 is fixed at the specified value of f3.

See Also bispect, cumtrue

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984.

[2] Nikias, C.L., and M.R. Raghuveer, “Bispectrum estimation: a digital signal
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.

wig2

2-87

2wig2Purpose Computes the Wigner spectrum

Syntax [wx, waxis] = wig2(x,nfft,flag)

Description Estimates the Wigner spectrum (WS) of a signal using the time-domain
approach.

x is the signal and must be a vector.

nfft specifies the FFT length, and hence, the frequency resolution; this
parameter must be greater than twice the length of the signal, x, in order to
avoid aliasing. The default value is the power of 2 equal to or just greater than
twice the signal length.

flag — if flag is nonzero and x is real-valued, the analytic form of x is used
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert
transform y(t), then, the analytic signal is defined as the complex-valued signal
z(t) = x(t) + jy(t).

wx is the computed WS. The rows correspond to time samples, and the columns
to frequencies.

waxis is a vector whose entries are the frequencies associated with the columns
of the WS.

Algorithm Let the instantaneous autocorrelation be defined by

r(m,n) = x*(n – m)x(n + m)

where n is identified with time and m with lag. The WS is then given by

The original signal must be sampled at twice the Nyquist rate or faster, in
order to avoid aliasing.

See Also wig2c, wig3, wig3c, wig4, wig4c

References [1] Hlaswatch, F., and G.F. Boudreaux-Bartels, “Linear and Quadratic
Time-Frequency Representations,” IEEE Signal Processing Magazine, pp.
21-67, Apr. 1992.

[2] Cohen, L., “Time-Frequency Distributions: A Review,” Proc. IEEE, pp.
941-81, July 1989.

W ƒ,n() r m n,() jπƒm–().exp
m
∑=

wig2c

2-88

2wig2cPurpose Computes the Wigner spectrum with Choi-Williams filtering

Syntax [wx, waxis] = wig2c(x,nfft,sigma,flag)

Description Estimates the Wigner spectrum (WS) of a signal; eliminates cross-terms in the
WS of multi-component signals by applying the Choi-Williams filter.

x is the signal and must be a vector.

nfft specifies the FFT length, and hence, the frequency resolution; this
parameter must be greater than twice the length of the signal, x, in order to
avoid aliasing. The default value is the power of 2 equal to or just greater than
twice the signal length.

sigma is the parameter in the Choi-Williams window, and controls the amount
of cross-term suppression; very large values result in no suppression, whereas
very small values result in loss of signal terms. The default value is 0.05.

flag — if flag is nonzero and x is real-valued, the analytic form of x is used
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert
transform y(t), then, the analytic signal is defined as the complex-valued signal
z(t) = x(t) + jy(t).

wx is the computed WS. The rows correspond to time samples, and the columns
to frequencies.

waxis is a vector whose entries are the frequencies associated with the columns
of the WS.

Algorithm Let the instantaneous autocorrelation be defined by

r(m,n) = x*(n – m)x(n + m)

where n is identified with time and m with lag. The ambiguity function, AF, is
then given by

The AF is multiplied by the Choi-Williams window function,

w(m,θ) = exp(–(mθ/sigma)2).

AF m θ,() r m n,() j2πnθ–().exp
m
∑=

wig2c

2-89

The 2-D FT of AF(m,θ)w(m,θ) (θ to n and m to ƒ) yields the filtered WS, Wc(ƒ,n).

The original signal must be sampled at twice the Nyquist rate or faster.

See Also wig2, wig3, wig3c, wig4, wig4c

References [1] Hlaswatch, F., and G.F. Boudreaux-Bartels, “Linear and Quadratic
Time-Frequency Representations,” IEEE Signal Processing Magazine, pp.
21-67, Apr. 1992.

[2] Cohen, L., “Time-Frequency Distributions: A Review,” Proc. IEEE, pp.
941-81, July 1989.

[3] Choi, H. and W.J. Williams, “Improved Time-Frequency Representation of
Multicomponent Signals Using Exponential Kernels,” IEEE Trans. ASSP, pp.
862-71, June 1989.

wig3

2-90

2wig3Purpose Computes the ƒ1 = ƒ2 slice of the Wigner bispectrum

Syntax [wx, waxis] = wig3(x,nfft,flag)

Description Computes the diagonal slice of the Wigner bispectrum (WB).

x is the signal and must be a vector.

nfft specifies the FFT length, and hence, the frequency resolution; this
parameter must be greater than three times the length of the signal, x, in order
to avoid aliasing. The default value is the power of 2 equal to or just greater
than three times the signal length.

flag — if flag is nonzero and x is real-valued, the analytic form of x is used
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert
transform y(t), then, the analytic signal is defined as the complex-valued signal
z(t) = x(t) + jy(t).

wx is the computed WB. The rows correspond to time samples, and the columns
to frequencies.

waxis is a vector whose entries are the frequencies associated with the columns
of the WB.

Algorithm Define the instantaneous triple product

r3(t,τ1,τ2) = x*(t – ατ1 – ατ2)x(t + βτ1 – ατ2)x(t – ατ1 + βτ2)

where α = 1/3 and β = 2/3. The WB is then given by

In this routine we compute the slice ƒ1 = ƒ2.

Note that the original signal should be sampled at twice the Nyquist rate, in
order to avoid aliasing. Also note that the frequency axes are scaled by the
factor of 2/3; in this routine, we undo the scaling so that you can find the peaks
at the expected frequencies.

See Also wig2, wig2c, wig3c, wig4, wig4c

W n ƒ1 ƒ2, ,() dτ1dτ2e
j2π– ƒ1τ1 ƒ2τ2+()

r3 t τ1 τ2, ,()∫∫=

wig3

2-91

References [1] Fonollosa, J.R. and C.L. Nikias, “Wigner Higher-Order Moment Spectra:
Definitions, Properties, Computation and Applications to Transient Signal
Detection,” IEEE Trans. SP, Jan. 1993.

[2] Gerr, N.L., “Introducing a third-order Wigner distribution,” Proc. IEEE, pp.
290-92, Mar. 1988.

[3] Swami, A., “Third-order Wigner distributions,” Proc. ICASSP-91, pp.
3081-84, Toronto, Canada, May 1991.

wig3c

2-92

2wig3cPurpose Computes the diagonal slice of the Wigner bispectrum, with Choi-Williams
filtering

Syntax [wx, waxis] = wig3c(x,nfft,sigma,flag)

Description Computes the diagonal slice of the Wigner bispectrum (WB); the Choi-Williams
filter is applied in order to suppress the cross-terms in the WB of
multicomponent signals.

x is the signal and must be a vector.

nfft specifies the FFT length, and hence, the frequency resolution; this
parameter must be greater than three times the length of the signal, x, in order
to avoid aliasing. The default value is the power of 2 equal to or just greater
than thrice the signal length.

sigma is the parameter in the Choi-Williams window, and controls the amount
of cross-term suppression; very large values result in no suppression, whereas
very small values result in loss of signal terms. The default value is 0.5.

flag — if flag is nonzero and x is real-valued, the analytic form of x is used
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert
transform y(t), then, the analytic signal is defined as the complex-valued signal
z(t) = x(t) + jy(t).

wx is the computed WB. The rows correspond to time samples, and the columns
to frequencies.

waxis is a vector whose entries are the frequencies associated with the columns
of the WB.

Algorithm Define the instantaneous triple product

r3(t,τ1,τ2) = x*(t – ατ1 – ατ2)x(t + βτ1 – ατ2)x(t – ατ1 + βτ2)

where α = 1/3 and β = 2/3. Define the smoothing kernel,

Φ θ τ1 τ2, ,() θ–
2 r1

2 r2
2

+()/sigma()exp=

wig3c

2-93

The filtered WB is then given by

In this routine we compute the slice ƒ1 = ƒ2.

Note that the original signal should be sampled at twice the Nyquist rate, in
order to avoid aliasing. Also note that the frequency axes are scaled by the
factor of 2/3. In this routine, we undo the scaling so that you can find the peaks
at the expected frequencies.

NOTE: The application of the Choi-Williams kernel to the Wigner bispectrum
does not guarantee preservation of the auto-terms; consequently, this routine
should be used with great caution.

See Also wig2, wig2c, wig4, wig4c

References [1] Choi, H. and W.J. Williams, “Improved Time-Frequency Representation of
Multicomponent Signals Using Exponential Kernels,” IEEE Trans. ASSP, pp.
862-71, June 1989.

[2] Fonollosa, J.R. and C.L. Nikias, “Wigner Higher-Order Moment Spectra:
Definitions, Properties, Computation and Applications to Transient Signal
Detection,” IEEE Trans. SP, Jan. 1993.

W n ƒ1 ƒ2, ,() dθdτ1dτ2du e
j2π– ƒ1τ1 ƒ2τ2+()

e j2πtθ– ej2πuθ∫∫∫∫=

r3 t τ1 τ2, ,()Φ θ τ1 τ2, ,()

wig4

2-94

2wig4Purpose Computes the ƒ1 = ƒ2 = –ƒ3 slice of the Wigner trispectrum

Syntax [wx, waxis] = wig4(x,nfft,flag)

Description Estimates the ƒ1 = ƒ2 = –ƒ3 slice of the Wigner trispectrum (WT) of a signal
using the time-domain approach.

x is the signal and must be a vector.

nfft specifies the FFT length, and hence, the frequency resolution; this
parameter must be greater than four times the length of the signal, x, in order
to avoid aliasing. The default value is the power of 2 equal to or just greater
than four times the signal length.

flag — if flag is nonzero and x is real valued, the analytic form of x is used
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert
transform y(t), then, the analytic signal is defined as the complex-valued signal
z(t) = x(t) + jy(t).

wx is the computed WT. The rows correspond to time samples, and the columns
to frequencies.

waxis is a vector whose entries are the frequencies associated with the columns
of the WT.

Algorithm For a complex signal, the Wigner trispectrum can be defined in two different
ways; here, we implement the symmetric Wigner trispectrum [1].

Define the instantaneous fourth-order product,

r4(t,τ1,τ2,τ3) = x*(t – τ)x(t – τ + τ1)x(t – τ + τ2)x*(t – τ + τ3)

where τ := (τ1 +τ2 +τ3)/4. Notice that two of the terms are conjugated.

The symmetric Wigner trispectrum (WT) is then given by

In this routine we compute the slice ƒ1 = ƒ2 = –ƒ3 = ƒ.

Note that the original signal should be sampled at twice the Nyquist rate, in
order to avoid aliasing. Also note that the frequency axes are scaled by the

W n ƒ1 ƒ2 ƒ3, , ,() dτ1dτ2dτ3e
j2π– ƒ1τ1 ƒ2τ2 ƒ3τ3+ +()

r4 t τ1 τ2 τ3, , ,()∫∫∫=

wig4

2-95

factor of 1/2; in this routine, we undo the scaling so that you can find the peaks
at the expected frequencies.

See Also wig2, wig2c, wig3, wig3c, wig4c

References [1] Fonollosa, J.R. and C.L. Nikias, “Analysis of finite-energy signals using
higher-order moments- and spectra-based time-frequency distributions,”
Signal Processing, Vol. 36, pp. 315-28, 1994.

[2] Swami, A., “Higher-Order Wigner Distributions,” in Proc. SPIE-92, Session
on Higher-Order and Time-Varying Spectral Analysis, Vol. $1770, 290-301,
San Diego, CA, July 19-24, 1992.

wig4c

2-96

2wig4cPurpose Computes the Sliced Reduced-Interference Wigner trispectrum

Syntax [wx, waxis] = wig4c(x,nfft,sigma,flag)

Description Computes the Sliced Reduced-Interference Wigner trispectrum (WT) [2];
eliminates cross-terms in the WT of multicomponent signals by applying the
Choi-Williams filter.

x is the signal and must be a vector.

nfft specifies the FFT length, and hence, the frequency resolution; this
parameter must be greater than four times the length of the signal, x, in order
to avoid aliasing. The default value is the power of 2 equal to or just greater
than four times the signal length.

sigma is the parameter in the Choi-Williams window, and controls the amount
of cross-term suppression; very large values result in no suppression, whereas
very small values result in loss of signal terms. The default value is 0.05.

flag — if flag is nonzero and x is real valued, the analytic form of x is used
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert
transform y(t), then, the analytic signal is defined as the complex-valued signal
z(t) = x(t) + jy(t).

wx is the computed WT. The rows correspond to time samples, and the columns
to frequencies.

waxis is a vector whose entries are the frequencies associated with the columns
of the WT.

Algorithm For a complex signal, the Wigner trispectrum can be defined in two different
ways; here, we implement the symmetric Wigner trispectrum [1].

Define the instantaneous fourth-order product,

r4(t,τ1,τ2,τ3) = x*(t – τ)x(t – τ + τ1)x(t – τ + τ2)x*(t – τ + τ3)

where τ := (τ1 +τ2 +τ3)/4. Define the smoothing kernel,

Φ θ τ1 τ2 τ3, , ,() θ–
2 r1

2 r2
2 r3

2
+ +()/sigma()exp=

wig4c

2-97

The filtered WT is then given by

In this routine we compute the slice ƒ1 = ƒ1 = –ƒ3.

Note that the original signal should be sampled at twice the Nyquist rate, in
order to avoid aliasing. Also note that the frequency axes are scaled by the
factor of 1/2. In this routine, we undo the scaling so that you can find the peaks
at the expected frequencies.

It should be noted that the Wigner trispectrum is real valued.

See Also wig2, wig2c, wig3, wig3c, wig4

References [1] Choi, H. and W.J. Williams, “Improved Time-Frequency Representation of
Multicomponent Signals Using Exponential Kernels,” IEEE Trans. ASSP, pp.
862-71, June 1989.

[2]Fonollosa, J.R. and C.L. Nikias, “Analysis of finite-energy signals using
higher-order moments- and spectra-based time-frequency distributions,”
Signal Processing, Vol. 36, pp. 315-28, 1994.

W n ƒ1 ƒ2 ƒ3, , ,() dθdτ1dτ2dτ3due
j2π– ƒ1τ1 ƒ2τ2 ƒ3τ3+ +()

∫∫∫∫∫=

e j2πtθ– ej2πuθr4 t τ1 τ2 τ3, , ,()Φ θ τ1 τ2 τ3, , ,()

2-98

I-1

Index

A
adaptive filter

double lattice 2-72
RIV 2-74

adaptive linear prediction 1-54
ambiguity function 1-90-1-92
AR method

DOA 2-44
harmonic retrieval 2-50

AR models 1-31
order determination 1-34, 2-15
parameter estimation 2-17
parameter identifiability 1-31

ar1.mat 1-134
ARMA models 1-32

AR order estimation 2-15
AR parameter estimation 2-17
residual time series 2-12

arma1.mat 1-135
armaqs 1-33, 2-8
armarts 2-11
armasyn 2-14
arorder 2-15
arrcest 2-17
autocorrelation 1-6

B
backward prediction problem 1-47
beamformer 1-64, 1-65, 1-77
bibliography 1-139
biceps 2-19
bicepsf 2-21
bicepstrum 1-38
bicoher 2-23
bicoherence 1-4

auto 2-23

cross 2-25
estimation 1-20, 2-23

bicoherx 2-25
bispecd 2-27
bispecdx 2-29
bispeci 2-31
bispect 2-33
bispectrum 1-8

cross 2-29
direct estimate 1-19
direct method 2-27
estimation 1-17
indirect method 1-18, 2-31
theoretical 2-33
Wigner 2-90, 2-92

Burg’s maximum-entropy estimator 1-74

C
Canadian lynx data 1-114
Capon (ML) 1-74
Capon’s maximum-likelihood estimator 1-73
Choi-Williams

distributions 1-89
filter 1-92, 1-95, 1-100
smoothing 2-88

cross-bicoherence 1-10
cross-biperiodogram 1-17
cross-bispectra

Volterra systems 1-80
cross-bispectrum 1-9

direct estimate 1-18
direct method 2-29
estimation 1-13
indirect estimate 1-16

cross-cumulant 1-81

Index

I-2

cum2x 2-34
cum3x 2-36
cum4x 2-38
cumest 2-40
cumtrue 2-42
cumulants 1-4

auto 2-40
definitions 1-6
fourth-order 2-40, 2-42
sample estimates 1-12
second-order 2-34, 2-40
third-order 2-36, 2-41
true 2-42

D
demos 2-54
DOA 1-62, 1-64

AR 1-74
beamformer 1-74
Capon(ML) 1-74
cumulant-based estimators 1-74
eigenvector 1-74
ESPRIT 1-74
fourth-order cumulants 2-44
minimum-norm 1-74
MUSIC 1-74
Pisarenko 1-74
spatial covariance matrix 2-44

doa 2-44
doa1.mat 1-135
doagen 2-46

E
eda 1-112, 1-114, 1-120
eigenvector method

DOA 2-44
harmonic retrieval 2-50

eigenvector methods 1-67
ESPRIT 1-70, 1-74

DOA 2-44
examples

AR order determination 1-34
AR parameter estimation 1-32
ARMA parameter estimation 1-34
bicepstrum-based IR estimation 1-39, 1-41
bicoherence estimation 1-20
computing true cumulants 1-43
cross-bicoherence estimation 1-20
cross-bispectrum 1-19
cumulant estimation 1-14
cumulation estimation 1-14
DOA estimation 1-77
Gaussianity-linearity tests 1-24
harmonic retrieval 1-75
Levinson recursion 1-50
MA order determination 1-37
MA parameter estimation 1-30
Matsuoka-Ulrych algorithm 1-42
QPC detection 1-87
RIV double-lattice form 1-60
RIV transversal form 1-57
speech signal 1-122
sunspot data 1-108
time-delay estimation 1-103, 1-105, 1-107
trench recursion 1-50
Volterra system identification 1-82, 1-83
Wigner bispectrum 1-96

smoothed 1-97
Wigner spectrum 1-93

smoothed 1-94
Wigner trispectrum 1-99

smoothed 1-100

Index

I-3

F
FBLS 1-53

deterministic formulation 1-53
forward prediction problem 1-47
forward-backward least squares problem 1-54
frequency coupling 1-128
frequency estimation 1-65, 2-50

G
Gaussianity test 1-22, 2-47
gldat.mat 1-135
glstat 2-47
GM equations 1-29
guided tour 2-54

H
harm.mat 1-135
harmest 2-50
harmgen 2-53
harmonic retrieval 1-62, 1-64

AR models 1-66
ARMA models 1-66
cumulant-based method 1-74
minimum-norm method 1-69
MUSIC 1-68
Pisarenko’s method 1-67
synthetics 2-53

help 2-55
higher-order spectra 1-2
higher-order statistics 1-2

motivations 1-10
hologram

third order 1-106
hosademo 2-54
hosahelp 2-55
hprony 2-56

I
instrumental variables 2-57
ivcal 2-57

K
kurtosis 1-7

L
Levinson-Durbin recursion 1-48, 2-85
linear models

frequency-domain bicepstral method 2-21
lag-domain bicepstral method 2-19

linear prediction 1-31, 1-47
adaptive 1-54

linear processes
impulse response estimation 1-37
theoretical cumulants 1-43
theoretical polyspectra 1-43

linearity test 1-24
linearity tests 2-47

M
MA models 1-29

order estimation 2-61
parameters estimation 2-58

ma1.mat 1-135
maest 2-58
maorder 2-61
Matsuoka-Ulrych algorithm 2-63
matul 2-63
minimum phase 1-11
minimum-norm method

DOA 2-44
harmonic retrieval 2-50

Index

I-4

mixed-phase 1-11, 1-135
ML-Capon 1-74
MUSIC 1-68

DOA 2-44
harmonic retrieval 2-50

N
nl1.mat 1-135
nl2.mat 1-136
nlgen 2-64
nlgen 2-64
nlpow 2-65
nltick 2-67
noise subspace 1-69
nonredundant region 1-133
normal equations

cumulant-based 2-17
deterministic 1-53

P
peak picking 2-69
periodogram 1-15, 1-64
phase coupling 1-84, 1-132
pickpeak 2-69
Pisarenko’s method 1-67

DOA 2-44
harmonic retrieval 2-50

pitfalls 1-131
polycepstra methods 1-38
polycepstral methods 1-38
polycepstrum 1-40
polyspectra

linear processes 1-4
windows 1-16

polyspectrum

definitions 1-6
power spectrum

Wigner 2-87
power spectrum estimation 1-4

conventional methods 1-15
criterion-based estimators 1-72
criterion-based methods 1-15
model-based methods 1-15
non-parametric methods 1-15
parametric estimators

ARMA models 1-26
power spectrum estimator

Burg estimator 1-72
Capon’s ML estimator 1-72
MVD estimator 1-72

Prony’s method 2-56

Q
QPC 1-88

detection 2-71
synthetics 2-70

qpc.mat 1-137
qpcgen 2-70
qpctor 2-71
q-slice method 1-33
quadratic phase coupling 1-84
quick help 2-55

R
random sequence generator 2-76
recursive instrumental variable (RIV) algorithm

1-56
recursive least squares (RLS) algorithm 1-56
reflection coefficients 1-49, 1-60
residual time series 1-32

Index

I-5

resolution 1-65
RIV

double-lattice form 1-58
transversal form 1-56

RIV algorithm 1-56
riv.mat 1-137
rivdl 2-72
rivtr 2-74
RLS algorithm 1-47
rpiid 2-76

S
self-driving AR model 1-66
signal subspace 1-68
skewness 1-7
speech signals 1-122
sunspot data 1-108
synthetic generator

harmonics in noise 2-53
synthetics 1-65
system identification

non-parametric 2-19, 2-21, 2-63

T
TDE

cross-bispectral method 2-80
cross-correlation method 1-101
cross-cumulant method 1-101, 2-77
ML window cross-correlation method 2-82
synthetics 2-81
using hologram 1-105

tde 2-77
tde1.mat 1-137
tdeb 2-79
tdegen 2-81

tder 2-82
TFD’s

Cohen class 1-89
time-delay estimation problem 1-101
time-frequency distribution 1-89
tls 2-84
total least squares 2-84
tprony.mat 1-137
transient signals 1-89
transients modeling 2-56
trench 2-85
Trench recursion 1-49
trench recursion 2-85
tricks 1-131
trispect 2-86
trispectrum 1-8

theoretical 2-86
Wigner 2-94, 2-96

V
variance 1-65
Volterra

non-Gaussian inputs 1-82
Volterra models

arbitrary inputs 2-65
computing output 2-64
Gaussian inputs 2-67

Volterra system 1-80

W
wig2 2-87
wig2c 2-88
wig3 2-90
wig3c 2-92
wig4 2-94

Index

I-6

wig4c 2-96
wigdat.mat 1-137
Wigner bispectrum 1-94, 2-90

smoothed 2-92
Wigner cross spectrum 1-90
Wigner spectrum 1-90, 2-87

smoothed 2-88

Wigner trispectrum 1-98, 2-94
sliced 1-98
smoothed 2-96

Wigner-Ville distribution 1-89
window function 1-16, 1-90
Wold’s decomposition 1-5

	Tutorial
	Introduction
	Polyspectra and Linear Processes
	Introduction
	Definitions
	Why Do We Need Higher-Order Statistics?
	Bias and Variance of an Estimator
	Estimating Cumulants
	Estimating Polyspectra and Cross-polyspectra
	Estimating Bicoherence
	Testing for Linearity and Gaussianity
	Parametric Estimators, ARMA Models
	Linear Processes: Impulse Response Estimation
	Linear Processes: Theoretical Cumulants and Polyspectra
	Summary

	Linear Prediction Models
	Levinson Recursion
	Trench Recursion
	Deterministic Formulation of FBLS
	Adaptive Linear Prediction
	Summary

	Harmonic Processes and DOA
	Resolution and Variance
	AR and ARMA Models
	Pisarenko’s Method
	Multiple Signal Classification (MUSIC)
	Minimum-Norm Method
	ESPRIT
	Criterion-Based Estimators
	Cumulant-Based Estimators
	Summary

	Nonlinear Processes
	Solution Using Cross-Bispectra
	Solution Using FTs
	Quadratic Phase Coupling
	Summary

	Time-Frequency Distributions
	Wigner Spectrum
	Wigner Bispectrum
	Wigner Trispectrum
	Summary

	Time-Delay Estimation
	A Cross-Correlation Based Method
	A Cross-Cumulant Based Method
	A Hologram Based Method
	Summary

	Case Studies
	Sunspot Data
	Canadian Lynx Data
	A Classification Example
	Laughter Data
	Pitfalls and Tricks of the Trade

	Data Files
	Bibliography

	Reference
	Function Tables
	Higher-Order Spectrum Estimation: Conventional Methods
	Higher-Order Spectrum Estimation: Parametric Methods
	Quadratic Phase Coupling (QPC)
	Second-Order Volterra Systems
	Harmonic Retrieval
	Time-Delay Estimation (TDE)
	Array Processing: Direction of Arrival (DOA)
	Adaptive Linear Prediction
	Impulse Response (IR), Magnitude and Phase Retrieval
	Time-Frequency Estimates
	Utilities
	Demo

	Miscellaneous
	Prompting
	Guided tour
	Addenda

	armaqs
	armarts
	armasyn
	arorder
	arrcest
	biceps
	bicepsf
	bicoher
	bicoherx
	bispecd
	bispecdx
	bispeci
	bispect
	cum2x
	cum3x
	cum4x
	cumest
	cumtrue
	doa
	doagen
	glstat
	harmest
	harmgen
	hosademo
	hosahelp
	hprony
	ivcal
	maest
	maorder
	matul
	nlgen
	nlpow
	nltick
	pickpeak
	qpcgen
	qpctor
	rivdl
	rivtr
	rpiid
	tde
	tdeb
	tdegen
	tder
	tls
	trench
	trispect
	wig2
	wig2c
	wig3
	wig3c
	wig4
	wig4c

	Index
	About the Authors

