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Introduction 
This section of the User’s Guide describes how to begin using the Higher-Order 
Spectral Analysis Toolbox for your signal processing applications. It assumes 
familiarity with basic MATLAB

®,  as well as a basic understanding of signals 
and systems.

There is much more information in a stochastic non-Gaussian or deterministic 
signal than is conveyed by its autocorrelation or power spectrum. Higher-order 
spectra, which are defined in terms of the higher-order moments or cumulants 
of a signal, contain this additional information. The Higher-Order Spectral 
Analysis (HOSA) Toolbox provides comprehensive higher-order spectral 
analysis capabilities for signal processing applications. The toolbox is an 
excellent resource for the advanced researcher and the practicing engineer, as 
well as the novice student who wants to learn about concepts and algorithms 
in statistical signal processing. 

The Higher-Order Spectral Analysis Toolbox is a collection of M-files that 
implement a variety of advanced signal processing algorithms for spectral 
estimation, polyspectral estimation, and computation of time-frequency 
distributions, with applications such as parametric and nonparametric blind 
system identification, time delay estimation, harmonic retrieval, direction of 
arrival estimation, parameter estimation of Volterra (nonlinear) models, and 
adaptive linear prediction. Other potential applications include acoustics, 
biomedicine, econometrics, exploration seismology, nondestructive testing, 
oceanography, plasma physics, radar, sonar, speech etc. 

For the newcomer to the field of higher-order statistics (spectra), some 
excellent starting places are: 

[T2] Mendel, J.M., “Tutorial on higher-order statistics (spectra) in signal 
processing and system theory: Theoretical results and some applications,” 
Proc. IEEE, Vol. 79, pp. 278-305, 1991.

[T3] Nikias, C.L. and J.M. Mendel, “Signal processing with higher-order 
spectra,” IEEE Signal Processing Magazine, Vol. 10, No 3, pp. 10-37, July 1993 

[T4] Nikias, C.L. and A.P. Petropulu, Higher-Order Spectra Analysis: A 
Nonlinear Signal Processing Framework, New Jersey: Prentice-Hall, 1993. 

[T1] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal 
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.
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The field of higher-order statistics (spectra) and its applications to various 
signal processing problems are relatively new. As such, there is no guarantee 
that a particular Higher-Order Spectral Analysis Toolbox routine will work 
well on your data. United Signals Systems, Inc., will be updating and 
upgrading the Higher-Order Spectral Analysis Toolbox from time to time to 
incorporate new routines and provide users with guidance on the applicability 
of existing routines as more experience is obtained through their use.

The “Tutorial” has numerous examples that reinforce the theory and 
demonstrate how to use the toolbox functions. All of the data files used by these 
examples are included in your Higher-Order Spectral Analysis Toolbox 
distribution diskette, and are described in the section on “Data Files.” We 
encourage you to try out the examples yourself. Additional examples may be 
found in the demo, which can be invoked via hosademo. A later section in the 
“Tutorial” demonstrates how to deal with real data.
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Polyspectra and Linear Processes
In this section, we will define cumulants, polyspectra, and various other 
related statistics, such as bicepstra and bicoherence. We will discuss tests for 
linearity and Gaussianity, and we will develop cumulant-based algorithms for 
estimating the parameters of linear (e.g., ARMA) processes. 

Introduction
The notion of decomposing a signal into its harmonic components dates back to 
the analysis of the motion of planets (“the music of the spheres,” as the 
Pythagorians called it), phases of the moon, laws of musical harmony, Newton’s 
spectral decomposition of light (1677), Bernouilli (1738) and Euler’s (1755) 
analysis of vibrating membranes, and Prony’s approximation for vibrating 
mechanisms (1793). Modern Fourier Analysis, as we know it today, received its 
foundations in the work of Fourier (1807), although the roots of the Fast 
Fourier Transform (FFT) can be traced back to Gauss’s work on orbital 
mechanics (1805). 

We will assume, without loss of generality, that the processes or signals of 
interest to us are zero mean. We will also assume that the processes are 
discrete-time, with a sampling interval of T = 1, corresponding to a normalized 
sampling frequency of 1 Hz, so that the Nyquist frequency is 0.5 Hz. 

The power spectrum is the primary tool of signal processing, and algorithms for 
estimating the power spectrum have found applications in areas such as radar, 
sonar, seismic, biomedical, communications, and speech signal processing. 
Analog equipment to estimate the spectrum, namely the spectrum analyzer, 
has been around for more than five decades, and may be found in almost any 
lab. Our toolbox not only offers a substitute for that equipment; it expands the 
analyst’s toolkit to include algorithms more sophisticated than the simple 
conventional spectral analysis techniques. 
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The usefulness of the power spectrum arises from an important theorem, 
known as Wold’s decomposition, which states that any discrete-time stationary 
random process can be expressed in the form,

x(n) = y(n)+ z(n)

such that: 

1 Processes y(n) and z(n) are uncorrelated with one another; 

2 Process y(n) has a causal linear process representation, 

where  and u(n) is a white-noise process; and, 

3  z(n) is singular, that is, it can be predicted perfectly (with zero variance) 
from its past. 

An example of a singular process is the harmonic process, 
. A process with z(n) ≡ 0 has a purely continuous 

spectrum; additionally, a strictly band-limited process is also singular. 

Since real world signals cannot be strictly band limited, we may think of the 
Wold decomposition as decomposing a process into a linear process (which has 
a continuous spectrum) and a harmonic process (which has a line spectrum). 

It is also important to note that the theorem only states that u(t) is 
uncorrelated; it does not state that u(t) is i.i.d., (higher-order white). For 
example, u(n) might be the output of an all-pass system whose input is an i.i.d. 
process. We need higher-order statistics to determine whether or not u(t) is 
i.i.d., or merely uncorrelated. Other motivations for using higher-order 
statistics (HOS) are discussed throughout this “Tutorial”. 

y n( ) h k( )u n k–( )

k 0=

∞

∑=

h 0( ) 1= h2 k( )
k 0=

∞∑ ∞<, ,

s n( ) α j2πfn( )exp=
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Definitions
The autocorrelation function or sequence of a stationary process, x(n), is 
defined by,

(1-1)

where E{⋅} denotes the ensemble expectation operator. The power spectrum is 
formally defined as the Fourier Transform (FT) of the autocorrelation sequence 
(the Wiener-Khintchine theorem)

(1-2)

where ƒ denotes the frequency. An equivalent definition is given by

(1-3)

where X(ƒ) is the Fourier Transform of x(n)

(1-4)

A sufficient, but not necessary, condition for the existence of the power 
spectrum is that the autocorrelation be absolutely summable. The power 
spectrum is real valued and nonnegative, that is, Pxx(ƒ) ≥ 0; if x(n) is real 
valued, then the power spectrum is also symmetric, that is, Pxx(ƒ) = Pxx(–ƒ). 

As we shall see next, higher-order moments are natural generalizations of the 
autocorrelation, and cumulants are specific nonlinear combinations of these 
moments.

The first-order cumulant of a stationary process is the mean, C1x := E{x(t)} . The 
higher-order cumulants are invariant to a shift of mean; hence, it is convenient 
to define them under the assumption of zero mean; if the process has nonzero 
mean, we subtract the mean, and then apply the following definitions to the 
resulting process. The second-, third- and fourth-order cumulants of a 
zero-mean stationary process are defined by [4], 

Rxx m( ) := E x∗ n( )x n m+( ){ }

Pxx ƒ( ) Rxx m( ) j2πƒm–( )exp

m ∞–=

∞

∑=

Pxx ƒ( ) := E X ƒ( )X∗ ƒ( ){ }

X ƒ( ) x n( ) j2πƒn–( ).exp

n ∞–=

∞

∑=
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(1-5)

(1-6)

(1-7)

where M2x(m) = E{x(n) x(n + m)}, and equals C2x(m), for a real-valued process. 
The first-order cumulant is the mean of the process; and the second-order 
cumulant is the autocovariance sequence. Note that for complex processes, 
there are several ways of defining cumulants depending upon which terms are 
conjugated.

The zero-lag cumulants have special names: C2x(0) is the variance and is 
usually denoted by ; C3x(0,0) and C4x(0,0,0) are usually denoted by γ3x and 
γ4x. We will refer to the normalized quantities,  as the skewness and 

 as the kurtosis. These normalized quantities are both shift and scale 
invariant. If x(n) is symmetric distributed, its skewness is necessarily zero (but 
not vice versa); if x(n) is Gaussian distributed, its kurtosis is necessarily zero 
(but not vice versa). Often the terms skewness and kurtosis are used to refer to 
the unnormalized quantities, γ3x and γ4x.

If x(n) is an i.i.d. process, its cumulants are nonzero only at the origin. If x(n) is 
statistically independent of y(n), and z(n) = x(n) + y(n), then

with similar relationships holding for cumulants of all orders. This additivity 
property simplifies cumulant-based analysis. 

C2x k( ) E x* n( )x n k+( ){ }=

C3x k l,( ) E x* n( )x n k+( )x n l+( ){ }=

C2x k( )C2x l m–( )– C2x l( )C2x k m–( )–

C4x k l m, ,( ) E x* n( )x n k+( )x n l+( )x* n m+( ){ }=

M2x
* m( )M2x k l–( )–

σx
2

γ3x σ2x
3⁄

γ4x σ2x
4⁄

C4z k l m, ,( ) C4x k l m, ,( ) C4y k l m, ,( ),+=
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The cumulants of a stationary real-valued process are symmetric in their 
arguments, that is,

Hence, the fundamental region of support is not the entire k-D plane. For 
example, for k = 2, C2x(k), k ≥ 0, specifies C2x(k) everywhere. It is easily shown 
that the nonredundant region for C3x(k,l) is the wedge

{(k,l) : 0 ≤ l ≤ k ≤ ∞},

 and for C4x(k,l,m), it is the cone, 

{(k,l,m) : 0 ≤ m ≤ l ≤ k ≤ ∞}.

The kth-order polyspectrum is defined as the FTs of the corresponding 
cumulant sequence: 

(1-8)

(1-9)

(1-10)

which are respectively the power spectrum, the bispectrum, and the 
trispectrum. Note that the bispectrum is a function of two frequencies, whereas 
the trispectrum is a function of three frequencies. In contrast with the power 
spectrum which is real valued and nonnegative, bispectra and trispectra are 
complex valued. 

C3x k l,( ) C3x l k,( ) C3x k– l k–,( )= =

C2x k( ) C2x k–( )=

C4x k l, m,( ) C4x l k m, ,( ) C4x k m l, ,( ) C4x k– l k m k–,–,( )= = =

S2x ƒ( ) C2x k( )e j2πƒκ–

k ∞–=

∞

∑=

S3x ƒ1 ƒ2,( ) C3x k l,( )e
j2πƒ1k–

e
j2πƒ2l–

l ∞–=

∞

∑
k ∞–=

∞

∑=

S4x ƒ1 ƒ2 ƒ3, ,( ) C4x k l m, ,( )e
j2π ƒ1( k– ƒ2l ƒ3m )+ +

k l m, , ∞–=

∞

∑=
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For a real-valued process, symmetry properties of cumulants carry over to 
symmetry properties of polyspectra. The power spectrum is symmetric: 
S2x(ƒ) = S2x(–ƒ). The symmetry properties of the bispectrum are given by [56]: 

(1-11)

Hence, a nonredundant region of support for the bispectrum is the triangle 
with vertices (0,0), (1/3,1/3) and (1/2,0); recall that we have assumed a 
normalized sampling frequency of 1 Hz. 

Symmetry properties of the trispectrum include:

The literature is somewhat confusing both in the derivation, as well as in the 
description of the nonredundant regions. The nonredundant region for a 
continuous-time band-limited process, with a Nyquist frequency of 0.5 Hz, is 
the triangle with vertices (0,0), (1/4,1/4), (1/2,0). A tutorial treatment of the 
differences between the continuous-time and the discrete-time cases is given in 
[47]; related discussions may be found in [63]. The nonredundant region of the 
trispectrum is discussed in [6, 9, 47]. 

Similar to the cross-correlation, we can also define cross-cumulants; for 
example,

(1-12)

The cross-bispectrum is defined by,

(1-13)

Note that the bispectrum S3x(ƒ1,ƒ2) is a special case of the cross-bispectrum 
obtained when x = y = z. 

The cross-bicoherence is another useful statistic which is defined as,

S3x ƒ1 ƒ2,( ) S3x ƒ2 ƒ1,( ) S3x ƒ1 ƒ1– ƒ2–,( )= =

S3x ƒ– 1 ƒ2 ƒ2,–,( ) S3x
* ƒ– 1 ƒ– 2,( ).= =

S4x ƒ1 ƒ2 ƒ3,,( ) S4x ƒ1 ƒ3 ƒ2,,( ) S4x ƒ2 ƒ1 ƒ3,,( )= =

S4x ƒ– 1 ƒ2 ƒ– 1 ƒ3 ƒ– 1,,( ) S4x
* ƒ– 1 ƒ– 2 ƒ– 3, ,( ).= =

Cxyz k l,( ) E x∗ n( )y n( k )z n( l )+ +{ }=

Sxyz ƒ1 ƒ2,( ) Cxyz k l,( )e
j2πƒ1k–

e
j2πƒ2l–

l ∞–=

∞

∑
k ∞–=

∞

∑=
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(1-14)

The autobicoherence is obtained when x = y = z. M-file bicoherx can be used to 
estimate the cross-bicoherence, and bicoher can be used to estimate the 
bicoherence. 

The cross-bicepstrum of three processes is defined by

(1-15)

and is well-defined only if Sxyz(ƒ1,ƒ2) is nonzero everywhere. 

Why Do We Need Higher-Order Statistics?
Motivation to use cumulants and polyspectra of order k > 2 is given by the 
following (mk = (m1 . . . , mk-1)): 

• If z(n) = x(n) + y(n), and x(n) and y(n) are mutually independent processes, 
then Ckz(mk) = Ckx(mk) + Cky(mk).

• If x(n) is Gaussian, then Ckz(mk) = 0, k > 2.

• Hence, if z(n) = x(n) + w(n), where w(n) is Gaussian and independent of x(n), 
then, for k > 2, Ckz(mk) = Ckx(mk). Thus, we can recover the higher-order 
cumulants of a non-Gaussian signal even in the presence of colored Gaussian 
noise. 

• Let x(n) be a linear process, that is, , where u(n) is 
i.i.d. Then, it follows that:

(1-16)

(1-17)

(1-18)

bicxyz ƒ1 ƒ2,( )
Sxyz ƒ1 ƒ2,( )

S2x ƒ1 ƒ2+( )S2y ƒ1( )S2z ƒ2( )
-------------------------------------------------------------------------------=

bxyz m n,( ) Sxyz ƒ1 ƒ2,( )( )e
j2πƒ1m

e
j2πƒ2n

ln ƒ1 ƒ2dd∫∫=

x n( ) h
k∑ k( )u n( k )–=

C2x k( ) γ2u h∗
n
∑ n( )h n( k )+=

C3x k l,( ) γ3u h∗
n
∑ n( )h n( k )h n l+( )+=

C4x k l, m,( ) γ4u h∗
n
∑ n( )h n( k )h n l+( )h∗ n m+( )+=
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(1-19)

(1-20)

(1-21)

where γku = Cku(0). Note that the power spectrum does not carry any 
information about the phase of H(ƒ). In contrast, if u(n) is non-Gaussian, this 
phase information can be recovered from the higher-order polyspectra. Thus, 
the standard minimum-phase assumption, which is necessary when the 
process is Gaussian or only second-order statistics are used, may be dropped. 

• Any process can always be considered to be a linear process with respect to 
its second-order statistics; that is, given Ryy, we can always find {h(k)} and 
an uncorrelated process u(n), such that, Ryy(m) = Rxx(m), where 

. In other words, the autocorrelation sequence 
cannot give any evidence of nonlinearity. In contrast, higher-order 
cumulants can give evidence of nonlinearity.

• Processes of the form  whose phase is a 
polynomial in time t, are called polynomial phase processes; the FTs of such 
processes tend to be flat, whereas suitably defined slices of higher-order 
spectra reveal structure that permits estimation of p and the ak’s.

To summarize, cumulants are useful: (1) if the additive noise is Gaussian and 
the signal is non-Gaussian, (2) the linear system is non-minimum phase (that 
is, mixed-phase), or (3) the process is nonlinear. 

Bias and Variance of an Estimator
In practice, we estimate cumulants and polyspectra from data. These estimates 
are, themselves, random, and are characterized by their bias and variance.

Let x(n) denote a stationary process; we assume that all relevant statistics 
exist and have finite values. Let s denote some statistic, defined on x(n). Let  
denote an estimate of the statistic based on N observations, . Since 
x(n) is a random process, the estimate  is also random; clearly,  will not 

S2x ƒ( ) γ2u H ƒ( ) 2
=

S3x ƒ1 ƒ2,( ) γ3uH ƒ1( )H ƒ2( )H∗ ƒ1 ƒ2+( )=

S4x ƒ1 ƒ2 ƒ3, ,( ) γ4uH ƒ1( )H ƒ2( )H ƒ3( )H∗ ƒ1 ƒ2 ƒ3+ +( )=

x n( ) h
k∑ k( )u n( k )–=

x t( ) a t( ) j(exp aktk )
k 0=

p∑=

ŝN
x n( ){ }n 0=

N 1–

ŝN ŝN
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equal s. The estimate  is a good estimate if it is “near” s. This notion is 
clarified by introducing the ideas of bias and consistency. 

The bias of an estimator is defined as E{ } – s; the estimate is said to be 
unbiased if the bias is zero, that is, 

E{ } = s.

Often this holds true only as , in which case the estimate is said to be 
asymptotically unbiased.

The bias, by itself, does not completely characterize the estimate. If the 
estimate is good, we expect that  will take on values around the true 
quantity s. The natural measure of the spread is the squared deviation around 
the true quantity, s, 

.

The estimate is said to be (asymptotically) consistent if the squared deviation 
goes to zero, as . This condition is sometimes called mean-square 
consistency. A consistent estimate is necessarily (asymptotically) unbiased. 

Estimating Cumulants
In practice, we have a finite amount of data, , and we must obtain 
consistent estimates of cumulants. The sample estimates are given by,

(1-22)

(1-23)

(1-24)

ŝN

ŝN

ŝN

N ∞→

ŝN

E ŝN s–
2

 
 
 

N ∞→

x n( ){ }n 0=
N 1–

Ĉxy k( ) 1
N3
------- x∗

n N1=

N2

∑ n( )y n k+( )=

M̂xy k( ) 1
N3
------- x

n N1=

N2

∑ n( )y n k+( )=

Ĉxyz k l,( ) 1
N3
------- x∗

n N1=

N2

∑ n( )y n k+( )z n l+( )=
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(1-25)

where N1 and N2 are chosen such that the summations involve only x(n)’s with 
; unbiased estimates are obtained if N3 is set equal to the actual 

number of terms which are averaged; for example, 

Usually we set N3 to N and obtain estimates that are asymptotically unbiased. 
Autocumulants are obtained when w = x = y = z. These estimates are known to 
be consistent provided the process x(n) satisfies some weak mixing conditions 
[5]. For example, for large N, the variance of the sample estimate of the 
third-order cross-cumulant is given by 

where c is a finite constant that depends upon the auto- and cross-moments 
(cumulants) of orders 1 through 6 of the processes x(n), y(n), and z(n). 

These definitions assume that the processes are zero mean; in practice, the 
sample mean is removed first. Routines cum2x, cum3x, and cum4x may be 
used to estimate cross-cumulants of orders 2, 3, and 4; cumest may be used to 
estimate the autocumulants.

Ĉwxyz k l m, ,( ) 1
N3
------- w∗

n N1=

N2

∑ n( )x n k+( )y n l+( )z∗ n m+( )=

Ĉwx k( )Cyz l m–( )– Ĉwy l( )Cxz k m–( )–

M̂wz
*

m( )M̂xy l k–( )–

n 0 N 1–,[ ]∈

E Ĉxyz
N

k l,( ){ } Cxyz k l,( )=

var Ĉxyz
N

k l,( ){ } c N⁄=
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Examples
We will simulate a non-Gaussian ARMA process, and then estimate its 
cumulants: 

rand('seed',0); randn('seed',0);
u=rpiid(1024,'exp'); n=25;
y=filter([1,–2], [1,–1.5,0.8], u);
for k=–n:n,
cmat(:,k+n+1)=cumest(y,3,n,128,0,'biased',k);
end
subplot(121), mesh(–n:n,–n:n, cmat)
subplot(122), contour(–n:n,–n:n,cmat,8)

Time-series y is segmented into records of 128 samples each, with no overlap; 
biased estimates of the third-order cumulants are obtained from each segment 
and then averaged; the (i,j) element of cmat will contain the estimate of 
C3y(i – n – 1,j – n – 1), for i,j = 1, . . ., 2 * n + 1. You can use the function cumtrue 
to compute and display the true cumulants. 

The contour plot in Figure 1-1 reveals the basic symmetry of third-order 
cumulants, namely C3y(τ1,τ2) = C3y(τ2,τ1). Other symmetry properties may be 
verified by using cumtrue to estimate the true cumulants of a linear process.

Figure 1-1:  Estimated Third-Order Cumulants of an ARMA(2,1) Process 
(cumest)
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Estimating Polyspectra and Cross-polyspectra
Estimators of polyspectra are natural extensions of estimators of the power 
spectrum, with some important differences in the smoothing requirements. 
Hence, it will be useful to review power spectrum estimation techniques first.

Estimating the Power Spectrum
Techniques for estimating the conventional power spectrum fall into three 
broad categories: the nonparametric or conventional methods, the parametric 
or model-based methods, and the criterion-based methods. 

The first category includes two classes: the direct methods, which are based on 
the FT of the observed data; and indirect methods, which are based on 
computing the FT of the estimated autocorrelation sequence of the data. The 
class of parametric methods includes algorithms such as MA, AR, and ARMA 
modeling, and eigen-space based methods such as MUSIC, Min-Norm, etc., 
which are appropriate for harmonic models. Criterion-based methods include 
Burg’s Maximum Entropy algorithm and Capon’s Maximum-Likelihood 
algorithm. 

The conventional estimators are easy to understand and easy to implement, 
but are limited by their resolving power (the ability to separate two closely 
spaced harmonics), particularly when the number of samples is small. For 
random signals, these estimators typically require long observation intervals 
in order to achieve acceptably low values for the variances of the estimate. 

The natural estimator of the power spectrum is the FT of ,

This estimator, also known as the periodogram, can be computed as the 
squared magnitude of an N-point FFT of the observed time series. Since 

, the periodogram is an unbiased estimator of Pxx(ƒ). 
However, the periodogram is not a consistent estimator, because 

; that is, its variance does not go to zero as . [56]

R̂xx
N

m( )

Ixx
N ƒ( ) R̂xx

N
m( )e j2πƒm–

m N– 1–=

N 1–

∑ 1
N
---- x k( )e j2πƒk–

k 0=

N 1–

∑
2

.= =

E R̂xx
N

m( ){ } Rxx m( )=

var Pxx
N ƒ( )( ) Pxx

2 ƒ( )= N ∞→
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If x(n) is Gaussian white noise with variance σ2, its power spectrum should be 
flat, Pxx(ƒ) = σ2; the variance of the periodogram estimate, , is given by,

Note that the variance does not go to zero as , that is, the estimate is not 
consistent. The covariance between estimates at frequencies ƒ1 = k/N and 
ƒ2 = m/N is zero; thus, on the one hand as N increases, the variance at any ƒ 
does not go to zero; however, the spacing between estimates that are 
uncorrelated decreases as 1/N; as a consequence, the fluctuations in the 
periodogram become more rapid as N increases. As an example, try 
semilogy(abs(fft(rpiid(n,‘nor')))) for increasing values of n. Proper 
smoothing smooths out the fluctuations and yields consistent estimates.

It should be emphasized that the variance expressions are meaningful only in 
the context of random processes; the FT, itself, is a very useful tool for 
analyzing deterministic signals. 

The periodogram estimate can be made consistent in several ways, by:

•  Smoothing (filtering) in the frequency domain; 

• Multiplying the autocorrelation sequence by a lag window function; 

• Multiplying the time-domain data by a window function; or, 

• Averaging several periodogram estimates.

These observations carry over to bispectral estimates as we see next. 

Estimating Bispectra and Cross-Bispectra
The natural estimate of the cross-bispectrum is the FT of the third-order 
cumulant sequence, that is,

(1-26)

Pxx
N ƒ( )

var Pxx
N ƒ( )( ) σ4 1 2π(sin ƒN )

N 2π(sin ƒ )
------------------------------ 

  2
+ .=

N ∞→

Ixyz
N ƒ( ) Ĉxyz k l,( )e

j2πƒ1k–
e

j2πƒ2l–

l N– 1–=

N 1–

∑
k N– 1–=

N 1–

∑=

1

N2
-------XN

* ƒ1 ƒ2+( )YN ƒ1( )ZN ƒ2( )=
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where XN(ƒ) is the FT of . This estimate, known as the 
cross-biperiodogram, is not a consistent estimate. As in the case of the power 
spectrum, the estimate can be made consistent by suitable smoothing. The 
bispectrum and the biperiodograms are special cases obtained when x = y = z. 

Smoothing can be accomplished by multiplying the third-order cumulant 
estimates by a lag window function. Let w(t,s) be a 2-D window function, whose 
2-D FT is bounded and nonnegative; further, assume

The window function, w(t,s), must also satisfy the symmetry properties of 
third-order cumulants. For example, 2-D lag windows may be derived from 1-D 
lag windows as follows,

w(t,s) = w(t)w(s)w(t – s)

which satisfies the symmetry conditions of C3x(m,n). 

Consider the scaled-parameter window, wM(t,s) = w(t/M,s/M), and the 
smoothed estimate,

(1-27)

Under the assumption that the cross-bispectrum Sxyz(ƒ1,ƒ2) is sufficiently 
smooth, the smoothed estimate is known to be consistent, with variance given 
by,

(1-28)

for 0 < ƒ1 < ƒ2 < π. Note the implied consistency condition is  and 
M2/ , as , and ∫ ∫w2(t,s)dt ds < ∞. The estimator in (1-27), for x = y 
= z, is implemented in routine bispeci. 

An alternative approach is to perform the smoothing in the frequency domain. 
As in the case of power spectra, we may segment the data into K records of 

x n( ){ }n 0=
N 1–

w 0 0,( ) 1;=  w2 t s,( ) td  sd ∞< ;∫∫
 ƒi

2W ƒ1 ƒ2,( ) ƒ1d  ƒ2d ∞< ;∫∫  ƒiW ƒ1 ƒ2,( ) ƒ1d  ƒ2d 0= ;∫∫

Ŝxyz ƒ1 ƒ2,( ) Ĉxyz k l,( )wM k l,( )e
j2πƒ1k–

e
j2πƒ2l–

l N– 1–=

N 1–

∑
k N– 1–=

N 1–

∑=

var Ŝxyz ƒ1 ƒ2,( )( ) M2

N
--------S2x ƒ1 ƒ2+( )S2y ƒ1( )S2z ƒ2( ) w2 t s,( ) td sd∫∫=

M ∞→
N ∞→ N ∞→
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length L = N/K, compute and average the biperiodograms, and then perform 
the frequency smoothing, using the frequency-domain filter, WM(ƒ1,ƒ2), the FT 
of wM(t,s). In this case,

(1-29)

for 0 < ƒ1 < ƒ2 < π. Windowing is not required in this case provided K is large; 
however, this does not ensure that the bias will go to zero. Rao and Gabr [56, 
Sec. 2.4] have derived a bispectral window which is optimum in terms of bias 
and variance; windows satisfying other optimality criteria are discussed in [56, 
40]. The Rao-Gabr window is available as an option in routine bispeci. 
Routine bispecdx computes estimates of the cross-bispectrum. 

Examples
load qpc
bspec=bispeci(zmat,21,64,0,'unbiased',128,1);
dbspec=bispecdx(zmat,zmat,zmat,128,3,64,0);

The contour plots of the two estimates of the bispectrum are shown in Figure 
1-2 and Figure 1-3. 

Figure 1-2  Indirect Estimate of the Bispectrum (bispeci)

var Ŝxyz ƒ1 ƒ2,( )( ) M2

LK
--------S2x ƒ1 ƒ2+( )S2y ƒ1( )S2z ƒ2( ) w2 t s,( ) td sd∫∫=
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Figure 1-3  Direct Estimate of the Bispectrum (bispecdx)

Both the direct and the indirect estimates reveal peaks at (0.10, 0.15) and the 
11 other symmetric locations as indicated by (1.11). The data used in this 
example consist of quadratically phase-coupled harmonics with frequencies at 
0.10, 0.15, and 0.25 Hz, and an uncoupled harmonic at 0.40 Hz; quadratic 
phase-coupling is discussed further in the section on “Nonlinear Processes,” 
where we will see that the presence of pronounced peaks in the bispectrum is 
indicative of nonlinear phenomena. 

Let x(n) be a (zero mean) white Gaussian process, with variance ; let 
y(n) = x2(n). It is easy to show that the cross-bispectrum of (x,x,y) should be a 
constant, equal to . This follows by noting that if a,b,c,d are zero mean and 
jointly Gaussian, then, 

E{abcd} = cum(a,b)cum(c,d) + cum(a,d)cum(b,c) + cum(a,c)cum(b,d). 

Examples
randn('seed',0);
x=randn(64,64); y=x.*x;
dbic=bispecdx(x,x,y,128,5);

Notice that an apparent structure along the axes (which is an artifact due to 
the removal of the mean), consistent estimates along the axes, and the 
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anti-diagonal can be obtained only by sufficient smoothing; a smoothing 
window of size 5 is inadequate. The lines ω1 = 0, ω2 = 0, and ω1 + ω2 = 0, are 
called the principal submanifolds, [4, 6]. This example also illustrates that 
passing a Gaussian process through a nonlinearity makes it non-Gaussian. 

Estimating Bicoherence
Given estimates of the power spectra and the cross-bispectrum, we can 
estimate the cross-bicoherence as indicated in (1-14). It has been shown that 
consistent estimates of the power spectrum and the bispectrum lead to 
consistent estimates of the bicoherence. 

Routines bicoher and bicoherx may be used to estimate the autobicoherence 
and the cross-bicoherence. 

Examples
load qpc
dbspec=bicoher(zmat,128);

Figure 1-4  Bicoherence Estimate (bicoher)

A contour plot of the estimated bicoherence is shown in Figure 1-4. The data 
consists of quadratically phase-coupled harmonics with frequencies at 0.10, 
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0.15, and 0.25 Hz, and an uncoupled harmonic at 0.40 Hz. The maximum value 
of the bicoherence is 0.6442; the value is less than unity because of the additive 
noise, which affects the power spectrum estimate. 

load nl1
bicx=bicoherx(x,x,y);

You should see the display in Figure 1-5. The cross-bicoherence is significantly 
nonzero, and nonconstant, indicating a nonlinear relationship between x and 
y. The nonsharpness of the peaks, as well as the presence of structure around 
the origin, indicates that the nonlinear relationship is not purely of the form 
y(n) = x2(n), and that x,y are not narrow-band processes. From the description 
of nl1.mat, we see that y is the output of a second-order Volterra system whose 
input, x, is Gaussian. 

Figure 1-5  Cross-Bicoherence Estimate (bicoherx) 
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Testing for Linearity and Gaussianity
In subsequent sections we discuss algorithms for the estimation of parameters 
of non-Gaussian linear processes; of course, these routines assume that the 
data are linear and non-Gaussian. We call a process, y(n), linear, if it can be 
represented by

where u(n) is assumed to be i.i.d. If u(n) is Gaussian (non-Gaussian), we say 
that y(n) is linear Gaussian (non-Gaussian). How do we know that the data are 
non-Gaussian, and that they are additionally linear? 

Hinich [24] has developed algorithms to test for non-skewness (loosely called 
Gaussianity) and linearity. The basic idea is that if the third-order cumulants 
of a process are zero, then its bispectrum is zero, and hence its bicoherence is 
also zero. If the bispectrum is not zero, then the process is non-Gaussian; if the 
process is linear and non-Gaussian, then the bicoherence is a nonzero constant: 
see (1-19), (1-20), and (1-14) with x = y = z. Thus, we have a hypothesis testing 
problem for non-Gaussianity (non-zero bispectrum): 

H1: the bispectrum of y(n) is nonzero; 

H0: the bispectrum of y(n) is zero. 

If hypothesis H1 holds, we can test for linearity, that is, we have a second 
hypothesis testing problem, 

H1’: the bicoherence of y(n) is not constant; 

H0’: the bicoherence of y(n) is a constant. 

If hypothesis H0’ holds, the process is linear. 

Assume that we have good (perfect) estimates of the power spectrum, and 
consider the sample estimate of the squared bicoherence,

(1-30)

y n( ) h k( )u n k–( ) ,
k
∑=

bicˆ xxx ƒ1 ƒ2,( )
2 Ŝxxx ƒ1 ƒ2,( )

2
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It has been established in [6] that sample estimates of the bispectrum using 
conventional methods are asymptotically (complex) Gaussian; additionally, the 
estimates at different frequencies are uncorrelated, provided the frequency 
separation is greater than the reciprocal of the effective window length. If  
is Gaussian distributed, we know that  is chi-squared distributed with 
two degrees of freedom. 

If  ≡ 0, then the statistic in(1-30) is a central chi-squared r.v. with 
two degrees of freedom. The squared bicoherence is summed over the P points 
in the nonredundant region; details are given in [24]. The resulting statistic S 
is χ2 distributed, with 2P degrees of freedom. Hence it is easy to devise a 
statistical test to determine whether the observed S is consistent with a central 
chi-squared distribution; this “consistency” is reported as probability-of-false 
alarm value, that is, the probability that we will be wrong in assuming that the 
data have a nonzero bispectrum. If this probability is small, say 0.95, we accept 
the assumption of zero bispectrum, that is, we cannot reject the Gaussianity 
assumption. This test is implemented in routine glstat. 

Let us assume that we have estimated S and are confident that the data is 
non-Gaussian. Now if the data are also linear, we expect the squared 
bicoherence to be constant for all ƒ1 and ƒ2. In practice, the estimated 
bicoherence will not be flat: we can obtain an estimate of the constant value by 
computing the mean value of the bicoherence over the points in the 
nonredundant region; let λ denote this mean value. The squared bicoherence is 
chi-squared distributed with two degrees of freedom and noncentrality 
parameter λ. The sample interquartile range, R, of the squared bicoherence can 
be estimated, and compared with the theoretical interquartile range of a 
chi-squared distribution with two degrees of freedom and noncentrality 
parameter λ. If the estimated interquartile range is much larger or much 
smaller than the theoretical value, then we should reject the linearity 
hypothesis. This test is implemented in routine glstat. 

Note that a zero bispectrum is not proof of Gaussianity, since the higher-order 
cumulants and polyspectra need not be identically zero. The bispectrum of a 
time-reversible process is identically equal to zero. For example, consider the 
linear process , where u(n) is an i.i.d. process. If u(n) 
is symmetrically distributed, then the bispectrum of x(n) is zero. If u(n) is 
Gaussian, the bispectrum as well as all higher-order polyspectra of x(n) are 
identically zero. If u(n) is Laplace distributed, the bispectrum and all 
odd-ordered polyspectra of x(n) are zero, but the even-ordered polyspectra 
(such as the trispectrum) are not identically equal to zero.

Ŝxxx
Ŝxxx

2

Ŝxxx ƒ1 ƒ2,( )

x n( ) h k( )u n k–( )
k∑=
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Note also that univariate symmetry or zero skewness does not mean zero 
bispectrum. In the above example, suppose that , and ; 
then, C3x(0,0) = , so that process x(n) has zero skewness. 
This does not imply that C3x(τ1,τ2) ≡ 0 or S3x(ω1,ω2) ≡ 0. In particular, let 
h(0) = –h(1) = 1, h(k) = 0, ∀k > 1; then, x(n) = u(n) – u(n – 1) is easily seen to be 
symmetrically distributed around zero, but the bispectrum of x(n) is not 
identically zero. 

In general, we use notions of skew and symmetry in the context of random 
variables (or univariate pdfs); bispectra and trispectra relate to random 
processes (multivariate pdfs). 

Examples
load gldat
glstat(g,0.51,256);

Test statistic for Gaussianity is 22.179 with df = 48, Pfa = 0.9995. 

Linearity test: R (estimated) = 0.88819, lambda = 0.6982, R (theory) = 2.9288, 
N = 14.

The data in g are Gaussian distributed. Since the Pfa is high, we cannot reject 
the Gaussian hypothesis; but if the Gaussian hypothesis holds, the bispectrum 
must be zero, and we cannot conclude, on the basis of the bispectrum alone, 
whether or not the process is linear; hence, the results of the linearity test 
should be ignored in this case. In this case, the data are Gaussian, hence, also 
linear.

glstat(u,0.51,256); 

Test statistic for Gaussianity is 17.4885 with df = 48, Pfa = 1.

Linearity test: R (estimated) = 0.72383, lambda = 0.51704, R (theory) = 2.7453, 
N = 14.

The data in u are uniformly distributed. Since the Pfa is high, we cannot reject 
the Gaussian hypothesis; but if the Gaussian hypothesis holds, the bispectrum 
must be zero, and we cannot conclude, on the basis of the bispectrum alone, 
whether or not the process is linear; hence, the results of the linearity test 
should be ignored in this case. 

glstat(e,0.51,256); 

γ3u 0≠ h3 k( )
k∑ 0=

γ3u h3 k( )
k∑ 0=
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Test statistic for Gaussianity is 253.3529 with df = 48, Pfa = 0.

Linearity test: R (estimated) = 7.8894, lambda = 9.4555, R (theory) = 8.4655, 
N = 14.

The data in e obey the single-sided exponential distribution. The Pfa in 
rejecting the Gaussian hypothesis is very small; hence, we are comfortable in 
accepting the hypothesis of non-Gaussianity. The estimated and theoretical 
interquartile ranges (the R’s) are fairly close to one another; hence, we accept 
the linearity hypothesis. The estimate of the interquartile range was based on 
N=14 samples. 

glstat(x,0.51,256); 

Test statistic for Gaussianity is 277.5194 with df = 48, Pfa = 0.

Linearity test: R (estimated) = 6.7513, lambda = 10.6519, R (theory) = 8.968, 
N = 14.

x was obtained by passing through a linear filter; hence, it is linear and 
non-Gaussian. We reject the Gaussianity assumption since the Pfa is small; we 
accept the linearity hypothesis since the estimated and theoretical 
interquartile ranges are close to one another. 

glstat(z,0.51,256); 

Test statistic for Gaussianity is 12640.0657 with df = 48, Pfa = 0.

Linearity test: R (estimated) = 606.9323, lambda = 492.5759, R (theory) = 
59.9088, N = 14.

z was obtained by passing x through a nonlinearity, z(n) = x3(n): hence, z is 
non-Gaussian (and nonsymmetric). We reject the Gaussianity assumption 
since the Pfa is small; we cannot accept the linearity hypothesis since the 
estimated interquartile ranges is much larger than the theoretical value. 

glstat(l,0.51,256); 

Test statistic for Gaussianity is 49.931 with df = 48, Pfa = 0.3965.

Linearity test: R (estimated) = 2.6047, lambda = 1.8124, R (theory) = 4.0038, 
N = 14.
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The data in l are i.i.d. and Laplace distributed (symmetric). Since the Pfa is 
high, we cannot reject the Gaussian hypothesis; but if the Gaussian hypothesis 
holds, the bispectrum must be zero, and we cannot conclude, on the basis of the 
bispectrum alone, whether or not the process is linear; hence, the results of the 
linearity test should be ignored in this case. 

Parametric Estimators, ARMA Models
So far we have looked at nonparametric estimators. Parametric estimators are 
often useful, either because they lead to parsimonious estimates, or because 
the underlying physics of the problem suggest a parametric model. 

The basic idea is that if x(n) depends upon a finite set of parameters, θ, then all 
of its statistics can be expressed in terms of θ. For example, we obtain 
parametric estimates of the power spectrum by first estimating θ, and then 
evaluating Pxx(f|θ). 

The specific form we postulate for the relationship between θ and the sequence 
x(n) constitutes a model. A popular model in time-series analysis is the 
Auto-Regressive Moving-Average (ARMA) model, 

(1-31)

where u(n) is assumed to be an i.i.d. sequence, with variance . The 
Auto-Regressive (AR) polynomial is defined by,

(1-32)

where a(0) = 1. A(z) is assumed to have all its roots inside the unit circle, that 
is, A(zo) = 0 →|zo| < 1; this condition is also referred to as the minimum-phase 
or causal and stable condition. In general, no restrictions need to be placed on 
the zeros of the Moving-Average (MA) polynomial,

(1-33)
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however, B(z) is usually assumed to be minimum-phase. The minimum-phase 
assumption is usually not true for discrete-time processes which are obtained 
by sampling a continuous-time process; algorithms based on HOS do not 
require this assumption. 

The power-spectrum of the ARMA process is given by,

(1-34)

Note that the power spectrum does not retain any phase information about the 
transfer function H(z) = B(z)/A(z). Since we do not have access to the sequence 
u(n), one either assumes that u(n) has unit variance, or that b(0) = 1. Instead 
of estimating Pxx(ƒ)∀ƒ∈[–1/2,1/2], as in the nonparametric approach, we have 
to estimate only (p + q + 1) parameters, namely, , , and 

. 

Let h(n) denote the impulse response of the model in (1-31); hence, H(z) = B(z)/
A(z). The AR and MA parameters are related to the impulse response (IR) via,

(1-35)

(1-36)

In practice, the observed process is noisy, that is, 

(1-37)

where process w(n) is additive colored Gaussian noise; the color of the noise is 
usually not known. 

Given the noisy observed data, y(n), we want to estimate the a(k)’s and the 
b(k)’s in (1-31). We assume that the model orders p and q are known.

The determination of the model orders p and q is an important issue, and is 
discussed later (routines arorder and maorder implement AR and MA model 
order determination techniques). In general, it is better to overestimate model 
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orders rather than to underestimate them (however, specific implementations 
or algorithms may suffer from zero-divided-by-zero type problems). 

Motivation to use cumulants for the ARMA parameter estimation problem is 
as follows: 

• Correlation-based methods can be used successfully only if q = 0 (pure AR) 
and the additive noise is white. 

• Even in the noiseless case, correlation-based methods cannot identify 
inherent all-pass factors, and cannot resolve the phase of the system.

• Non-Gaussian processes are not completely characterized by their 
second-order statistics; by using higher-order statistics, we are exploiting 
more of the information contained in the data.

A note of caution: for odd-ordered cumulants, γku ≠ 0 does not imply that the 
kth order polyspectrum can be used to reconstruct H(ƒ). For example, even if 
γ3u ≠ 0, S3x(ƒ1,ƒ2) in (1-20) may be identically equal to zero. This can happen 
when H(ƒ) is a relatively narrow-band bandpass signal; explicit conditions are 
given in [63]. An even more trivial example is γ1u = E{u(n)} ≠ 0, but H(0) = 0, in 
which case γ1x = 0. For polyspectra of even order, say 2k,

cannot be identically zero if γ2,u ≠ 0 [63]. 

The transfer function H(z) = B(z)/A(z) is said to have an inherent all-pass factor, 
if a root of B(z) lies at 1/zo, where zo is a root of A(z). The power spectrum is 
blind to all-pass factors. If the data are noise free, and if the ARMA model does 
not have any inherent all-pass factors, then techniques based on the 
autocorrelation/power spectrum may be used to estimate the model 
parameters.

Once the ARMA parameters have been estimated, MATLAB’s routine freqz can 
be used to estimate the transfer function and theoretical spectrum; 
Higher-Order Spectral Analysis Toolbox routines bispect and trispect can be 
used to compute the theoretical bispectrum and slices of the theoretical 
trispectrum corresponding to the ARMA model. 

Synthetic ARMA processes can be generated via routine armasyn; routine 
rpiid can be used to generate i.i.d. sequences with various probability density 
functions (pdf’s). 

S2k ƒ,( ƒ,ƒ,… ƒ,– ƒ ),– γ2k u, S2x ƒ( ) k γ2 u,
k⁄=
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MA Models
Let us consider the pure MA case, that is, p = 0, in (1-31) through (1-37). It was 
established in [19] that the process y(n) satisfies the set of equations, 

(1-38)

(1-39)

where n = –q, . . ., 2q; ε3 = γ3ub(q)/γ2u, and ε4 = γ4ub(q)/γ2u. Equations (1-38) and 
(1-39) can be readily verified by using the impulse response summation 
formulas in (1-16) through (1-18). These equations are sometimes referred to 
as the GM equations in the literature [19]. 

Equations (1-38) and (1-39) represent a set of 3q + 1 linear equations in the 2q 
+ 1 unknowns, εm+1b(k), k = 0, . . ., q and bm(k), k = 1, . . ., q, where m = 2 or m 
= 3. In [19], MA parameters were estimated from (1-38) or (1-40) by 
simultaneously solving for the εm+1b(k)’s and b2(k)’s or b3(k)’s. A disadvantage 
of the method is that it is overparameterized, and does not take into account 
the relationship between the εm+1b(k)’s and the b2(k)’s [or b3(k)’s]. 

Additive white noise may be permitted, provided we eliminate the equations 
involving C2y(0); this eliminates q + 1 equations, leaving us only 2q equations 
in the 2q + 1 unknowns. The Min-Norm solution is not useful in this case. 

A modification developed by Tugnait [72] appends the following sets of 
equations to the preceding set of 2q equations:

(1-40)

(1-41)

C2y n( ) ε3b k( )C3y n k– n k–,( )

k 0=

q

∑ b2 k( )C2y n k–( )

k 1=

q

∑–=

C2y n( ) ε4b k( )C4y n k– n k– n k–, ,( )

k 0=

q

∑ b3 k( )C2y n k–( )

k 1=

q

∑–=

ε3C2y n( ) b k( )C3y k n– q,( )

k 1=

q

∑– C3y n– q,( )=

ε4C2y n( ) b k( )C4y k n– q 0, ,( )

k 1=

q

∑– C4y n– q 0, ,( )=



1 Tutorial

1-30

where n = –q, . . ., q, n ≠ 0. Now, we have 4q equations in 2q + 1 unknowns; 
hence, we can obtain the least-squares solution. 

We solve either (1-38) and (1-40), or (1-39) and (1-41). Since both b(k) and b2(k) 
or b3(k) are estimated, we need some method for combining the estimates. 

Let b1(k) and b2(k) denote the estimates of b(k) and b2(k). If all of the estimated 
b2(k)’s are nonnegative, then the final MA parameter estimate is obtained as, 

otherwise, . 

When fourth-order cumulants are used, the method estimates both b(k) and 
b3(k). Let b1(k) and b3(k) denote the estimates of b(k) and b3(k). If all the 
estimated b3(k)’s have the same sign as the corresponding b1(k)’s, then the final 
MA parameter estimate is obtained as, 

otherwise, .

This algorithm is implemented in routine maest. If the observed process is 
z(n) = y(n) + g(n), where g(n) is additive noise, independent of y(n), then 
C2z(n) = C2y(n) + C2g(n), ∀n. Ιf g(n) is white, C2g(n) = 0, n ≠ 0; hence, 
C2z(n) = C2y(n), n ≠ 0. In (1-40) and (1-41), we use the autocorrelation 
C2y(n), n = ±1, . . ., ±q, hence, the algorithm can handle additive white noise but 
not colored noise. 

Examples
load ma1
bvec = maest (y,3,3,128);

The estimated parameters should be [1, 0.9714, 0.3814, –0.7759]. The true 
parameters are [1, 0.9, 0.385, –0.771], and the signal is contaminated with 
white Gaussian noise. 

bvec = maest (y,3,4,256); 

The estimated parameters should be [1, 0.9608, 0.4482, –0.7343]. 

b̂ k( ) sign b1 k( )[ ] * 0.5 b1
2 k( ) b2 k( )+[ ];=

b̂ k( ) b1 k( )=
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AR Models 
The cumulants of the noisy process satisfy the “normal” equations, 

(1-42)

(1-43)

(1-44)

which can be verified by expressing the cumulants in terms of the IR, h(n), 
using (1-16) through (1-18), and by noting that . 

The relationship between linear prediction (LP) and AR models is discussed in 
detail in the section titled “Polyspectra and Linear Processes.” Here, we will 
just point out that the least squares solution to the LP problem is given by 
(1-42), with m = 1, . . ., p; these equations are called the normal equations 
because the resulting prediction-error sequence is orthogonal to the data. 
However, when q > 0 or when additive noise is present in the data, the normal 
equations yield inconsistent estimates of the AR parameters. Equations (1-42) 
through (1-44) yield consistent estimates, and can also be derived by 
demanding that the prediction error sequence be orthogonal to an 
instrumental process derived from the data [59, 64]. We put normal in quotes 
to emphasize these differences. 

Identifiability of the AR parameters is guaranteed by choosing p = q – p, . . ., q, 
and m = q + 1, . . ., q + p; we may use more slices (ρ) or more lags (m) [67]. In 
practice, we use sample estimates of the cumulants. This algorithm is 
implemented in routine armarts. The pure AR case corresponds to q = 0 and is 
implemented in routine arrcest. In both routines, you can use cumulant 
orders (2, 3, or 4). It is also possible to simultaneously solve for the normal 
equations based on cumulant orders 2 and 3 or 2 and 4.
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Examples
Try the following 

load ar1
ar(:,1)=arrcest (y,2,0,2,12,128);
ar(:,2)=arrcest (y,2,0,3,12,128);
ar(:,3)=arrcest (y,2,0,4,12,128);
ar(:,4)=arrcest (y,2,0,–3,12,128);
ar(:,5)=arrcest (y,2,0,–4,12,128);
disp(ar)

1.0000    1.0000    1.0000    1.0000    1.0000
-1.4636   -1.5559   -1.4963   -1.4912   -1.4755
0.7664    0.8779    0.8917    0.7973    0.7927

The true parameters are [1, –1.5, 0.8]. The five columns correspond to AR 
estimates based on: (1) second-order, (2) third-order, (3) fourth-order, (4) 
combined second-order and third-order, and (5) combined second-order and 
fourth-order cumulants. Note that combined use of autocorrelation and 
cumulants may give better results when the signal-to-noise ratio (SNR) is high. 
In the case of low or moderate SNR, the correlation-based estimates will be 
biased; estimates based on third-order (fourth-order) cumulants will be 
unbiased if the additive noise is symmetric (Gaussian).

ARMA Models 
As discussed in the previous section, we can determine the AR parameters 
easily. We will ignore the estimation errors, and assume that , 
k = 1, . . ., p; this is justified if the data lengths are long enough to ensure good 
estimates of the cumulants. In practice, errors in estimating the a(k)’s will 
show up as an additive non-Gaussian noise term on the right-hand side of 
(1-46). 

Consider the residual time series obtained via,

(1-45)
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(1-46)

Routine armarts uses the residual time series method to estimate the ARMA 
parameters — it estimates the AR parameters first (via the “normal” 
equations); it then computes the AR-compensated time series via (1-45), and 
finally estimates the MA parameters via routine maest (see (1-46)). Since w(n) 
was assumed to be Gaussian, w1(n) is also Gaussian; if w(n) is white, w1(n) is 
MA(p) noise. Routine maest assumes that the additive noise is white, hence the 
results of armarts are meaningful only at high SNR. 

An alternative solution based on is implemented in routine armaqs, which is a 
q-slice method. The AR parameters are estimated via the normal equations as 
before. The impulse response is then estimated via, 

(1-47)

or via,

(1-48)

These equations can be readily verified by using (1-16) through (1-18) and 
(1-35). The MA parameters are then obtained via (1-35), which is repeated 
here: 

(1-49)
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h n( )
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------------------------------------------------------------------------, n 1 … q, ,==
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k 0=

p
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An interesting point is that we can simultaneously solve for the AR and IR 
parameters. This algorithm is implemented in routine armaqs. 

Weighted versions of (1-42) through (1-44), and nonlinear cumulant-matching 
algorithms for the simultaneous estimation of AR and MA parameters are 
discussed in [16] and [71]. 

Examples
load arma1
[avec,bvec]=armaqs(y,2,1,3,10,128);

Here we used third-order cumulants and the q-slice algorithm to estimate the 
parameters of a non-Gaussian ARMA process. The estimated parameters 
should be avec = [1, –0.8057, 0.6910], and bvec = [1, –1.9116]. The true AR and 
MA parameters were [1, –0.8, 0.65] and [1, –2], respectively. 

[avec, bvec] = armarts(y,2,1,3,12,128); 

Here we used third-order cumulants and the residual time-series algorithm to 
estimate the parameters of a non-Gaussian ARMA process. The estimated 
parameters should be avec = [1, –0.7540, 0.6465], and bvec = [1, –1.5665]. The 
true AR and MA parameters were [1, –0.8, 0.65] and [1, –2], respectively. 

AR Order Determination
Let  and  denote the maximum expected values of the AR and MA orders. 
Let 

(1-50)

(1-51)

(1-52)

Then, the singular values of the matrix,

where k = 2, k = 3, or k = 4 are computed. 

p q

c2y m( ) := C2y m( )

c3y m( ) := C3y m( p )– … C3y, , m( q,[ ]T

c4y m( ) := C4y m( p 0, )– … C4 3( )y, , m( q 0, ,[ ]T
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Let s(m) denote the singular values. If the cumulant estimates are perfect, we 
expect that exactly p of the singular values will be nonzero; with sample 

estimates, we expect p dominant singular values. The AR order p is then given 
by the value of n, which maximizes s(n) – s(n + 1), that is, it corresponds to the 
index at which the singular values show the maximum drop. This is a 
nonstatistical test, and is based on the fact that for an ARMA(p,q) model, only 
p of the singular values should be nonzero. This algorithm is implemented in 
routine arorder. 

Examples
load arma1
p=arorder(y,3);

You should see the display in Figure 1-6. The estimated AR order is 2. 

The time-series y corresponds to a non-Gaussian ARMA(2,1) process, 
contaminated by AWGN, with SNR of 20 dB. The order determination is based 
on third-order cumulants. 

Figure 1-6  Estimate of AR Order Using SVD Method (arorder) 
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MA Order Determination
The basic idea is that for an MA(q) process, the true values of the cumulant 
C3y(m,0) will be identically zero, if m > q. When the true cumulants are 
replaced by sample estimates, the estimated values of C3y(q + i,0), i > 0 will not 
be identically zero; a statistical test is used to determine whether the estimated 
values are close to zero. This test is based on estimating the theoretical 
variance of the sample estimates of C3y(m,0). 

Sample estimates, , and their variances are estimated for m ranging 
from qmin to qmax, which reflect our a priori knowledge of the bounds on the 
true order q. 

For an MA(q) process, the asymptotic variance of the sample estimate of 
C3y(q + 1,0) can be estimated via [20]

where N is the length of the time series. 

The sample estimates are asymptotically Gaussian and unbiased; hence, the 
threshold tc in 

is given by

where erfinv is the MATLAB inverse error function; in practice, we use the 
sample estimate . Let mo denote the largest value of m in the range qmin to 
qmax for which |c3y(m + 1,0)| > tc(m + 1) (so that the hypothesis of MA(mo) 
model fails); then, the estimated order is q = mo + 1; if such an m does not exist, 
the MA order is declared to be qmax + 1. This algorithm is implemented in 
routine maorder. 

This is a statistical test, and pƒa specifies the fraction of the time that the test 
results will be wrong. In other words, in a Monte Carlo simulation of 1000 
trials, one should expect the test results to be wrong 1000 * pƒa times. 

Ĉ3y m 0,( )

σ2ˆ q 1+( ) 1

N2
------- 1 j

N
----– 

 

j q–=

2q 1+

∑
i 1=

N

∑ y2 i( )y i q 1+ +( ) ĉ3y– q 1 0,+( )[ ]=

y2 i j+( )y i( j q 1 ) ĉ3y q(– 1 0, )+ + + +[ ]×

Pr ĉ3y m 1 0,+( ) tc m 1+( )≤{ } 1 pƒa–=

tc m 1+( ) erƒinv 1 pƒa–( ) 2σ2 m 1+( )[ ]= ,
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Examples
load ma1;
q=maorder(y,0,6);

The following table will be displayed: 

The columns in the table correspond to the estimated variance of c3y(q,0), the 
estimated value of c3y(q,0), the corresponding threshold, and whether or not 
the absolute value of the estimated c3y(q,0) exceeded the threshold. 

The time-series y corresponds to an MA(3) process, contaminated by AWGN, 
with SNR of 20 dB.

Linear Processes: Impulse Response Estimation
The basic model here is,

(1-53)

(1-54)

where additive noise w(n) is assumed to be symmetric distributed (not 
necessarily Gaussian). Process u(n) is i.i.d., non-Gaussian, independent of the 
noise, and satisfies 0 < |C3u(0,0)| < ∞. 

q var(cqk) cqk thres result

0 7.17383e–003 7.31541e–001 5.24957e–001 0

1 6.60864e–002 –1.37221e–001 1.59332e–001 1

2 3.76124e–002 –4.11813e–001 3.80114e–001 0

3 7.04832e–003 5.06864e–003 1.64547e–001 1

4 3.77757e–003 –3.31784e–002 1.20463e–001 1

5 1.31938e–003 –6.87545e–002 7.11923e–002 1

6 4.47359e–003 1.43717e–003 1.31092e–001 1

Estimated MA order is 3

x n( ) h k( )u n k–( )

k ∞–=

∞

∑=

y n( ) x n( ) w n( )+=
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We will discuss two algorithms, both based on the notion of the logarithm of the 
bispectrum. 

The Polycepstral Methods 
It is assumed that H(z) has no zeros on the unit circle. In this case, the 
cepstrum of H(z) is well defined and is given by [42]

(1-55)

The bicepstrum is also well defined [43] and is given by,

(1-56)

(1-57)

The complex cepstrum, , is the inverse FT (IFT) of the log of the FT of h(n); 
hence, h(n) is the IFT of the exponential of the FT of the complex cepstrum; 
other techniques to obtain h(n) from  are described in [42]. Notice that for 
a linear process, the bicepstrum is nonzero only along the axes, m = 0, n = 0, 
and the diagonal line, m = n. 

Direct implementation of (1-56) demands 2-D phase unwrapping. Pan and 
Nikias [43] have developed an alternative method, based on the relationship,

(1-58)

which, taking into account (1-57), reduces to 

The complex cepstrum is known to be exponentially bounded; hence, one may 
replace the infinite summation over m by a finite summation, m = –q to m = +p, 

ĥ k( ) d∫ ƒ j2πƒk( )exp Hln ƒ( )=

b̂ m n,( ) ƒd 1 ƒd 2e
j2πƒ1m

e
j2πƒ2n

S3xln ƒ1 ƒ2,( )∫∫=

ĥ m( )δ m( ) ĥ n( )δ n( ) ĥ m–( )δ m n–( )+ +=

ϒ3uln δ m( )δ n( )+

ĥ k( )

ĥ k( )

mb̂ m( n )C3y k m– l n–,( ),

n ∞–=

∞

∑
m ∞–=

∞

∑ kC3y k l,( )=

mĥ m( ) C3y k m– n,( ) C3y k m+ l m+,( )+[ ]

m ∞–=

∞

∑ kC3y k l,( )=
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where p and q may be based on some a priori knowledge; note that the p and q 
have nothing to do with the orders of an ARMA(p,q) process. Now we have a set 
of linear equations for estimating a finite set of p + q parameters.

(1-59)

Note that the above equation does not involve ; the cepstrum at the origin 
is related to the overall gain of the system. Because of the inherent scalar 
ambiguity in estimating H(z) from power spectra or cumulant spectra, we let 

 = 1. In practice sample estimates of the third-order cumulants are used; 
this algorithm is implemented in routine biceps, where |k| ≤ max(p,q) and 
|l| ≤ max(p,q)/2, which are the recommended ranges in [43]. 

Examples
load ma1
[hest, ceps]=biceps(y,8,8,128);

You should see the display in Figure 1-7. Note that the complex cepstrum 
decays rapidly to zero. The true MA parameters are [1, 0.9, 0.385, –0.771]. 

Figure 1-7  Cepstrum and IR Estimated by Biceps
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An alternative approach is based on the FFT. We may rewrite (1-58) as [43]

(1-60)

where IFT denotes 2-D inverse Fourier transform. Then we make use of (1-57) 
to obtain the ’s from . The FFT approach is useful if the 
cepstrum  has long support. This algorithm is implemented in routine 
bicepsf. 

More generally, the polycepstrum is defined as the inverse FT of the log of the 
corresponding polyspectrum (assuming that it exists), 

For a linear process, the polycepstrum is nonzero only along the k – 1 axes, and 
the main diagonal, 

Tekalp and Erdem [69] showed a process, whose polycepstrum exists, is linear 
if and only if its polycepstrum has the above k-line region of support. Based on 
this, they have also proposed measures of linearity. 
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---------------------------------------- 
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Examples
load ma1
[hest, ceps]=bicepsf(y, 8);

You should see the display in Figure 1-8. Note that the complex cepstrum 
decays rapidly to zero. The true MA parameters are [1, 0.9, 0.385, –0.771]; note 
the scale ambiguity (including sign) in the estimated impulse response. 

Figure 1-8  Cepstrum and IR Estimated by bicepsf 

The Matsuoka-Ulrych Algorithm
We can write the bispectrum in terms of its magnitude and phase as, 

S3x(ƒ1,ƒ2) = M(ƒ1,ƒ2)exp(jΦ(ƒ1,ƒ2)).

Let H(ƒ) = |H(ƒ)|exp(jθ(ƒ)) so that

(1-61)

(1-62)
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where ƒ1,ƒ2 take on discretized values on a grid. The assumption that |γ3u| = 
1 will only introduce an overall scalar ambiguity; hence, (1-61) represents a set 
of linear equations in the log-magnitude ln|H(ƒ)|. It is shown in [36] that a full 
rank set of linear equations can be obtained by appropriate choice of ƒ1 and ƒ2. 
The phase relationship in (1-62) holds only modulo 2π. If the unwrapped 2-D 
phase were available, then (1-62) yields a linear set of equations in the phase 
of the transfer function, θ(ƒ). This algorithm is implemented in routine matul, 
where we also incorporate the phase-unwrapping algorithms of [54]. Because 
of the phase ambiguity, this routine is not recommended for routine use. 

Examples
cmat=cumtrue([1 –3.5 1.5],[1],3,5);
bsp=fft2(flipud(cmat),64,64);
hest=matul(bsp);

You should see the display in Figure 1-9. Here we computed the true 
bispectrum of a MA(2) process, by evaluating the FT of its true cumulant 
sequence. We then used the Matsuoka-Ulrych algorithm to estimate the 
impulse response. Note the scale ambiguity (including sign).

Figure 1-9  IR Estimated via the Matsuoka-Ulrych Algorithm (matul)
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Linear Processes: Theoretical Cumulants and 
Polyspectra
If x(n) is an ARMA process, that is,

then, its impulse response can be calculated via 
, where h(n) = 0 for n < 0, h(0) = 1, and b(n) = 0, 

if .

For a linear process x(n) (x(n) = , where u(n) is i.i.d.) 
cumulants and polyspectra of orders 2,3,4 are given by (1-16) through (1-18) 
and (1-19) through (1-21).

We can estimate the true cumulants using routine cumest, the theoretical 
bispectrum via routine bispect, and slices of the theoretical trispectrum via 
routine trispect.

Examples
First, we will compute the theoretical third-order cumulants of an ARMA(2,1) 
process, with AR parameters, [1, –1.5, 0.8], and MA parameters, [1, –2]; we will 
then display the estimates using MATLAB’s functions mesh or contour: 

cmat=cumtrue([1,-2],[1,–1.5,0.8],3,25);
clf, subplot(121)
mesh(–25:25,–25:25,cmat), grid on
subplot(122), contour(–25:25,–25:25,cmat,8,),grid on

You should see the display in Figure 1-10. 

x n( ) x n k–( )
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q
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Figure 1-10  True Third-Order Cumulants of an ARMA(2,1) Process (cumtrue)

Let us now compute the theoretical bispectrum of another ARMA(2,1) process.

ma=[1 –2]; ar=[1 –0.8 0.65];
bisp=bispect (ma,ar,128);

You should see the display on Figure 1-11. The 12 dotted lines emanating from 
the origin divide the bifrequency domain of the bispectrum into 12 regions of 
symmetry. 

Figure 1-11  Bispectrum of an ARMA(2,1) Process (bispect)
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We will compute several slices of the trispectrum and then display them as a 
movie: 

clf,clear
ma=[1 –2]; ar=[1 –0.8 0.65]; nfft=64;
n=10; M=moviein(2*n+1);
for k=–n:n
    trispect(ma,ar,nfft,k/(2*n));
    M(:,k+n+1)=getframe;
end
movie (M)
clear M

We computed several slices of the theoretical trispectrum of an ARMA process; 
the slices correspond to ƒ3 = –0.5, –0.45, . . ., 0.45, 0.5. Then we used MATLAB’s 
movie command to display them; moviein and getframe are also MATLAB 
commands. It is instructive to change the MA parameters to [1 –1], and to 
compare the 
ƒ3 = 0 slice with the theoretical bispectrum created by bispect. 

NOTE:  if you encounter “OUT OF MEMORY” problems in running the example, 
clear the workspace and then try again. If the problem persists, decrease n to, 
say, 5; or install more memory on your machine. 

Summary
We have discussed various algorithms for estimating bispectra and trispectra, 
as well as algorithms for the blind system identification problem. 

Sample estimates of cross-cumulants of orders 2, 3 and 4 may be obtained via 
cum2x, cum3x, and cum4x; autocumulants can be estimated via cumest. 
Nonparametric estimates of the bispectrum can be obtained via routines 
bispeci and bispecd, which implement the indirect and direct estimators. The 
direct estimate of the cross-bispectrum can be obtained via routine bispecdx. 
Auto- and cross-bicoherences can be estimated via bicoher and bicoherx. The 
theoretical bispectrum of a linear process can be computed via bispect; 
trispect computes slices of the theoretical trispectrum of a linear process. 
M-file glstat implements tests for non-Gaussianity (actually nonzero 
bispectrum) and for linearity. 
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Three routines are available for nonparametric estimation of the impulse 
response of a linear non-Gaussian process: matul implements the 
Matsuoka-Ulrych method; given the bispectrum of the data, it estimates the 
amplitude and phase of the transfer function separately; biceps uses the 
bicepstral method; it uses sample estimates of the third-order cumulant; 
bicepsf is a frequency-domain implementation of biceps and is useful if the 
cepstra do not decay fast enough. 

Several algorithms are available for estimating the (ARMA) parameters of 
non-Gaussian linear processes. The ARMA orders can be estimated via 
arorder and maorder. Routine arrcest can be used to estimate the AR 
parameters of AR or ARMA processes, based on second-, third-, and 
fourth-order cumulants. The estimates, based on cumulants of different orders, 
may not be the same, if the process is nonlinear or has inherent all-pass factors, 
or is noisy. The parameters of an MA process, contaminated by white noise, 
may be estimated via routine maest. 

ARMA parameters can be estimated via the residual time-series algorithm in 
armarts; the MA estimation part of this three-step algorithm works well only 
under good SNR conditions. Routine armaqs implements the q-slice algorithm; 
it estimates both AR and MA parameters. 

In this section, we have given a quick overview of the area of higher-order 
statistics; for more extended tutorial expositions, see [41, 37, 38]. 
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Linear Prediction Models 
The AR model is also obtained if one considers the problem of linear prediction 
(LP). Depending upon whether one chooses forward-, backward- or 
forward-backward prediction criteria, different solutions are obtained. 

The Levinson algorithm enables efficient estimation of the parameters of an 
AR process from its autocorrelation (AC) sequence. In the deterministic 
context, AR modeling leads to the forward backwards least squares (FBLS) 
solution. The RLS algorithm is a time-recursive solution to the LP problem, 
whereas the lattice algorithm provides a time- and order-recursive solution. 

Levinson Recursion 
Consider the linear prediction problem for a stationary process, x(n). In the 
forward-prediction problem, we want to choose  to minimize the 
forward prediction error variance, , 

(1-63)

(1-64)

where the subscript p denotes the order of the predictor. Similarly, in the 
backward-prediction problem, we want to choose  to minimize the 
backward prediction error variance, , 

(1-65)

(1-66)
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This leads to the normal equations

(1-67)

(1-68)

where ℜ is the (p + 1) × (p + 1) autocorrelation matrix, with (m,n) entry, 
Rxx(n – m). It follows immediately that

(1-69)

The Levinson-Durbin recursion implemented in routine trench provides an 
efficient order-recursive solution of the normal equations: it recursively solves 
(1-67), for p = 1,2,. . . .

The recursion is given by: for m = 1, . . ., p, [32]

(1-70)

(1-71)

(1-72)

(1-73)

with initial conditions P0 = Rxx(0), ∆0 = Rxx(−1), and a0(0) = 1. In practice, we 
replace Rxx(k) by its (biased) sample estimate. The resulting solution is 
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guaranteed to be stable if biased estimates are used. Necessary and sufficient 
conditions for the stability of the estimate are |Γm| < 1  ∀m. 

The recursion involves computation of the Γm’s, which are also called the 
reflection coefficients; a necessary and sufficient condition for stability 
is |Γm| < 1. 

Trench Recursion 
If the matrix ℜ is Toeplitz but not Hermitian symmetric, then (1-69) does not 
hold; this, for example, is the case when the so-called higher-order Yule Walker 
equations,

(1-74)

are used, or when the cumulant-based normal equations are used, for example,

(1-75)

In both cases the resulting matrix is Toeplitz but not symmetric. An efficient 
order-recursive solution to the system of equations is given by the Trench 
recursion [74]. 

Let ℜ denote the nonsymmetric Toeplitz matrix whose (i, j) entry is ρ(i – j). The 
recursion is given by

(1-76)

(1-77)
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(1-78)

(1-79)

(1-80)

(1-81)

(1-82)

(1-83)

(1-84)

with initial conditions P0 = ρ(0), a0(0) = 1, and c0(0) = 1. 

The inversion algorithm requires that the matrix ℜ be strongly nonsingular, 
that is, R, as well as all of its principal minors, are nonsingular. The condition 
of nonsingularity is weaker than the usual assumption of positive-definiteness. 

In the symmetric positive-definite case, the Γ’s are bounded by unity, and the 
Pm’s are nonincreasing, and cm(k) = am(m – k), k = 0, . . ., m. In the 
non-Hermitian case, the Γ’s are not bounded, and the Pm’s may increase or 
decrease. 

This algorithm is implemented in trench. 

Examples
Let us compute the autocorrelation sequence for an AR(4) model, with AR 
parameters [1,–0.3,–0.1,–0.39,0.72] , and then apply the Trench recursion. 

ar=[1,–0.3,–0.1,–0.39,0.72]; ma=1; nlags=6;
rvec=cumtrue (ma,ar,2,nlags);
[a2,c2,p2,gf2,gb2]=trench( rvec(7:13), rvec(7:–1:1));

Γm
ƒ ∆m 1–

ƒ

Pm 1–
---------------–=

Γm
b ∆m 1–

b

Pm 1–
---------------–=

Pm Pm 1– 1 Γm
ƒ

– *Γm
b( )=

am m( ) Γm
ƒ

=

c0 m( ) Γm
b

=

am k( ) am 1– k( ) Γm
ƒ cm 1– k 1–( )+ k 1 … m 1–, ,=,=

cm k( ) cm 1– k 1–( ) Γm
b am 1– k( )+ k 1 … m 1–, ,=,=
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The AR matrix, a2, should be

Note that the AR vectors for orders greater than three are all essentially the 
same. The prediction error variance, p2, should be

[2.4049, 2.3881, 2.0764, 1.0000, 1.0000, 1.0000]′

The forward reflection coefficients, gf2, should be 

[–0.0764, –0.0834, –0.3613, 0.7200, 0.0000, 0.0000]′

Since the Toeplitz matrix in this example is symmetric, gb2=gb1, and 
c2=flipud(a2). Since the autocorrelation sequence corresponds to an AR(4) 
model, the reflection coefficients are zero for m > 4, and the pfe’s remain 
constant for m ≥ 4. 

Now let us repeat this example using third-order cumulants: 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

–0.0764 –0.0700 –0.0399 –0.0300 –0.3000 –0.3000

0 –0.0834 –0.0581 –0.1000 –0.1000 –0.1000

0 0 –0.3613 –0.3900 –0.3900 –0.3900

0 0 0 0.7200 0.7200 0.7200

0 0 0 0 0.0000 0.0000

0 0 0 0 0 0.0000

rvec=cumtrue (ma, ar, 3, 
nlags);

% third-order cumulants

rvec=rvec(:,nlags+1); % the C(m,0) slice

c=rvec(nlags+1:2*nlags); % positive lags

r=rvec(nlags+1:–1:1); % negative lags

[a4, c4, p4, gf4, gb4]=trench(c,r);
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The forward AR matrix, a4, should be

 The backward AR coefficient matrix, c4, should be

and the prediction-error variances, p4, should be

[0.8892, 0.8810, 0.8417, 1.0000, 1.0000]′

The forward reflection coefficients, gf4, are,

[–0.2278, –0.1163, –0.2757, 0.7200, 0.0000]′

and the backward reflection coefficients, gb4, are

 [–0.1956, –0.0786, –0.1620, –0.2612, –0.0045]′

Since the Toeplitz matrix is not symmetric, gf4≠gb4, and a≠4flipud(c4). Note 
also that the prediction error variances may increase with the prediction order. 
(One can find the AR parameters by minimizing the variance of the 
AR-compensated process, but not by minimizing the skewness.) Although the 
correlation and cumulant sequences are derived from the same AR model, the 
lower-order AR model fits are quite different. 

1.0000 1.0000 1.0000 1.0000 1.0000

–0.2278 –0.2050 –0.1834 –0.3000 –0.3000

0 –0.1163 –0.0673 –0.1000 –0.1000

0 0 –0.2757 –0.3900 –0.3900

0 0 0 0.7200 0.7200

0 0 0 0 0.0000

0 0 0 0 –0.0045

0 0 0 –0.2612 –0.2599

0 0 –0.1620 –0.1141 –0.1137

0 –0.0786 –0.0454 –0.0278 –0.0261

–0.1956 –0.1776 –0.1588 –0.0868 –0.0900

1.0000 1.0000 1.0000 1.0000 1.0000
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Deterministic Formulation of FBLS 
In the deterministic formulation of the linear prediction problem, rather than 
minimize the variance of the prediction errors, we minimize the sum of squared 
errors, that is,

(1-85)

(1-86)

This leads to the deterministic normal equation, 

(1-87)

(1-88)

where the deterministic correlation matrix Φ is given by

(1-89)

(1-90)

Matrix Φ is Hermitian, but not Toeplitz, and the relationship in (1-69) is not 
satisfied (for finite N). 

Pp
b ep

b n( )
2

n p 1+=

N

∑=

Pƒ
b ep

b n( )
2

n p 1+=

N

∑=

Φap
Pp

ƒ

0
=

Φcp
0

Pp
b=

Φ x n( )xH n( )

n p 1+=

N

∑=

x n( ) x n( ) x n 1–( ) … x n p–( ), , ,[ ]=
T



1 Tutorial

1-54

In the forward-backward least squares (FBLS) problem, we 
minimize  assuming . This leads to the 
deterministic normal equations, 

(1-91)

where  is given by

(1-92)

where

(1-93)

If  is nonsingular, we can solve (1-91) directly; if it is singular, then, the 
Min-Norm solution is usually used. 

The solution ap may be interpreted as providing an AR(p) model for the data; 
hence, we can compute the spectrum of the process x(n) in terms of the 
estimated AR parameters. Additional details may be found in [34, 35]. 

Adaptive Linear Prediction 
The Burg algorithm provides a recursive solution to minimizing the 
mean-square error over a time interval of length n, and is appropriate when the 
data may be considered to be stationary over that time interval. Often, the data 
are nonstationary; in this case, we can estimate power spectra over a sliding 
window of fixed length; however, as we have seen before, the resulting estimate 
will have poor resolution and high variance. An alternative is to fit a 
parametric model, and to allow the model parameters to vary with time. For 
example, we may fit a time-varying AR model, that is, we perform time-varying 
linear prediction.

The deterministic normal equations at time n are given by (see (1-87) and 
(1-88))

Pp Pp
ƒ Pƒ

b+= cp k( ) ap
* p k–( )=

Φ̃ap
Pp

0
=

Φ̃

Φ̃ x n( )xH n( )

n p 1+=

N

∑ x̃ n( )x̃H n( )+=

x̃ n( ) x n p–( ) … x n( ), ,[ ]=
H

Φ̃
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(1-94)

(1-95)

where the deterministic correlation matrix Φ(n) is given by,

(1-96)

where λ, (0 < λ < 1), is the forgetting factor, which is introduced so that the 
algorithm will be sensitive to the nonstationary environment. 

We could solve (1-94) or (1-95) at each n, but the computational load is very 
high.

Let the order p be fixed, and let ap(n) = [1, –w(n)]T. Then, a time-recursive 
solution is given by, 

(1-97)

(1-98)

(1-99)

(1-100)

with initial values, w(0) = 0 and P(0) = δ-1I, where δ is a small positive constant. 

Φ n( )ap n( ) Pp
ƒ n( )

0
=

Φ n( )cp n( )
0

Pp
b n( )

=

Φ n( ) x k( )xH k( )

k p 1+=

n

∑ λn k–
=

k n( ) λ 1– P n 1–( )x n( )

1 λ 1– xH n( )P n 1–( )x n( )+
-----------------------------------------------------------------------=

α n( ) x n 1+( ) wH n 1–( )x n( )–=

w n( ) w n 1–( ) k n( )α*
n( )+=

P n( ) λ 1– P n 1–( ) λ 1– k n( )xH n( )P n 1–( )–=
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k(n) is the gain vector, α(n) is the a priori prediction error, and P(n) = Φ-1(n). 
This algorithm is known as the Recursive Least Squares Algorithm (RLS), and 
is a special case of the Recursive Instrumental Variable Algorithm (RIV), 
which is discussed next. 

RIV Algorithm: Transversal Form
Consider the noisy AR process, 

where u(n) is assumed to be zero mean i.i.d., and independent of additive noise 
w(n), which may be colored. The “normal” equations, with m = 1, . . ., p, 

(1-101)

where z(n) = y(n), lead to inconsistent estimates because of the noise w(n). If 
w(n) can be modeled as MA noise, that is, 

where g(n) is i.i.d., then, consistent estimates can be obtained by using z(n) = 
y(n – d), where d > p + qw. Process z(n) is called an instrumental variable (IV) 
if, (1) it is uncorrelated with the additive noise w(n), that is, E{w(n)z(n + m)} = 
0, m > 0; and (2) with m = 1, . . ., M ≥ p, we get a full rank set of linear equations 
from (1-01). The delayed process z(n) = y(n – d) is an IV when w(n) is MA(qw) 
noise and d > p + qw. Appropriate choices of z(n) lead to estimates based on 
higher-order cumulants; for example, z(n) = y(n)y(n – ρ), leads to estimates 
based on the 1-D slice C3y(m,ρ) of the third-order cumulant; other examples are 
discussed in [64]. For a discussion of optimal IV’s, see [58]. When z(n) ≠ y(n), 
the resulting matrix is no longer Hermitian symmetric. A variation of RLS that 
is appropriate for this case is called the Recursive Instrumental Variable (RIV) 
algorithm, and is implemented in rivtr. The algorithm is given by:

y n( ) x n( ) w n( );+= x n( ) a k( )u n k–( )

k 1=

p

∑–=

a k( )E y n( )z n m– k+( ){ }

k 0=

p

∑ 0 m 0>,=

w n( ) hw n k–( )g n( )

k 0=

qw

∑= ,
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Compute the weight vector w(i) recursively, as 

(1-102)

(1-103)

(1-104)

(1-105)

where the desired signal d(n) = y(n + 1). The initial values are w(0) = 0 and 
P(0) = δ-1I, where δ is a small positive constant. Here y(n) is the observed 
process, and z(n) is the IV; when z(n) = y(n), the RIV reduces to RLS.

Examples
load riv
ar(:,1)=rivtr(y,2);
ar(:,2)=rivtr(y,3);
ar(:,3)=rivtr(y,4);
ar(:,4)=rivtr(zw,4);
ar(:,5)=rivtr(zc,4);

Now, let us look at the five steady-state AR parameter estimates. 

disp(ar)

The data used in this example correspond to an AR(2) model, with AR 
parameter vector [1, –1.5, 0.8]. The vector y contains the noiseless signal. 
Additive white Gaussian noise was added to y to obtain the noisy signal zw 
with a SNR of 10 dB. Colored Gaussian noise, generated by passing a white 
Gaussian sequence through the AR filter [1,0,0.49], was added to y to obtain zc, 
also at a SNR of 10 dB. 

 1.000  1.000  1.000  1.000  1.000

–1.4789 –1.5075 –1.4931 –1.5354 –1.4686

 0.7600  0.7910  0.7867  0.8248  0.7684

k n( ) λ 1– P n 1–( )z n( )

1 λ 1– yH n( )P n 1–( )z n( )+
-----------------------------------------------------------------------=

α n( ) d n( ) wH n 1–( )y n( )–=

w n( ) w n 1–( ) k n( )α*
n( )+=

P n( ) λ 1– P n 1–( ) λ 1– k n( )yH n( )P n 1–( )–=
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RIV Algorithm: Double-Lattice Form
An order- and time-recursive solution of (1-94) and (1-95)leads to the double 
lattice algorithm, and is given below. 

Starting with n = 1, evaluate (1-106) through (1-117) for m = 1, 2, . . ., M, where 
M is the final desired order; then repeat with n = 2 and so on:

(1-106)

(1-107)

(1-108)

(1-109)

(1-110)

(1-111)

(1-112)

(1-113)

(1-114)
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ƒm 1–

* n( )b̃m 1– n 1–( )

γm 1–
* n 1–( )

---------------------------------------------------------+=

∆m 1–
b n( ) λ∆m 1–

b n 1–( )
bm 1–

* n 1–( )ƒ̃m 1– n( )

γm 1–
* n 1–( )

---------------------------------------------------------+=

Γƒ m, n( )
∆m 1–

ƒ n( )
Bm 1– n 1–( )
----------------------------------–=

Γb m, n( )
∆m 1–

b n( )
Fm 1– n( )
------------------------–=

µ n( )
Fm 1–

* n( )

Bm 1–
* n 1–( )

----------------------------------–=

ƒm n( ) ƒm 1– n( ) Γƒ m,
* n( )bm 1– n 1–( )+=

bm n( ) bm 1– n 1–( ) Γb m,
* n( )ƒm 1– n( )+=

ƒ̃m n( ) ƒ̃m 1– n( ) µ n( )Γb m, n( )b̃m 1– n 1–( )+=

b̃m n( ) b̃m 1– n 1–( ) µ 1– n( )Γƒ m, n( )ƒ̃m 1– n( )+=
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(1-115)

(1-116)

(1-117)

Note that (1-106) through (1-117) are in the proper order required for 
successful evaluation. 

The initial values for the algorithm are given by

(1-118)

(1-119)

(1-120)

(1-121)

(1-122)

(1-123)

The following discussion is adapted from [64], which also gives a derivation of 
the algorithm.

Equations (1-111)and(1-112) with the initial condition in (1-120)define a lattice 
structure excited by the observed process y(n). Equations (1-113) and (1-114) 
with the initial condition in (1-121) define a lattice structure excited by the 

Fm n( ) Fm 1– n( )
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b n( )
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-------------------------------------------------–=
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*
n 1–( )bm 1– n 1–( )
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-------------------------------------------------------------------–=

∆m 1–
ƒ 0( ) ∆m 1–

b 0( ) 0= =

Fm 1– 0( ) Bm 1– 0( ) δ 1«= =

ƒ0 n( ) b0 n( ) y n( )= =

ƒ̃0 n( ) b̃0 n( ) z n( )= =

F0 n( ) B0 n( ) λF0 n 1–( ) z n( )y* n( )+= =
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associated process z(n). The two lattices are coupled through the time-update 
equations for the ∆’s, (1-106) and (1-107), and the order-update equation for the 
conversion factor, (1-117). When y(n) = z(n), the two lattices collapse into one. 

In the above, ƒm(n) and bm(n) are the mth order prediction errors for the 
observed process y(n);  and  are the mth order prediction errors for 
the associated process z(n); Γƒ,m(n) and Γb,m(n) are the reflection coefficients for 
the forward/backward prediction of y(n), and may be interpreted as normalized 
cross-correlations between the forward prediction error in one lattice and the 
backward prediction error in the other; µ(n) is the scale factor for converting 
the reflection coefficients associated with y(n) to those associated with z(n); 
Fm(n) is the correlation between the mth order forward prediction errors, ƒm(n) 
and ; Bm(n) is the correlation between the mth order backward 
prediction errors, bm(n) and ; γm(n) is the scale factor for converting the 
a priori prediction errors to their a posteriori values; its absolute value is 
bounded by unity;  is the cross-correlation between the a posteriori 
backward prediction error, bm-1(n – 1), and the a priori tilded forward 
prediction error, ; and  is the cross-correlation between 
ƒm-1(n) and . Time-update equations for Fm(n) and Bm(n) are 
given by (1-115) and (1-116).

This algorithm is implemented in routine rivdl. 

Examples
load riv
ar(:,1)=rivdl(y,2);
ar(:,2)=rivdl(y,3);
ar(:,3)=rivdl(y,4);
ar(:,4)=rivdl(zw,4);
ar(:,5)=rivdl(zc,4);

Now let’s see the five AR parameter estimates: 

disp(ar)

 1.000  1.000  1.000  1.000  1.000

–1.4814 –1.5106 –1.4941 –1.5358 –1.4692

 0.7623  0.7941  0.7876  0.8252  0.7690

ƒ̃m n( ) b̃m n( )

ƒ̃m n( )
b̃m n( )

∆m 1–
b n( )

η̃m 1– n( ) ∆m 1–
ƒ n( )

ϕ̃m 1– n 1–( )
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The data used in this example correspond to an AR(2) model, with AR 
parameter vector [1, –1.5, 0.8]. The vector y contains the noiseless signal. 
Additive white Gaussian noise was added to y to obtain the noisy signal zw with 
a SNR of 10 dB. Colored Gaussian noise, generated by passing a white 
Gaussian sequence through the AR filter [1, 0, 0.49], was added to y to obtain 
zc, also at a SNR of 10 dB. 

Summary
We have discussed several linear prediction problems. The Trench algorithm is 
implemented in trench: it computes the backward and forward AR prediction 
filters associated with a given cumulant slice. Routines rivtr and rivdl 
implement the transversal and double lattice version of the Recursive 
Instrumental Variable (RIV) method: these algorithms may be based upon the 
correlation or a slice of the third- or fourth-order cumulant, depending upon the 
Instrumental Variable (IV) used; ivcal can be used to compute the IV. 
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Harmonic Processes and DOA 
In the harmonic retrieval problem, the observed data are of the form

(1-124)

where w(n) is additive noise; αk’s are the amplitudes, ƒk’s are the frequencies, 
and φk’s are the phases. Additional assumptions are often made regarding the 
phases; the typical assumption is that the phases are independent random 
variables uniformly distributed over [0, 2π]. Such an assumption implies that 
multiple realizations are available, that is, 

(1-125)

where m denotes the realization number. If only a single realization is 
available, then the phases are nonrandom constants. Since 2cos(θ) = ejθ +e-jθ, 
we note that a signal consisting of p real harmonics can be handled by the 
model in (1-125) with 2p frequencies, ±ƒk, k = 1, . . ., p. 

The problem is to determine p and then to estimate the frequencies, amplitudes 
and phases of each harmonic. Intuitively, we expect the power spectrum of x(n) 
to consist of peaks at ƒ = ƒk, perhaps masked by the spectrum of the noise. The 
classical power spectrum estimators (Blackman-Tukey and Welch) can be used 
only if the frequencies are well-separated, that is, min|ƒm – ƒn| > 1/L, where 
L is the length of the estimated autocorrelation sequence in the 
Blackman-Tukey method, or the block size in the Welch method; hence, 
parametric models are useful for short data lengths. 

The model in (1-125) is similar to the model for the observed data in the array 
processing/direction of arrival (DOA) problem. This problem arises in various 
applications, such as radar, sonar, geophysics, and analysis of EEG and ECG 
signals. An array of N independent sensors provides samples of the data at 
different points in space. Data are collected simultaneously from the set of 
sensors; the set collected at a single instant of time is called a snapshot, and is 
a vector of N observations. The signal recorded at each sensor consists of sensor 

y n( ) αk j2πnƒk jφk+( )exp

k 1=

p

∑ w n( )+ x n( )= w n( )+=

ym n( ) αk j2πnƒk jφk m,+( )exp

k 1=

p

∑ wm n( )+ xm n( )= wm n( )+=
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noise as well as signals from p sources, assumed to be uncorrelated with one 
another. The signal recorded at the nth sensor and mth snapshot is 

where sk(m) is the signal emitted by the kth source, and τk,n is the signal delay 
(with respect to some arbitrary reference point) at the nth sensor. Typically, 
the sensors are assumed to be isotropic, and the source signals are assumed to 
be plane waves originating from the far-field of the array. The signals are 
assumed to be narrow-band, and as such they are characterized by a single 
frequency, ƒo or a single wavelength λ = c/ ƒo, where c is the speed of signal 
propagation. The received signal can now be written as,

(1-126)

where αk(m) is the amplitude of the kth source signal at snapshot m; and φ(k,n) 
is the phase delay of the kth source signal at the nth sensor, and depends upon 
the array geometry. 

In a circular array, the sensors are assumed to be equally distributed in angle 
on the circumference of a circle with radius R. Let the bearings, θk, be 
measured with respect to the radius vector passing through a sensor. The 
phase delay is then given by [23]

(1-127)

For a linear array, the bearing of the plane wave is defined as the angle 
between the plane wave front and the normal to the array. The phase delay is 
given by

(1-128)
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where θk is the bearing of the kth source, and dn is the location of the nth source 
with reference to some arbitrary origin. For a uniformly spaced linear array, 
with spacing d, we can set dn = nd. The observed signals are thus given by, 

(1-129)

Comparing (1-129) with (1-125), we see that the term dsin(θk)/λ plays the role 
of frequency, and αk(m) plays the role of the complex amplitude αkexp(jφk,m). 
Time samples, indexed by n in (1-125), correspond to spatial samples, or sensor 
numbers in (1-129). The realization number m in (1-125) is interpreted as the 
snapshot number in (1-129). In (1-124), we assume 0 < ƒk < 1 in order to ensure 
that there is no aliasing. Similarly, in (1-129), we assume that λ ≥ 2d to ensure 
that there is no aliasing; a common assumption is λ= 2d (half-wavelength 
spacing). 

Thus, a solution to the harmonic retrieval problem in (1-125) also applies to the 
DOA problem in (1-129). In the former, we estimate power spectra, as functions 
of frequency; in the latter, we estimate angular spectra, as functions of angle, θ. 

The following table states the duality between the harmonic retrieval and the 
DOA problems: 

The autocorrelation matrix ℜxx with (k,l) entry Rxx(l – k) = E{x*(n)x(n + k – l)}, 
which appears in the harmonic retrieval problem, will be replaced by the 

Harmonic Retrieval DOA

Realization Snapshot

Time sample Sensor sample

Frequency ƒ Angular frequency d sin(θ)/λ

Random phases Random complex amplitudes

0 < ƒ < 1 d ≤ λ/2

Temporal correlation matrix Spatial correlation matrix 

Periodogram Beamformer 

ym n( ) αk m( ) j2πn
d φk( )sin

λ
------------------------ 

 exp

k 1=

p

∑ wm n( )+= m 1 … M,,=
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spatial correlation matrix, ℜ = E{x(n)x(n)H}, where x(n) is the nth snapshot, in 
the DOA problem. The FT of the spatial (temporal) correlation sequence is 
called the beamformer (periodogram). 

The autocorrelation sequence of the signal in (1-125) is given by,

(1-130)

which follows because the harmonics are uncorrelated (phases are mutually 
independent). Note that the autocorrelation sequence is not absolutely 
summable; however, the FT of Ryy(τ) exists, provided we are willing to use the 
Dirac delta functions defined by ∫g(ƒ)δD(ƒ) := g(0) [5, p.17]. 

In principle, one can estimate the frequencies by picking peaks in the 
estimated power spectrum; the variance of this frequency estimator is of order 
1/N3 [22], where N is the length of the time series. The power spectrum is 
limited by its poor frequency resolution, that is, frequency separation must be 
larger than 1/N. In practice, this severely limits the applicability of the power 
spectrum as a direct estimator of the frequency. 

Synthetics for the two problems can be generated via harmgen and doagen.

Resolution and Variance
If x(n) consists of two complex harmonics, at frequencies ƒ1 and ƒ2, we expect 
to see two peaks in the power spectrum. The resolution of a power spectral 
density estimator is the smallest value of |ƒ1 – ƒ2| that leads to two discernible 
peaks. The resolution of the classical power spectrum estimators (e.g., Welch 
and Blackman-Tukey) is of order 1/M, where M is the effective window length. 
In contrast, the resolution of the periodogram is 1/N, and since M ≤ N, the 
periodogram exhibits higher resolution than the Blackman-Tukey and Welch 
estimators. The choice of the window function dictates the resolution-variance 
tradeoff: if W(ƒ) has a broad main lobe, the power spectrum estimate will be 
smoother, the variance of the estimate will be smaller, and the resolution will 
be lower. 

It should be noted that zero-padding the data (or the correlation sequence) does 
not improve the resolution, it only makes the spectral estimate denser (this 
may lead to improved accuracy in estimating the locations of well-separated 
peaks).

Ryy τ( ) αk
2

k 1=

p

∑ j2πτƒkexp Rw τ( )+=
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AR and ARMA Models 
The basic idea, in the parametric estimators, is that the noiseless harmonic 
process in (1-124) obeys a self-driving AR(p) model, that is, [28],

(1-131)

where a(0) = 1, and the roots of the A(z) polynomial are given by , 
k = 1, . . ., p. Hence, we can use any standard algorithm to estimate the AR 
parameters; the frequencies can be determined from the roots of the estimated 
AR polynomial. The determination of p is now equivalent to the AR model order 
determination problem.

In the presence of additive noise, process x(n) in (1-124) satisfies the special 
ARMA(p,p) model,

(1-132)

where w(n) is additive noise, not the driving noise of an ARMA model. Now, we 
can use any of the standard ARMA parameter estimation techniques to 
estimate the a(k)’s. 

Multiplying (1-132) by y*(n – k), and taking expectations, we obtain,

(1-133)

where we have assumed that the additive noise is white; hence, with k > p, we 
obtain a set of equations from which we can estimate the a(k)’s; these equations 
are sometimes called the “extended normal” equations. 

The analysis extends to the real harmonic case where we obtain an AR(2p) or 
ARMA(2p,2p) model, with roots at , k = 1, . . ., p. Since the roots are 
all on |z| = 1, it turns out that a(k) = a(2p – k), k = 0, . . ., 2p. 
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Pisarenko’s Method 
 The M × M autocorrelation matrix of the process y(n) in (1-124) may be written 
as,

(1-134)

where S is a Vandermonde matrix with (m,n) element exp(–j2π(m – 1)ƒn), 
m = 1, . . ., p; and D is the diagonal matrix of the sinusoidal powers, 
D = diag(P1, . . ., Pp). Since the frequencies are assumed to be distinct, matrix 
S has full rank p (M ≥ p). It follows immediately that the p largest eigenvalues 
of the matrix Ryy are given by, , k = 1, . . ., p; the remaining M – p 
eigenvalues are all equal to . With M = p + 1, it follows from (1-133) that [48]

(1-135)

The vector a is the eigenvector corresponding to the minimum eigenvalue of the 
(p + 1) × (p + 1) correlation matrix ℜyy. Once a has been estimated, the 
frequencies can be estimated as the roots of the A(z) polynomial. The minimum 
eigenvalue solution to (1-135) is known as Pisarenko’s method, and is 
implemented in routines harmest and doa. In order to ensure 
positive-definiteness of matrix ℜyy, it is essential to use biased sample 
estimates of the autocorrelation. For a signal consisting of p real harmonics, 
the order should be taken as 2p. 

The Pisarenko algorithm separates the eigenvectors and eigenvalues of the 
matrix ℜyy into two classes: those associated with the signal and those 
associated with the noise. Extensions of the idea have resulted in the 
high-resolution eigen-subspace methods, such as the Min-Norm and MUSIC 
algorithms. 

Ryy Rxx= σw
2 I+ SDSH σw

2 I+=

Pk σw
2

+
σw

2

ℜyya σw
2 a.=



1 Tutorial

1-68

Multiple Signal Classification (MUSIC) 
Let M > p. The autocorrelation matrix ℜyy has a linearly independent 
(orthogonal) set of eigenvectors. Denote the eigenvalues and eigenvectors by λk 
and vk. Define the M element signal vector,

(1-136)

The eigenvectors corresponding to the p largest eigenvalues are said to 
constitute the signal subspace; the remaining M – p eigenvectors constitute the 
noise subspace. The signals, that is, the harmonics in (1-124), lie in the signal 
subspace and are orthogonal to the noise subspace, that is,

hence, with 

(1-137)

one can search for the set of frequencies such that eH(ƒ)vk = 0, k = p + 1, . . ., M. 
When sample estimates of the autocorrelation are used, these relationships 
will hold only approximately. In MUSIC (Multiple Signal Classification) one 
determines the frequencies of the harmonics by looking for peaks in the 
spectrum defined by 

(1-138)

where w(k) = 1. Usually, the correlation matrix used in the FBLS method is 
used. When w(k) = 1/λk, we get the so-called Eigenvector solution, and when 
w(k) = δ(k – M), we get the Pisarenko solution. These algorithms are 
implemented in routines harmest and doa. 
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Minimum-Norm Method 
The minimum-norm (Min-Norm) method is also an eigen-space method. 
Motivated by the normal equations for the harmonic signal model, one seeks 
the AR vector, a, which is orthogonal to the signal subspace (recall the 
discussion of the Pisarenko method). Let us decompose the signal subspace, as 

(1-139)

The condition , can be rewritten as,

(1-140)

where w = –[a(1), . . ., a(p)]T. Equation (1-140) represents p equations in M – 1 
unknowns. Hence, if p < M – 1, the set of equations is underdetermined, and 
the solution is not unique. A unique solution is obtained by choosing the 
Min-Norm solution, that is, 

(1-141)

This solution, called the minimum-norm solution, was developed by 
Kumaresan and Tufts and is implemented in routines harmest and doa. 

Pisarenko’s method uses a single noise subspace eigenvector and, hence, is not 
as robust as the general MUSIC estimator. The Min-Norm method has been 
reported to have a smaller bias than the MUSIC algorithm for estimating the 
frequencies. An overview of eigen-methods is given in [26]. 

A modification of the FBLS algorithm has been reported by Kumaresan and 
Tufts [23], where the correlation matrix  is replaced by throwing out the 
noise subspace eigenvectors, that is, if λk and vk denote the eigenvalues and 
eigenvectors of , then, 

(1-142)
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This procedure of replacing  by  is sometimes called the low-rank SVD 
approximation. The algorithm then proceeds as in FBLS. Kumaresan and 
Tufts [29] have established that in the noiseless case, under the assumption, 
p ≤ M ≤ N – p/2, p of the roots of A(z) lie on the unit circle, and correspond to 
the true frequencies; the remaining (M – p) roots are uniformly distributed in 
angle inside the unit circle; these roots are called the extraneous zeros. 
High-resolution estimates are obtained by choosing large values for the 
predictor order, that is, M ≈ 3N/4.

ESPRIT
Estimation of Signal Parameters via Rotational Invariance Techniques 
(ESPRIT) is an eigen-space method developed by Kung, Rao et al [30], and by 
Roy and Kailath [57]; however, the basic idea behind this algorithm is 
considerably different from that in MUSIC and Min-Norm methods. 

In ESPRIT, the basic idea is to decompose the sensor array into two (possibly 
overlapping) subarrays, and then to use the cross-correlation between the two 
subarrays to estimate the source bearings. The discussion here is in terms of 
the DOA problem, but as we have seen earlier, the treatment is applicable to 
the harmonic retrieval problem as well. 

Assume that we have two arrays, such that elements of one array are at a 
constant displacement ∆ with respect to corresponding elements of the other 
array. For example, if we have an uniformly spaced linear array of N elements, 
we can partition this array into two subarrays, each consisting of L elements, 
with a displacement of ∆ = N – L between the two subarrays, that is, with 
sensors 1, . . ., N – ∆ in the first subarray, and sensors ∆ + 1, . . ., N in the second 
array. 

Let ym(n) and zm(n), n = 1, . . ., L, denote the signals at the elements of the two 
subarrays, that is,

(1-143)

(1-144)

Φ̃ Φ̂
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p
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p

∑ vm n( )+=



Harmonic Processes and DOA

1-71

The mth snapshot can be written in vector form as,

(1-145)

(1-146)

where Φ is a diagonal matrix with (k,k) entry, exp(j2π∆dsin(θk)/λ); matrix A has 
(n,k) entry, exp(jφ(k,n)); am = [α1(m), . . ., αM(m)]T is the source signal vector at 
the mth snapshot; and, wm and vm are the noise vectors. The bearing 
information can be recovered from matrix Φ. 

The auto- and cross-correlation matrices of y(n) and z(n) are given by,

(1-147)

(1-148)

where we have assumed that the additive noise is white (spatially uncorrelated 
from sensor to sensor), and has variance σ2. 

Matrix  is the signal correlation matrix and is nonsingular if 

the sources are incoherent. 

The structure of matrix JL depends upon the common elements of the two sub-
arrays. If the two subarrays have no common elements, then JL is the zero 
matrix. In the uniform linear array example considered earlier, 
zm(n) = ym + ∆(n), m = 1, . . ., L – ∆, and 

In any case, given the knowledge of the geometries of the two arrays, we can 
compute matrix JL. 
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We can estimate σ2 as the smallest eigenvalue of matrix ℜyy. We can now 
eliminate the noise contribution, and create the signal correlation matrices,

(1-149)

(1-150)

Given two n × n matrices, A and B, the generalized eigenvalues of (A,B), are 
defined by [21]

If B is nonsingular, there are exactly n generalized eigenvalues, and these are 
identical with the eigenvalues of B-1A. The singular B case is discussed in [21].

It is shown in [30, 57] that the generalized eigenvalues of (Cyy,Cyz) are given by 
λk = exp(j2π∆dsin(θk)/λ), k = 1, . . ., p. Once λk has been estimated, we can 
readily obtain the θk’s. This algorithm — for a uniformly spaced linear array — 
is implemented in routine doa; the generalized eigenvalues are computed via 
the MATLAB built-in function eig. Algorithms based on fourth-order 
cumulants are discussed next. 

Criterion-Based Estimators
The FT, at frequency ωo, can be viewed as a filter that passes only the 
components with frequency ωo, while suppressing the rest. With finite data 
lengths, however, the spectral estimate suffers from the problems of sidelobe 
leakage (with details dictated by the choice of window function).

Consider the length p finite impulse response (FIR) filter,

(1-151)

where the input x(n) is assumed to be zero mean. The variance of the filter 
output is given by,

Cyy ℜyy σ2IL– ASAH
==

Cyz ℜyz σ2IL– ASΦHAH
==

λ A B,( ): z:det A zB–( ){ 0 }.= =

y n( ) a k( )x n k–( )
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p
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(1-152)

where a = [a(0), . . ., a(p)]T, and Rxx is the (p + 1) × (p + 1) autocorrelation 
matrix.

We would like the output variance  to be a measure of the power spectral 
density of x(n) at frequency ƒo. Alternatively, the FIR filter should pass a 
sinusoid at frequency ƒo with unity gain; hence, we have the constraint,

(1-153)

We also want to minimize the contribution due to sinusoids at frequencies 
other than ƒo; this can be achieved by minimizing the output variance in 
(1-152) subject to the constraint in (1-153). The resulting estimator is given by

(1-154)

where e = [1,e--j2πƒ, . . ., e-j2πpƒ]H. This estimator, which is variously called 
Capon’s maximum-likelihood estimator or the Minimum Variance 
Distortionless estimator [8, 27], is not a true power spectral density estimator. 
For example, if x(n) consists of a harmonic at frequency ƒo and power P that is 
observed in white noise with variance , then,

where p is the number of autocorrelation lags used; note that the noise power 
contribution has been reduced by a factor of p. The resolving power of this 
estimator is reported to be [27]

where SNR is the signal-to-noise ratio (ratio of signal variance to noise 
variance), and p is the length of the autocorrelation sequence. This estimator 
is implemented in routines harmest and doa. 
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The maximum-entropy spectral estimator of Burg is based on the availability 
of exactly known autocorrelation lags, , (in which case a 
Gaussian pdf and an AR(p) model are obtained for process x(n)). Routine 
trench may be used to estimate the AR model parameters. The resolving power 
is reported to be 

For SNR ≥ 1, the maximum entropy estimator has better resolving power than 
does Capon’s maximum-likelihood estimator, which in turn is better than the 
Blackman-Tukey estimator.

Cumulant-Based Estimators
In [66] it was established that the fourth-order cumulants of the process in 
(1-124) are given by

(1-155)

In particular, the diagonal slice is given by, 

(1-156)

If w(n) is Gaussian, then C4w(m,m,m) ≡ 0. If w(n) is i.i.d. non-Gaussian, then 
C4w(m,l,n) is a delta function at the origin. Note that when w(t) is Gaussian or 
i.i.d. non-Gaussian, (1-156) is similar to the autocorrelation sequence of the 
noiseless signal. Consequently, all of the analyses based on the autocorrelation 
carry over to the fourth-order cumulant. In particular, the development of the 
Eigenvector, Pisarenko, ML-Capon, AR, MUSIC, Min-Norm, and beamformer 
spectral estimates based on second-order statistics, can also be based on 
fourth-order statistics [44]. Similarly we can base ESPRIT on the fourth-order 
cross-cumulant matrix as well. The fourth-order statistics are most useful 
when the additive noise is narrow-band Gaussian. 

Routine harmest implements algorithms for the harmonic retrieval problem: it 
estimates the spectrum using the Eigenvector, MUSIC, Pisarenko, ML, and AR 
algorithms based on the diagonal slice of the fourth-order cumulant. 
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Routine doa implements algorithms for the direction of arrival problem: it 
estimates the angular spectrum using the Eigenvector, MUSIC, Pisarenko, 
ML-Capon, ML, and AR algorithms based on the diagonal slice of the 
fourth-order cumulant. Routine doa implements the corresponding algorithms 
based on second-order statistics; it also implements ESPRIT. 

Examples
load harm
Pxx=harmest(zmat,12,4,’unbiased’,256,4);

You should see the display in Figure 1-12. 

Figure 1-12  Singular Values of Cumulant Matrix and Estimated Spectra 
(harmest) 

The data consist of two unit amplitude real harmonics at frequencies 0.1 Hz 
and 0.2 Hz, and are contaminated by colored Gaussian noise, with a variance 
of 0.5; the noise spectrum has a pole at 0.15 Hz, with a damping factor of 0.9. 
The SVD plot is indicative of two real harmonics, and the spectrum appears to 
peak at the correct frequencies, 0.1 and 0.2 Hz. The fourth-order cumulants do 
not see the Gaussian process at 0.15 Hz. Note that the power spectra are 
displayed in dB scale, that is, 10log10(Pxx)

Pxx = harmest(zmat,12,6,'unbiased',256,2); 
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You should see the display in Figure 1-13. The SVD plot is indicative of three 
real harmonics, and the spectrum appears to peak at the correct frequencies, 
0.1 and 0.2 Hz, as well as at 0.15 Hz, which is due to the Gaussian noise. 

Figure 1-13  Singular Values of Correlation Matrix, and Estimated Spectra 
(harmest) 
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Examples
load doa1
[spec,theta]=doa(ymat,0.5,1,3,2,1);

You should see the display in Figure 1-14; note that the angular spectra are 
plotted in dB scale, that is, 10log10(spec). 

The singular value plot indicates the possible presence of three sources. The 
observed signal consists of signals from two sources at –15 and –25 degrees, 
and is contaminated with spatially correlated noise that acts as a virtual 
source at a bearing of 30 degrees. The bearings estimated by ESPRIT should 
be –15.4634, –25.8851 and 29.9855. As expected, the Eigenvector, ML, AR, 
MUSIC and Min-Norm methods resolve the two sources and the virtual source 
due to the noise, whereas the beamformer does not. The MUSIC and Min-Norm 
estimates are virtually identical in this example. The vertical lines and circles 
denote the true bearings; the cross denotes the virtual bearing of the spatially 
correlated noise. 

Figure 1-14  Singular Values of Spatial Correlation Matrix, and Estimated 
Angular Spectra (doa) 
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load doa1
[spec,theta]=doa(ymat,0.5,1.2);

The singular value plot indicates the possible presence of two sources; the 
estimated angular spectra show peaks at around the true bearings of –15 and 
–25 degrees; notice that the spatially correlated Gaussian noise source has 
been virtually suppressed by using fourth-order cumulants. The vertical lines 
and circles denote the true bearings; the cross denotes the virtual bearing of 
the spatially correlated noise. The bearings estimated by ESPRIT should be
–15.0066 and –25.1361. 

Figure 1-15  Singular Values of Spatial Cumulant Matrix, and Estimated 
Angular Spectra (doa) 
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Summary 
The estimation of the frequencies of harmonics observed in noise, or that of 
determining the bearings of sources in the DOA problem can be treated from 
either a parametric or a nonparametric view point. In the latter case, we obtain 
nonparametric estimates of spectra and angular spectra. In the former case, we 
have several high-resolution algorithms.

Routine harmest can be used for the harmonic retrieval problem; the user has 
the choice of using second- or fourth-order cumulants. This routine estimates 
power spectra using the MUSIC, Eigenvector, Pisarenko, ML (Capon), AR and 
Min-Norm methods, based on either the diagonal slice of fourth-order 
cumulants, or on the covariance; it also estimates the conventional 
periodogram. The number of harmonics can usually be determined by 
examining the singular value plot generated by harmest. 

Routine doa can be used to solve the direction-of-arrival problem (DOA) for a 
uniformly spaced linear array. It estimates angular spectra using the 
Beamformer, ML-Capon, AR, MUSIC, Pisarenko’s method, eigenvector, 
Min-Norm and ESPRIT algorithms, based on the spatial cross-correlation or 
cross-cumulant. Routine pickpeak may be used to pick peaks in the estimated 
(angular) spectra. 
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Nonlinear Processes
The simplest nonlinear system is the second-order Volterra system whose 
input-output relationship is defined by 

(1-157)

The corresponding frequency domain representation is

(1-158)

and is obtained by Fourier Transforming both sides of (1-157). The 
time-domain product term x(n – k)x(n – l) leads to convolution in the frequency 
domain, which is represented by the condition ƒ = ƒ1 + ƒ2. It is usually assumed 
that the quadratic kernel is real and symmetric, that is, q(k,l) = q(l,k), or 
equivalently, Q(ƒ1,ƒ2) = Q(ƒ2,ƒ1) = Q*(–ƒ1,−ƒ2). It is readily verified that 
Q(ƒ1,ƒ2) in the region |ƒ2| ≤ ƒ1,0 ≤ ƒ1 ≤ 1/4, specifies Q(ƒ1,ƒ2) everywhere. 

The basic problem is given x(n) and y(n), n = 1, . . ., N, we want to estimate the 
linear part, h(k), and the quadratic part, q(k,l). 

Solution Using Cross-Bispectra
In [70], an algorithm to estimate the parameters of the model in (1-157) was 
developed, under the assumption that x(n) is stationary Gaussian. From 
(1-157), we can see that the cross-spectrum is given by, 

(1-159)

The term involving the triple product of the X(ƒ)’s disappears since x(n) is 
symmetrically distributed. Since Sxx(ƒ) and Sxy(ƒ) can be estimated, we can 
estimate H(ƒ), the linear part. 
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Consider the cross-cumulant 

(1-160)

(1-161)

which follows since x(t) is symmetrically distributed. Assuming Gaussianity, 
we can rewrite the last equation in the frequency domain, as 

(1-162)

which is obtained under the assumption that q(k,l) = q(l,k). The 
cross-bispectrum, Syxx(ƒ1,ƒ2) can be estimated via routine bispecdx and the 
spectra can be estimated via routine spectrum; we can then estimate the 
quadratic transfer function, Q(ƒ1,ƒ2) from (1-162). This algorithm is 
implemented in routine nltick [70]. Note that the input process is assumed to 
be Gaussian. 

Cxxy τ ρ,( ) E x n( )x n τ+( )y n ρ+( ){ }=

q k l,( )E x n( )x n τ+( )x n ρ k–+( )x n ρ l–+( ){ }

l 0=

∞

∑
k 0=

∞

∑=

E{x n( )x n τ+( ) h k( )x n ρ k–+( )

k 0=

∞

∑=

q k l,( )x n ρ k–+( )x n ρ l–+( ) }

l 0=

∞

∑
k 0=

∞

∑+

Syxx ƒ1 ƒ2,( ) 2Q ƒ1 ƒ2,( )Sxx ƒ1( )Sxx ƒ2( ) Sxx ƒ2( )δ ƒ1 ƒ2+( )E y n( ){ }+=
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Examples
load nl1
[h,q] = nltick(x,y,128,1);

You should see the display on Figure 1-16. A description of the signals x and y 
in nl1.mat is given in the section “Data Files.” The true linear and quadratic 
impulse responses are shown in Figure 1-51.

Figure 1-16  Transfer Functions Estimated by nltick

Solution Using FTs
In [50], another algorithm to estimate the parameters of the model in (1-157) 
was developed, without assuming that x(n) is Gaussian; indeed, x(n) may be 
deterministic. Given the input and output sequences, x(n) and y(n), we can 
compute their FTs, X(ƒ) and Y(ƒ) on a suitable grid, ƒm = m/M, where M is the 
FFT length. We can collect (1-158) at the various frequencies into a set of 
equations that are linear in the unknowns, namely H(ƒ) and Q(ƒ1,ƒ2) [50]. 
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Let r = m mod 2, and let m+ := (m + r)/2, m- := (m – r)/2, . For m = 0, . . ., M/2, 
let the unknown parameter vector be

and, 

Then, we have the system of linear equations, 

Y(m) = ATb(m),

which is overdetermined; we can obtain the least-squares solution for each 
frequency grid point, m.

This algorithm is implemented in routine nlpow. 

Examples
load nl1
[h1,q1]=nlpow (x,y,128);

You should see the display on Figure 1-17. 

Figure 1-17  Transfer Functions Estimated by nlpow
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4
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  X m M
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load nl2
[h2,q2]=nlpow (x,y,128);

You should see the display on Figure 1-18. 

Figure 1-18  Transfer Functions Estimated by nlpow

As expected, the plots in the two figures are quite similar. A description of the 
signals x and y in the files nl1.mat and nl1.mat may be found in the section 
““Data Files.” The true linear and quadratic impulse responses are shown in 
Figure 1-51. 

Quadratic Phase Coupling 
Phase coupling occurs due to nonlinear interactions between harmonic 
components. Three harmonics with frequencies ƒk and phases φk, k = 1,2,3, are 
said to be quadratically phase coupled if ƒ3 = ƒ1 + ƒ2 and φ3 = φ1 + φ2. Quadratic 
phase coupling (coupling at sum and difference frequencies) occurs when a 
signal is passed through a square-law device, for example, and may be detected 
from the bispectrum [53]. 

Consider the signal x(n), which is a mixture of harmonics with independent 
phases, and quadratically phase coupled sinusoids, that is, 
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(1-163)

where , the ƒ’s are all distinct, and , and φi 
are all i.i.d. and uniformly distributed over [–π,π]. 

Then, the third-order cumulant of x(n) is given by [66]

(1-164)

The diagonal slice, C3x(τ,τ), is given by 

(1-165)
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The 2-D FT of (1-164) yields the bispectrum,

(1-166)

It is evident that the nonredundant region of the bispectrum shows peaks only 
at the phase and frequency coupled bifrequencies, . The FT of the 
diagonal slice in (1-165), on the other hand, displays peaks at each of the three 
frequencies involved in the phase-coupling. 

Consider () with Nq = 1. We have, omitting unnecessary superscripts, 

(1-167)

where ƒ3 = ƒ2 + ƒ1. Note that the diagonal slice of the third-order cumulant is 
expressed as the sum of three harmonics. From our discussions on AR models 
for harmonics, we note that C3x(τ,τ) satisfies a self-driven AR(6) model, whose 
roots are at exp(±j2πƒk), k = 1, 2, 3. If we estimate the AR polynomial, we can 
compute the parametric bispectrum 

(1-168)

The parametric bispectrum estimator is implemented in routine qpctor. 
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Examples
load qpc
[arvec,bspec] = qpctor(zmat,18,12);
Maximum of bispectrum: B(0.1484,0.1016) = 4239

You should see the display on Figure 1-19. Note that ƒ1 + ƒ2 ≈ 0.25, which 
corresponds to the third peak in the amplitude spectrum, so that we may 
conclude that three of the four harmonics are quadratically phase coupled. The 
singular value plot shows six significant singular values corresponding to one 
quadratically coupled triplet; as in the case of the power spectrum (harmonics 
in noise), overestimating the number of harmonics usually leads to better 
results; in this case, we used an AR order of 12. 

Figure 1-19  Parametric Estimate of bispectrum (qpctor) 

Ideally, A(η) contains impulses at ±ƒk, k = 1,2,3, and S3x(η1,η2) is given by

(1-169)
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From (1-166), we note that it suffices to examine the bispectrum in the region 
0 ≤ η2 ≤ η1 ≤ 1/2. If ƒ2 ≠ 2ƒ1, the parametric bispectrum will show a single 
impulse at (ƒ1,ƒ2), corresponding to k = 1, l = 2, m = 3 in (1-169), indicating the 
existence of the quadratically phase-coupled triplet (ƒ1,ƒ2,ƒ1 + ƒ2). If ƒ2 = 2ƒ1, 
the bispectrum will have an additional peak at (η1,η2) = (ƒ1,ƒ1), corresponding 
to k = 1, l = 1, m = 2 in (1-169), which can also result from the phase-coupled 
triplet (ƒ1,ƒ1,2ƒ1). 

It is important to note that the process in (1-163) is not ergodic, that is, 
consistent estimates of the third-order cumulant, C3x(τ1,τ2), cannot be obtained 
from a single realization, unless frequency-coupling is always accompanied by 
phase coupling [68]. Indeed, the random phase assumption itself suggests that 
multiple realizations are required. Further, creating multiple realizations by 
record segmentation does not lead to consistent estimates. Given a single 
realization, C3x(τ1,τ2) will show impulses if frequency coupling exists, that is, 
ƒ3 =ƒ2 + ƒ1. Given multiple realizations, C3x(τ1,τ2) (and C3x(τ,τ)) will be nonzero 
only if both frequency and phase coupling exist, that is, ƒ3 =ƒ2 + ƒ1, and φ3 =φ2 
+ φ1. 

The parametric bispectrum in (1-168) shows a peak whenever A(η1), A(η2), and 
A(η1 + η2) have peaks. Hence, when Nq > 1, spurious peaks might result from 
interactions between different triplets of the form,  

In the case of Nq >1, interactions may occur between different QPC triplets 
leading to additional peaks in the parametric bispectrum given by (1-168). 

Summary 
The Higher-Order Spectral Analysis Toolbox offers two algorithms to estimate 
the parameters of a second-order Volterra model: nltick, which assumes that 
the input is Gaussian, and nlpow, which is applicable to arbitrary inputs. Note 
that both algorithms require access to inputs and outputs. Quadratic-phase 
coupling (QPC) can be detected using routine qpctor. Routine qpcgen can be 
used to generate synthetics for the QPC problem, and nlgen can be used to 
compute the output of a second-order Volterra system. 

ƒil
q ƒjm

q
+ ƒkn

q .=
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Time-Frequency Distributions
The popular and natural tool in linear system analysis is the Fourier 
transform, which decomposes a signal into its frequency components. The 
power spectrum (or energy spectrum) gives us information about the frequency 
components in the data, but not about the temporal localization of these 
components. Alternatively, the original time signal itself gives us good time 
resolution (obviously!) but does not give us any idea about frequency 
localization, except in trivial cases. So far, we have defined spectra, bispectra, 
and trispectra, only for stationary processes; as such, they are inappropriate 
for the analysis of nonstationary processes or transient signals. For 
nonstationary processes, we can define time-varying cumulants and 
polyspectra (in the same way that one talks about time-varying covariances 
and power spectra). Consider the signal, y(t) = s(t) + g(t), where s(t) is a 
deterministic signal and g(t) is stationary zero-mean noise (perhaps Gaussian). 
The process y(t) is nonstationary: its mean is s(t), and for k > 1, cky = ckg; thus, 
only the first-order cumulant carries information about the signal s(t). In 
contrast, the higher-order moments of y(t) depend both upon s(t) and g(t); thus, 
in this case, it is preferable to use higher-order moments [63]. For such signals, 
time-frequency distributions that describe the temporal evolution of the 
spectrum or the polyspectrum (moment spectrum) are useful tools. 

A time-frequency distribution (TFD) is a transform that maps a 1-D signal into 
a 2-D time-frequency map, which describes how the spectral content of the data 
evolves with time. As such, TFD’s are the natural tools for the analysis, 
synthesis, interpretation, and processing of nonstationary signals. Among the 
more well-known TFD’s are the short-time Fourier transform (STFT) [1], the 
Gabor representation [17], and the Wavelet transform [33, 55]. 

Linearity is a desirable property of algorithms used in analyzing linear 
systems; however, quadratic time-frequency distributions have been proposed, 
analyzed, and interpreted as time-varying power spectra [13, 25]. The so-called 
Cohen class of shift-invariant distributions includes special cases such as the 
Spectrogram, Rihaczek, Page, Wigner-Ville distribution (WD) and 
Choi-Williams distributions [13, 25]. 

The WD has become quite popular because it possesses a number of useful 
properties, and has been used in the analysis of phase modulated signals, 
which are common in radar and sonar [3]. An important property of the WD is 
that every member of Cohen’s class can be interpreted as a 2-D linearly filtered 
version of the WD [25]. A third-order WD was introduced in [18]; it was 
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generalized and its properties were studied in [14, 15, 60, 61, 62]. Higher-order 
WD’s describe the evolution in time of the higher-order moment spectra of the 
signal. 

Wigner Spectrum
The Wigner distribution (WD) was introduced in 1932 by Wigner in the context 
of quantum mechanics; its usefulness to problems in communication theory 
was discovered by Ville in 1948; consequently, it is often called the 
Wigner-Ville distribution. A series of papers by Classen and Mecklenbraüker 
[11] discussed the usefulness of the WD for time-frequency analysis of 
continuous and discrete-time signals, and was devoted to applications in digital 
signal processing; sampling issues are also discussed in [12]. Tutorial 
overviews of the WD and its relationships with other time-frequency 
distributions (TFD) may be found in [3, 13, 25]. 

In order to differentiate the second-order WD from the higher-order WD’s (to 
be introduced later), we will refer to the conventional WD as the Wigner 
spectrum (WS). 

In contrast to the STFT, which is resolution limited either in time or in 
frequency (dictated by the window function), and suffers from smearing and 
sidelobe leakage, the WS offers excellent resolution in both the frequency and 
time domains.

The Wigner cross spectrum (WCS) of two signals, x(t), y(t), is defined via, 

(1-170)

(1-171)

where X(ω) and x(t) constitute an FT pair. The auto WS is obtained when 
x(t) = y(t), and is a bilinear function of the signal x(t). 

The ambiguity function, which is widely used in radar, is defined as the 2-D FT 
of the WS, and can also be expressed as

(1-172)

Wxy t ω,( ) := x∫ t τ 2⁄+( )y* t τ 2⁄–( )e jwτ– dτ

:= 1
2π
------ X∫ ω ξ 2⁄+( )Y* ω ξ 2⁄–( )ejξt dξ

AF θ τ,( ) x* t τ
2
---– 

  x t τ
2
---+ 

  ej2πθt td∫=
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Cohen’s general class of TFD’s is defined by

(1-173)

where the kernel φ(θ,τ) specifies the particular distribution that is obtained. 

Let x(n) = y(n) + z(n); it follows that 

(1-174)

Since the WS is a quadratic transform, the WS of the sum of two signals is not 
the sum of the individual WS’s, but also has cross-terms. These cross-terms 
make it difficult to interpret the WS. These cross-terms may be suppressed by 
appropriate filtering, in the ambiguity function domain, that is, by appropriate 
choice of the kernel φ(θ,τ). 

In order to reduce the effects of the cross-terms, Choi and Williams [10] 
proposed using the kernel 

(1-175)

where the parameter σ controls the amount of attenuation (the amplitude of 
the cross-terms is proportional to σ). Unfortunately, increased suppression of 
cross-terms invariably leads to smearing or loss of resolution of the auto terms 
in the time-frequency plane. 

In practice, signals are sampled in time, and we compute FTs also on a sampled 
frequency grid. The discretization in time and frequency of the continuous-time 
WS leads to the nonaliasing requirement that the original signal be sampled at 
twice the Nyquist rate [12]. 

The discrete-time algorithm is given next [13, 25]. Let the instantaneous 
cross-correlation be defined by 

(1-176)

where n is identified with time and m with lag. The WCS is then defined by, 

WC t ƒ,( ) φ θ τ,( )AF θ τ,( )e j2πtθ– j2πƒτ– τd θd∫∫=

Wxx ƒ n,( ) Wyy ƒ n,( ) Wzz ƒ n,( ) Wy z, ƒ n,( ) Wz y, ƒ n,( )+ + +=

φ θ τ,( ) θ–
2τ2 σ2⁄( )exp=

rxy m n,( ) x* n m–( )y n m+( )=
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(1-177)

The WS is obtained when x(n) = y(n). The original signal must be sampled at 
twice the Nyquist rate or faster, in order to avoid aliasing. In practice, the 
frequency variable ƒ is also discretized, ƒ = k/K, where K controls the frequency 
resolution. The WCS in (1-177) can also be implemented via two FFT 
algorithms, following the approach in [46]. Both approaches demand the same 
computational and storage complexity. This algorithm in (1-177) is 
implemented in routine wig2. 

The ambiguity function, AF, can be computed as 

(1-178)

The AF is multiplied by the Choi-Williams filter, 

(1-179)

A 2-D FT (θ to n and m to ƒ) yields the filtered WS. Cross-terms can usually be 
suppressed via this approach, but with a concomitant loss of resolution. In 
practice, θ is a discretized frequency grid. This algorithm is implemented in 
routine wig2c. 

Wxy ƒ n,( ) rxy m n,( ) jπƒm–( )exp
m
∑=

AF m θ,( ) rxy m n,( ) j2πnθ( )exp
n
∑=

w m θ,( ) mθ σ⁄( )2
–( )exp=
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Examples
clf
load wigdat
subplot(221), wig2(s2,[],0);
subplot(222), wig2(s2);
subplot(223), wig2(s3);
subplot(224), wig2(s4);

You should see the display in Figure 1-20. 

Figure 1-20  Wigner Spectra (wig2) 

Signal s2 is a harmonic with a nominal frequency of 0.05 Hz, which has been 
multiplied by a Gaussian window, and is centered at n = 20. Note that the WS 
of the signal is concentrated around its nominal center frequency; note also the 
interaction between the energies at the positive and negative frequencies 
giving rise to the interference terms around D.C. By using the analytic version 
of the signal, the negative frequency terms are suppressed; this also suppresses 
the distortion terms around D.C.
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Signal s3 is a harmonic with a nominal frequency of 0.15 Hz, which has been 
multiplied by a Gaussian window, and is centered at n = 50. Note that the WS 
of the signal is concentrated around its nominal center frequency. 

In the last panel, we compute the WS of the sum signal s4=s2+s3; note the 
cross-terms in the WS; some of these can be eliminated by using routine wig2c. 

Examples
load wigdat
wig2c(s4);

Compare the display in Figure 1-21 with the (2,2) panel of Figure 1-20; note 
that the cross-terms have been suppressed. 

Figure 1-21  Wigner Spectrum With Choi-Williams Smoothing (wig2c) 

Wigner Bispectrum
The notion of Wigner spectra can be generalized to Wigner bispectra (WB) and 
Wigner trispectra (WT) by considering the FTs of appropriately defined 
instantaneous triple and quadruple products.
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Define the instantaneous triple-product

(1-180)

where α = 1/3 and β = 2/3. The WB is then given by 

(1-181)

This algorithm is implemented in routine wig3, where the slice ƒ1 = ƒ2 is 
computed. Note that the original signal should be sampled at twice the Nyquist 
rate, in order to avoid aliasing. It is shown in that the frequency axes are scaled 
by the factor of 2/3, which can be easily fixed. 

As in the case of the WS, the WB also suffers from the problems of cross-terms; 
one can attempt to suppress these terms by appropriate filtering. Define the 
smoothing kernel, 

(1-182)

The filtered WB is then given by 

This algorithm is implemented in routine wig3c, where the slice ƒ1 = ƒ2 is 
computed. It should also be noted that the application of the Choi-Williams 
filter to the WB does not guarantee preservation of the auto-terms; 
consequently, routine wig3c should be used with great caution. 

r3 t τ1 τ2, ,( ) x* t ατ1– ατ2–( )x t βτ1 ατ2–+( )x t ατ1– βτ2+( )=

W n ƒ1 ƒ2, ,( ) dτ1dτ2e
j2π– ƒ1τ1 ƒ2τ2+( )

r3 t τ1 τ2, ,( )∫∫=

Φ θ τ1 τ2, ,( ) θ–
2 τ1

2 τ2
2

+( ) σ⁄( )exp=

W n ƒ1 ƒ2, ,( ) θτ1 τ2 ue
j2π– ƒ1τ1 ƒ2τ2+( )

e j2π– tθej2πuθddd∫∫∫∫=

r3 t τ1 τ2, ,( )Φ θ τ1 τ2, ,( )
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Examples
clf
load wigdat
subplot(221), wig3(s2,[],0);
subplot(222), wig3(s2);
subplot(223), wig3(s3);
subplot(224), wig3(s4);

You should see the display in Figure 1-22. 

Figure 1-22  Wigner bispectra (wig3) 

Signal s2 is a harmonic with a nominal frequency of 0.05 Hz, which has been 
multiplied by a Gaussian window, and is centered at n = 20. Note that the WB 
of the signal is concentrated around its nominal center frequency; note also the 
interaction between the energies at the positive and negative frequencies 
giving rise to the interference terms around D.C. By using the analytic version 
of the signal, the negative frequency terms are suppressed; this also suppresses 
the distortion terms around D.C. 
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Signal s3 is a harmonic with a nominal frequency of 0.15 Hz, which has been 
multiplied by a Gaussian window, and is centered at n = 50. Note that the WB 
of the signal is concentrated around its nominal center frequency. 

In the last panel, we compute the WB of the sum signal s4=s2+s3; note the 
cross-terms in the WS; some of these can be eliminated by using routine wig3c. 

A direct consequence of the definition of the WB is that the frequency axes are 
scaled by the factor 2/3 [4]–[5]. In this routine, this scaling has been undone so 
that the peaks appear at the expected frequencies. 

Examples
load wigdat
wig3c(s4,256,0.2,1)

Compare the display in Figure 1-23 with the (2,2) panel in Figure 1-20 and with 
Figure 1-21; notice the suppression of cross-terms. 

Figure 1-23  Wigner bispectrum With Choi-Williams Smoothing (wig3c) 
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Wigner Trispectrum
Define the instantaneous fourth-order product, 

(1-183)

where 

The WT is then given by 

(1-184)

Notice that two terms are conjugated; also note the sign of the ƒ3τ3 term. This 
algorithm is implemented in routine wig4 where the slice ƒ1 = ƒ2 = –ƒ3 = ƒ is 
computed, that is, we compute 

(1-185)

Note that the original signal should be sampled at twice the Nyquist rate, in 
order to avoid aliasing. Also note that the frequency axes are scaled by the 
factor of 1/2, which can be easily fixed. 

The WT also suffers from the presence cross-terms. As in the case of WS, we 
can attempt to suppress the cross terms by appropriate filtering. 

Define the smoothing kernel, 

(1-186)

The filtered WT is then given by

This algorithm is implemented in routine wig4c, where the slice ƒ1 = ƒ2 = –ƒ3 
is computed; the resulting sliced WT is real valued. As in the case of the WS, 
cross-terms can usually be suppressed by this approach, but with a 
concomitant loss of resolution. In contrast to the WB, the filtering does not 
unduly distort the auto terms [14, 15]. 

r4 t τ1 τ2 τ3, , ,( ) x* t τ–( )x t τ– τ1+( )x t τ– τ2+( )x* t τ– τ3+( )=

τ : τ1 τ2 τ3+ +( ) 4.⁄=

W n ƒ1 ƒ2 ƒ3, , ,( ) τ1 τ2 τ3e
j2π– ƒ1τ1 ƒ2τ2 ƒ3τ3–+( )

r4 t τ1 τ2 τ3, , ,( )ddd∫∫∫=

Ws n ƒ,( ) τ1 τ2 τ3e
j2π– ƒ τ1 τ2 τ3+ +( )

r4 t τ1 τ2 τ3, , ,( )ddd∫∫∫=

Φ θ τ1 τ2 τ3, , ,( ) θ–
2 τ1

2 τ2
2 τ3

2
+ +( ) σ⁄( )exp=

W n ƒ1 ƒ2 ƒ3, , ,( ) θdτ1 τ2dτ3 u e
j2π– ƒ1τ1 ƒ2τ2 ƒ3τ3+ +( )

ddd∫∫∫∫∫=



Time-Frequency Distributions

1-99

Examples
clf, load wigdat
subplot(221), wig4(s2,[],0);
subplot(222), wig4(s2);
subplot(223), wig4(s3);
subplot(224), wig4(s4);

You should see the display in Figure 1-24. Signal s2 is a harmonic with a 
nominal frequency of 0.05 Hz, which has been multiplied by a Gaussian 
window, and is centered at n = 20. Note that the WT of the signal is 
concentrated around its nominal center frequency; note also the interaction 
between the energies at the positive and negative frequencies giving rise to the 
interference terms around D.C. By using the analytic version of the signal, the 
negative frequency terms are suppressed; this also suppresses the distortion 
terms around D.C. 

Signal s3 is a harmonic with a nominal frequency of 0.15 Hz, which has been 
multiplied by a Gaussian window, and is centered at n = 50. Note that the WT 
of the signal is concentrated around its nominal center frequency. 

In the last panel, we compute the WS of the sum signal s4=s2+s3; note the 
cross-terms in the WT; some of these can be eliminated by using routine wig4c. 

Figure 1-24  Wigner trispectra (wig4) 
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Examples
load wigdat
wig4c(s4);

Compare the display in Figure 1-25 with the (2,2) panel of Figure 1-24, and 
Figure 1-21 and Figure 1-23; note that the cross-terms in Figure 1-24 have 
been suppressed.

Figure 1-25  Wigner Trispectrum With Choi-Williams Filtering (wig4c) 

Summary 
The Higher-Order Spectral Analysis Toolbox offers routines to compute the 
WS, and slices of the WB and the WT, and are implemented in wig2, wig3, and 
wig4. Routines wig2c, wig3c, and wig4c implement the so-called 
Choi-Williams filter, which can help suppress the cross-terms in the WS, WB, 
and WT. It should be noted that this filtering may, in fact, destroy signal terms 
in the WB (but not in WS or WT). Wigner spectra of different orders offer 
different perspectives on the data, and are useful for exploratory data analysis. 
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Time-Delay Estimation 
The time-delay estimation problem occurs in various applications, for example, 
in the determination of range and bearing in radar and sonar. It also has 
esoteric applications, such as the measurement of the temperature of a molten 
alloy by measuring the passage time of a signal. Other applications include 
analysis of EEG data. 

The basic model is as follows: two sensors record delayed replicas of a signal, 
in the presence of noise:

(1-187)

(1-188)

where D is the delay of the signal at the y-sensor relative to the signal at the 
x-sensor, A is the relative amplitude gain, and wx(t) and wy(t) are sensor noises. 
Given x(t), y(t), t=0 . . ., N – 1, we want to estimate the delay D. 

The basic idea is to shift the signal y(t) and compare the shifted waveform with 
x(t); the best match occurs when the shift equals the delay D. This notion is 
made more precise by using the cross-correlation between the two signals. We 
assume that s(t) is a stationary process, and that the noises are zero mean. 

A Cross-Correlation Based Method 
The cross-correlation between the two signals x(t) and y(t) is given by, 

(1-189)

where  is the cross correlation between the two noise processes, and 
Rss(τ) is the autocorrelation of the signal. If the noises are uncorrelated, Rxy(τ) 
will have a peak at τ = D, the unknown delay. In practice, due to effects of finite 
length estimates, and due to the presence of noise, the cross-correlation 
estimate may not have a sharp peak. 

The data may be prefiltered in order to sharpen the peak; equivalently, we can 
multiply the estimated cross-correlation by a window function. Different 
choices of the window function lead to different estimates. The most popular 

x t( ) s t( ) wx t( )+=

y t( ) As t D–( ) wx t( )+=

Rxy τ( ) ARss τ D–( ) Rwx wy, τ( )+=

Rwx wy, τ( )



1 Tutorial

1-102

window function is the maximum-likelihood window of Hannan and 
Thompson, which is described below. 

Let Sxy(ƒ) denote the cross-spectrum between the two signals, x and y; and let 
Sxx(ƒ) and Syy(ƒ) denote the autospectra of x and y. The squared coherence 
function is defined by

The optimal-maximum-likelihood window is then

and the windowed cross-correlation, Rxy(m), is the IFT of W(ƒ)Sxy(ƒ). 

Estimates of the auto- and cross- spectra and the coherence can be obtained via 
the MATLAB routine spectrum; the segment length must be at least twice the 
expected maximum delay. Since good estimates of the spectra demand a large 
number of segments, it is critical that the lengths of the time-series, x and y, be 
much larger than the expected maximum delay. 

An initial estimate, d, of the delay D is given by the location of the peak of R(m). 
A three-point interpolation may be used to improve the delay estimate [39]

The optimal-maximum-likelihood window estimator is implemented in routine 
tder. 

Cxy ƒ( )
Sxy ƒ( ) 2

Sxx ƒ( )Syy ƒ( )
-----------------------------------.=

W ƒ( ) 1
Sxy ƒ( )
--------------------

Cxy ƒ( )
1 Cxy ƒ( )–( )

--------------------------------,=

D̂ 2D 1–
2

-----------------
R d( ) R d 1–( )–

R d 1+( ) 2– *R d( ) R d 1–( )+
------------------------------------------------------------------------------.–=



Time-Delay Estimation

1-103

Examples
load tde1
delay=tder(s1,s2,30,64,0,64);
Estimated delay= 15.9987

You should see the display on Figure 1-26 and the Estimated delay 
(Estimated=15.997). The two signals are corrupted by spatially correlated 
noise; the noise correlation shows a strong peak at a delay of 5 samples; the 
signal delay is 16 samples. 

Figure 1-26  Time-Delay Estimated Using Cross-Correlation (tder)

A Cross-Cumulant Based Method 
The cross-correlation based method assumes that the sensor noises are 
uncorrelated. If the noise processes are correlated, it may not be possible to 
detect the peak of Rss(τ) since it may be masked by  (see (1-189)). If 
the signals are non-Gaussian, and the noise processes are Gaussian, we can 
use third-order cumulants, even if the noise processes are correlated. 

−80 −60 −40 −20 0 20 40 60 80
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
TDER: Windowed Rxy: delay = 16

Rwx wy, τ( )



1 Tutorial

1-104

Let P be the maximum expected delay, and assume that the delay D is an 
integer. Then, [39, 40]

(1-190)

where a(n) = 0, n ≠ D, and a(D) = 1. Consider the third-order cumulants, 

(1-191)

(1-192)

Substituting (1-190) into (1-191), we obtain

(1-193)

Using this equation for various values of ρ and τ, we get a system of linear 
equations in the a(i)’s, namely,

 Cxxxa = cyxx.

The estimated delay is the index n which maximizes |a(n)|. A low rank 
approximation of the cumulant matrix Cxxx may be used to improve the 
robustness to noise. This algorithm is implemented in routine tde. 

y n( ) a i( )x n i–( )

i P–=

P

∑ w n( )+=

Cyxx τ ρ,( ) : E y* n( )x n τ+( )x n ρ+( ){ }=

Cxxx τ ρ,( ) : E x* n( )x n τ+( )x n ρ+( ){ }=

Cyxx τ ρ,( ) a i( )Cxxx τ i+ ρ i+,( )

i P–=

P

∑=
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Examples
load tde1
[delay,avec]=tde(s1,s2,30,128);
Estimated delay= 16

You should see the display in Figure 1-27, and the Estimated delay (Estimated 
delay=16). The two signals are corrupted by spatially correlated noise; the 
cross-correlation between the noises at the two sensors has a strong peak at a 
delay of 5 samples; the signal delay is 16 samples. 

Figure 1-27  Time-Delay Estimated Using Cross-Cumulants (tde)

A Hologram Based Method 
The algorithm described in the previous section can also be implemented in the 
frequency domain. Define auto- and cross-bispectra, 
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The third-order hologram, h(τ), is then defined by [39, 40]

(1-194)

(1-195)

(1-196)

The hologram should display a strong peak at the location of the true delay. 
Since third-order statistics are used, the method is insensitive (in theory) to 
both spatially and temporally colored noise which is symmetrically distributed 
(e.g., Gaussian). In practice, the estimated hologram, h(τ), will not be an 
impulse; hence, we estimate D as the index τ, which maximizes |h(τ)|. This 
algorithm is implemented in routine tdeb.

h τ( ) dƒ1 dƒ2 j2πƒ2τ( )exp
Bxyx ƒ1 ƒ2,( )
Bxxx ƒ1 ƒ2,( )
--------------------------------∫∫=

dƒ1 dƒ2 j2πƒ2τ( )exp e
j2πDƒ2–

∫∫=

δ τ D–( )=
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Examples
load tde1
delay=tdeb(s1,s2,30);
Delay estimated by TDEB is 16

You should see the display on Figure 1-28, and the Estimated delay (Estimated 
delay=16). The two signals are corrupted by spatially correlated noise; the 
cross-correlation between the noises at the two sensors has a strong peak at a 
delay of 5 samples; the signal delay is 16 samples. 

Figure 1-28  Time-Delay Estimated Using Cross-Bispectrum (tdeb)

Summary
The basic idea in time-delay estimation is to locate the peak in the 
cross-correlation between two signals; routine tder implements the 
Maximum-likelihood window of Hannan and Thompson, and is useful if the 
noises at the two sensors are not spatially correlated. 

Routines tde and tder use third-order cross-cumulants and cross-bispectra 
respectively; hence, the sensor noises may be spatially correlated, provided 
they are symmetric (cross-bispectrum of the noises is zero). Routine tdegen can 
be used to generate synthetics for the TDE problem. 
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Case Studies 
In this section, we will use the Higher-Order Spectral Analysis Toolbox to 
process some real data; in doing so, we will learn some of the pitfalls and tricks 
of the trade. 

Sunspot Data
Schuster was, perhaps, the first to use the periodogram to analyze sunspot 
data in the nineteenth century; subsequently, these data have been virtually 
adopted as a standard by statisticians and signal analysts. These data are 
known to have an approximate 11-year cycle. Sunspot data for the years 
1700-1987 are available in the file sunspot.dat, which is included in the 
standard distribution package. 

Figure 1-29 shows the data and the histogram; the latter is indicative of an 
exponential distribution. We used cumest to obtain the estimates of some 
summary statistics, which are shown in the third column of Table 1-1; the last 
column is discussed later.

Figure 1-29  Sunspot Data
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Table 1-1:  Summary Statistics for Sunspot Data

The data in Figure 1-29 display an apparent periodicity; we can use harmest to 
verify this. The (1,1) panel of Figure 1-30 displays the singular values of the 
covariance matrix; the plot indicates that only three singular values are 
significant (p = 3); hence, we used an order of 3. The corresponding power 
spectral estimates are shown in the remaining panels of Figure 1-30: All of the 
estimates have a strong peak at 0 Hz and at approximately ±0.1 Hz. We can use 
pickpeak to accurately locate the peaks in the power spectra; we can also use 
roots to estimate the locations of the roots of the AR polynomial estimated by 
the AR method; doing so, we obtain an estimate of 10.64 years for the period. 

Figure 1-30  Sunspot Data: Power Spectra
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We used glstat to test for Gaussianity and linearity; the test results are: 
Test statistic for Gaussianity is 357.4639 with df = 60, Pfa = 0 
Linearity test: R (estimated) = 14.8592, lambda = 11.0332, R (theory) = 9.1222, 
N = 16. 

The probability of false alarm (Pfa) in rejecting the Gaussian hypothesis is 0, 
that is, we are virtually certain that the data have nonzero bispectrum; thus, 
the test indicates that the data are non-Gaussian as expected (recall that the 
histogram shows that the univariate pdf is non-Gaussian, and that the 
skewness is around unity). The estimated and theoretical values of R, the 
interquartile range of the estimated bicoherence values, are not very different 
from one another; hence, the tests do not show any strong evidence of 
nonlinearity.

The bispectrum of the data was estimated via bispeci; we used 25 lags and the 
default window. The resulting estimate is shown in Figure 1-31. The 
bispectrum shows sharp peaks at around (0,0.1) and (0.1,0.1) (and symmetric 
locations) and is indicative of possible quadratic coupling. The peak at (0,0.1) 
is most probably an artifact due to the fact that the data are all positive valued. 

Figure 1-31  Sunspot Data: Bispectrum
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Differencing the data is a standard trick in exploratory data analysis; we can 
use MATLAB’s diff function to compute the first-order differences. The 
differenced data and the corresponding histogram are shown in Figure 1-32. 
Summary statistics are shown in the last column of Table 1-1. 

Figure 1-32  Sunspot Data: First Difference
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The singular value plot displayed by harmest (see the (1,1) panel in Figure 
1-33) indicates either four or six significant singular values; using p=6, we 
obtain the power spectra shown in the remaining panels of Figure 1-33. Again, 
using roots, we estimate the periods to be 5.47 and 10.50 years (AR method).

We used glstat to test for Gaussianity and linearity; the test results are: 
Test statistic for Gaussianity is 250.1965 with df = 70, Pfa = 0 
Linearity test: R (estimated) = 13.5335, lambda = 6.4449, R (theory) = 7.0433, 
N = 16. 

The test indicates that the data are non-Gaussian as expected (recall that the 
skewness is around unity). 

Figure 1-33  Differenced Sunspot Data: Power Spectra
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The bispectrum of the differenced data in Figure 1-34 has sharp peaks around 
(.094, .094), and indicates coupling between the periods at 5.3 years and 10.6 
years. 

Figure 1-34  Differenced Sunspot Data: Bispectrum 

In this example, differencing the data helped to clarify the estimates of the 
power spectrum as well as the bispectrum. Our tests indicate that the data are 
non-Gaussian, and show evidence of a fundamental period of around 10.6 years 
as well as a harmonic at around 5.3 years; this may be indicative of quadratic 
nonlinearities. 

The various figures were generated via 

     load sunspot.dat; sp=sunspot(:,2); eda(sp); eda(diff(sp)); 

Function eda is listed in Table 1-3. 
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Canadian Lynx Data

Examples
This time series consists of the annual number of Canadian lynx trapped in the 
Mackenzie River district of Northwest Canada for the years 1821–1934; 
listings of the data may be found in [56] and [52], where this time series is 
discussed in detail, and additional references are also given. 

We used eda to generate Figure 1-35 through Figure 1-40. The histogram in 
Figure 1-35 is indicative of an exponential distribution, and the data show 
apparent periodicity. Summary statistics are shown in Table 1-2; the last 
column corresponds to first differences. 

Figure 1-35  Lynx Data
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Table 1-2:  Summary Statistics for Lynx Data

Routine harmest indicates an order of three (see panel (1,1) of Figure 1-36), and 
the power spectra are displayed in Figure 1-36. We see a peak at DC, and two 
other peaks corresponding to a cycle of 9.63 years. 

Figure 1-36  Lynx Data: Power Spectra

We used glstat to test for Gaussianity and linearity; the test results are: 
Test statistic for Gaussianity is 196.752 with df = 28, Pfa = 0 
Linearity test: R (estimated) = 6.8468, lambda = 11.299, R (theory) = 9.2282, 
N= 5. 
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The test indicates that the data are non-Gaussian as expected (recall that the 
skewness is around unity, and that the histogram is indicative of an 
exponential distribution). The time-series length is only 114 samples, and 
glstat bases its estimate of the interquartile range on only 5 samples; hence, 
the test for linearity is not conclusive. 

The bispectrum of the data was estimated via bispeci; we used 25 lags and the 
default window. The resulting estimate is shown in Figure 1-37. The 
bispectrum shows sharp peaks at around (0.1,0.1) (and symmetric locations) 
and is indicative of possible quadratic frequency coupling. The data appear to 
be band-pass in nature. 

Figure 1-37  Lynx Data: bispectrum 

As with the sun-spot data, we repeated the exercise with the first differences; 
corresponding plots are shown in Figure 1-38 through Figure 1-40. Notice that 
the histogram appears to be somewhat symmetrical, but the skewness is 
significantly nonzero; the correlation matrix indicates two harmonics (order 4) 
as evidenced by the singular value plot shown in the (1,1) panel of Figure 1-38; 
the estimated cycles are 4.8 years and 9.6 years. The bispectrum confirms the 
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In this example, we used harmest and bispeci to estimate the periods of the 
harmonics, and to detect quadratic coupling; differencing the data helped to 
clarify the estimates of the power spectrum as well as the bispectrum. Our tests 
confirm that the data are non-Gaussian, and show evidence of a fundamental 
period of around 9.6 years as well as a harmonic at around 4.8 years; this may 
be indicative of quadratic nonlinearities. 

Figure 1-38  Lynx Data: Differenced
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Figure 1-39  Lynx Data, Differenced: Power Spectra 

Figure 1-40  Lynx Data, Differenced: bispectrum
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Table 1-3:  Listing of eda.m

function  eda(sp)
%EDA   Exploratory Data Analysis
%   eda(sp)   :  sp is the time-series data
%
& Author: A. Swami, Jan 1995

disp('-------- 1 – data and histogram')
figure(1)
subplot(211), plot(1:length(sp),sp),grid,
subplot(212), hist(sp), grid

disp('-------- 2 – Summary stats')
c1 = mean(sp);
c2 = cumest(sp,2);
c3 = cumest(sp,3) / c2^(3/2);
c4 = cumest(sp,4) / c2^2;

fprintf(' Mean                    %g\n',c1);
fprintf(' Variance                %g\n',c2);
fprintf(' Skewness (normalized)   %g\n', c3);
fprintf(' Kurtosis (normalized)   %g\n', c4);

disp('-------- 3 – power spectra and harmonic models')
figure(2)
[p2,a2,b2] = harmest(sp, 30, 0, 'u', 256, 2);
r = cplxpair(roots(a2));
disp('Estimated cycles')
a = angle(r);
yest = a*0;
ind = find(a ~= 0) ;
yest(ind) = (2*pi) * ones(size(ind)) ./ angle(r(ind))  ;
yest

disp('-------- 4 – gaussianity and linearity tests')
glstat(sp, .51, length(sp) ) ;

disp('-------- 5 – the bispectrum')
figure(3)
[Bspec, w] = bispeci(sp, 25);     % 25 lags

%pcolor(w,w,abs(Bspec)), shading('interp')  % nice, slow
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A Classification Example
The data consist of two underwater acoustic signals; the sampling rate is fairly 
high and we have lots of data (131,072 samples) The primary interest here is 
to classify the two signals. 

Means and standard deviations were estimated over 262 nonoverlapped 
segments, each of length 500 samples, and are shown in Figure 1-41; the data 
appear to be highly nonstationary. Because of the nonstationarity, overall 
estimates of the power spectrum or the bispectrum, or tests of Gaussianity and 
or linearity will not be meaningful.

Figure 1-41  Acoustic Data: Means and Standard Deviations 
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arrcest, with p=2, q=0, norder=2, maxlag=24 to fit AR(2) models to successive 
segments of the data. 

nsamp = 1024; ind=[1:nsamp]';
for k=1:length(x)/nsamp
    arx(:,k) = arrcest(x(ind),2,0,2,24);
    ary(:,k) = arrcest(y(ind),2,0,2,24);
    ind = ind + nsamp;
end
plot(arx(:,2),arx(:,3),'x', ary(:,2),ary(:,3),'o'),grid

In Figure 1-42 the AR coefficient a(2) is plotted against the coefficient a(1); 
circles and crosses correspond to the two time series; note that the data appear 
to be well-separated in the AR coefficient domain. The relationship between 
a(2) and a(1) appears to be linear; we used tls to estimate the slope and 
intercept, from which we derived the line separating the two classes. Since the 
autocorrelation is adequate for classifying the data, higher-order statistics are 
not useful in this example. In other examples, perhaps, when the data are 
contaminated by lot of Gaussian noise, AR estimates based on third- or 
fourth-order cumulants may be more useful.

Figure 1-42  Acoustic Data: AR(2) Coefficients 
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Laughter Data
Speech signals are highly nonstationary, and are known to exhibit phase- and 
frequency-coupling phenomena. Here we will use some of the Higher-Order 
Spectral Analysis Toolbox M-files to illustrate these features. We will use the 
initial 1400 sample segment of the data in the file laughter.mat, which is 
included in the standard MATLAB distribution package. The commands that 
we used to generate the various figures, and to estimate various quantities are 
listed in Table 1-4. 

Figure 1-43 shows the data and the histogram; the univariate distribution does 
not appear to be symmetrical. The mean, standard deviation, skewness, and 
kurtosis were estimated to be 0.5621, 536.69, 0.1681, and 1.3277 indicating 
that the data are non-Gaussian, and that the univariate pdf is not symmetric 
distributed. 

Figure 1-43  Laughter Data
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Figure 1-44 shows the spectrogram or the STFT computed via specgram; we 
used an FFT length of 512, Hanning window of length 256, and an overlap of 
240 samples. Three dominant frequency tracks can be seen in the figure, 
approximately around 550 Hz, 1100 Hz and 1550 Hz; the last formant begins 
around 30 ms; additional fragments are visible around 1800 Hz and 2100 Hz.

Figure 1-44  Laughter Data: Spectrogram
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The (1,1) panel of Figure 1-45 shows the singular values of the covariance 
matrix, as estimated by harmest; we set nlag=25 and nfft=512. The singular 
values are essentially zero after p = 12; hence we selected an order of 12, and 
obtained the various estimates shown in the figure. 

We can use roots to compute the roots of the AR polynomials estimated by the 
AR and Min-Norm methods; angle(roots(ar))/(2*pi) yields the normalized 
frequencies and abs(roots(ar)) yields the radius; the top two panels of Figure 
1-47 show the locations of the roots of the two AR polynomials. The roots closest 
to the unit circle were found to be approximately at 0.0702, 0.1329, 0.1962 Hz 
for the AR method (less dominant roots at 0.2480, 0.3706 and 0.2012); for the 
Min-Norm method, the dominant roots are at frequencies 0.0710, 0.1945, 
0.1272 and 0.1377. (These frequencies are normalized, that is, to find the 
correct frequencies, we should multiply them by the sampling frequency, which 
was 8000 Hz.)

Figure 1-45  Laughter Data: “Power Spectra”
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We can also use fourth-order cumulants to estimate the frequencies. Notice 
that the singular values of the cumulant matrix, shown in the (1,1) panel of 
Figure 1-46, look quite different from the singular values of the covariance 
matrix shown in the (1,1) panel of Figure 1-45; in particular, the singular 
values of the cumulant matrix appear to be essentially zero after p = 8; a 
possible explanation is that some of the harmonics are well-modeled as 
narrow-band Gaussian, and some as narrow-band non-Gaussian. Various 
“spectra” corresponding to order p = 8 are shown in Figure 1-46; the root 
locations of the AR polynomials are shown in the bottom panels of Figure 1-47. 
The dominant roots of the AR polynomial in the AR method are located at 
0.1297 and 0.1964 Hz; a less dominant pole is at 0.2678 Hz. In the case of the 
Min-Norm method, the dominant roots are located at 0.0616, 0.1307, 0.1960 
and 0.2622, suggesting that the signal has harmonics at approximately 2ƒo, 
3ƒo, and 4ƒo.

We can test whether the bispectrum of the data are statistically nonzero by 
using glstat. The test results, using cparm=0.51, nfft=256 were: Test statistic 
for Gaussianity is 71.3231 with df = 48, Pfa = 0 
Linearity test: R (estimated) = 2.3216, lambda = 2.376, R (theory) = 4.472, 
N = 14. 

Since the Pfa is close to 0, we can be virtually certain that the data have 
nonzero bispectrum and hence are non-Gaussian. The estimated and 
theoretical R values are not close to each other indicating that the data are not 
linear.
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Figure 1-46  Laughter Data: “Cumulant Spectra” 

Figure 1-47  Laughter Data: “Root Locations”
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In order to check for quadratic frequency coupling, we can estimate the 
nonparametric bispectrum (either via bispeci or bispeci) or the parametric 
bispectrum (via qpctor). The bispectrum estimated via bispeci, with 
nfft=256, segsamp=100, overlap=0, wind=1 is shown in Figure 1-48. Since the 
data contain several harmonic components, the bispectrum displays several 
impulses; in the case of speech signals, we know that these harmonics are at 
integer multiples of a fundamental. In this case, it suffices to examine the 
diagonal slice of the bispectrum that is shown in Figure 1-49. We used 
pickpeak to locate the dominant peaks, which were found to be at 0.0664, 
0.1289 and 0.1953 Hz; given the FFT length of 256, we can conclude that the 
these three harmonics are quadratically frequency coupled; the frequency 
coupling is also evident (but less obvious) from the power spectral estimates 
and the spectrogram. 

Figure 1-48  bispectrum – nonparametric 
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Figure 1-49  Diagonal Slice of bispectrum
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Figure 1-50  Parametric bispectrum via qpctor
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Table 1-4:  Commands Used to Analyze Laughter Data

load laughter mat % laughter data
y = y(1:1400);
sp = (y-mean(y))/std(y); % standardize

%
figure(1)           % data and histograms:
subplot(211), plot(1:length(sp),sp),grid,
subplot(212), hist(sp), grid

%    % summary stats:
c1 = mean(sp); c2 = cumest(sp,2);
c3 = cumest(sp,3) / c2^(3/2); c4 = cumest(sp,4) / c2^2;
fprintf(' Mean                      %g\n',c1);
fprintf(' Variance                  %g\n',c2);
fprintf(' Skewness (normalized)     %g\n', c3);
fprintf(' Kurtosis (normalized)     %g\n', c4);

figure(2),  specgram(sp,512,8000,hamming(256),240);

%      -------- power spectra and cum-4 spectra
figure(3),  [px2,a21,a22]=harmest(sp,25,12,'biased',512,2);
figure(4),  [px4,a41,a42]=harmest(sp,25,8,'biased',512,4);

r21 = roots(a21); r22 = roots(a22);
r41 = roots(a41); r42 = roots(a42);
figure(5)
subplot(221), polar(angle(r21), abs(r21), 'x'), grid
subplot(222), polar(angle(r22), abs(r22), 'x'), grid
subplot(223), polar(angle(r41), abs(r41), 'x'), grid
subplot(224), polar(angle(r42), abs(r42), 'x'), grid

glstat(sp,0.51.256);             % gl test

%      -------- bispectrum and diagonal slice

figure(6),        [Blaf,w] =  bispecd(sp,256,1,100,0);
figure(7),        dB = abs(diag(Blaf));
plot(w,dB),       grid, title('diagonal slice')
[loc,val] = pickpeak(dB,3)
disp(w(loc))

figure(8),  qpctor(sp,25,10,512,100,0);   % QPC test
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Pitfalls and Tricks of the Trade
As the previous examples illustrate, we should first use univariate statistics 
(mean, median, skewness, kurtosis, histograms) and second-order statistics 
(SOS). Before using algorithms based on higher-order statistics, we should test 
the data for Gaussianity, and if applicable, for linearity as well. Note that the 
symmetry of the univariate pdf does not imply that the bispectrum is zero.

Model parameters (e.g., ARMA, harmonics) estimated by algorithms based on 
cumulants of different orders need not agree with one another. For example, in 
the case of the laughter data, we saw that the second- and fourth-order spectra 
were different; a possible reason could be that some of the harmonic 
components can be well-modeled as narrow-band Gaussian.

Similarly, in the case of ARMA modeling, algorithms based on cumulants of 
different orders may lead to different results. Consistent results may be 
expected only in the case of noise-free data and long data lengths. Consider the 
following three-component model

Assume that u1(n) is i.i.d. Gaussian, u2(n) is i.i.d., single-sided exponential, and 
u3(n) is i.i.d., and double-sided exponential (Laplace); further assume that the 
ui’s are independent of one another. Let  denote the variance, and γ3,i and 
γ4,i the skewness and kurtosis of ui(n). Then,

y n( ) xi n( )

i 1=

3

∑=

xi n( ) hi k( )ui n k–( ).
i 1=
∑=

σi
2

S2x ω( ) σ1
2 H1 ω( ) 2 σ2

2 H2 ω( ) 2 σ3
2 H3 ω( ) 2

+ +=

S3x ω1 ω2,( ) γ3 2, H2 ω1( )H2 ω2( )H2
* ω1 ω2+( )=

S4x ω1 ω2 ω3, ,( ) γ4 2, H2 ω1( )H2 ω2( )H2 ω3( )H2
* ω1 ω2 ω3+ +( )=

γ4 3, H3 ω1( )H3 ω2( )H3 ω3( )H3
* ω1 ω2 ω3+ +( )+
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In this example, the power spectrum is the sum of the power spectra of the 
three components; since u1(n) and u3(n) are both symmetric distributed, their 
skewnesses are zero; hence, only the second component contributes to the 
bispectrum; finally, since u1(n) is Gaussian, all of its cumulants of order 
greater than two are zero; hence, it does not contribute to the fourth-order 
cumulant.

Even though γ3,2 ≠ 0 in the above example, it is easy to construct examples of 
H2(ω) so that the bispectrum is zero [63]. Hence, a zero bispectrum is not 
inconsistent with nonzero skewness of the driving i.i.d. process. 

In the context of harmonic processes of the form,

the phrases frequency coupling and phase coupling are often used in the same 
sense; the former refers to relationships of the form ω3 = ω2 + ω1, and the latter 
to φ3 = φ2 + φ1. Generally, but not always, the two relationships go hand in 
hand.

Further, in the case of harmonic processes, the power spectrum and parametric 
methods based on the autocorrelation are usually sufficient, unless the data 
contain narrow-band Gaussian components. Higher-order cumulants and 
spectra are useful to isolate specific types of coupling (quadratic, cubic, etc.).

Several of the M-files in the Higher-Order Spectral Analysis Toolbox allow the 
user to segment the data, that is, cumulants are estimated for each segment 
and are then averaged across the set of segments; such segmentation usually 
speeds up calculations, at a slight loss in statistical efficiency; note that 
segmented estimates can never be better than unsegmented estimates. 

In the case of bispectra, as we have seen earlier, we can obtain consistent 
estimates by either estimating bispectra from segments and averaging them 
(frequency resolution limited by the segment length) or by applying an 
appropriate smoothing window (in the frequency, data or lag domain).

Be aware that the higher-order moments and cumulants of complex processes 
can be defined in different ways, and that their polyspectra do not possess all 
the symmetry properties of their real counterparts. 

s n( ) αk ωkn φk+( ),cos

k 1=

p

∑=
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There has been lot of confusion about the nonredundant region (NRR) of the 
bispectrum; we refer the reader to Brillinger [4] for an explanation of why the 
NRR is the triangle with vertices (0,0), (0,π), and (2π/3,2π/3), and not the 
triangle with vertices (0,0), (0,π), and (π/2,π/2). 

Finally, it is easy to be misled by contour plots, where 100*eps may stand out 
as a peak in a background of eps; careful attention should be paid to scaling the 
data; normalizing the data to unity variance is usually helpful. 



1 Tutorial

1-134

Data Files 
The Higher-Order Spectral Analysis Toolbox distribution diskette includes 
several .mat files. These files are used in the “Tutorial” to demonstrate various 
toolbox functions. Descriptions of these .mat files are given below. 

In the following, signal-to-noise ratio (SNR) is defined as the ratio of the signal 
variance to the noise variance; when expressed in dB, it is given by 
10log10 , where  is the variance of the signal, and  is the variance 
of the noise. All frequencies are in Hz relative to a nominal sampling frequency 
of 1 Hz.

ar1.mat An AR (2) synthetic; the AR parameters are [1, –1.5, 0.8]; the 
time-series length is 1024 samples; input distribution is single-sided 
exponential; additive white Gaussian noise was added so as to obtain a SNR of 
20 dB. The vector y contains the AR(2) time-series. 

ar1.mat AR(2) synthetic

arma1.mat ARMA(2,1) synthetic

doa1.mat Synthetic for the direction of arrival problem

gldat.mat Data for Gaussianity/linearity tests

harm.mat Synthetic for the harmonics in noise problem

ma1.mat MA(3) synthetic

nl1.mat Synthetic for testing the nonlinear routines

nl2.mat Synthetic for testing the nonlinear routines

qpc.mat Synthetic for the quadratic phase coupling 
problem

riv.mat Synthetic for the adaptive LP problem

tde1.mat Synthetic for the time-delay estimation 
problem

tprony.mat Synthetic for testing Prony’s method

wigdat.mat Synthetic for testing the Wigner routines

σs
2 σn

2⁄( ) σs
2 σn

2
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arma1.mat An ARMA (2,1) synthetic; the AR parameters are [1, –0.8, 0.65]; the 
MA parameters are [1, –2]; the time-series length is 1024 samples; input 
distribution is single-sided exponential; additive white Gaussian noise was 
added so as to obtain a SNR of 20 dB. The vector y contains the ARMA(2,1) 
synthetic. The model is mixed-phase. 

doa1.mat This data file contains the 4096 -by- 8 matrix ymat. It is a synthetic 
for the DOA problem, with two sources at bearings, θ1 = –15° and θ2 = –25°; the 
eight sensors are spaced half a wavelength apart. The source signals are 
Laplace distributed, and have unity variance. Spatially correlated Gaussian 
noise, with unity variance, was added to obtain the noisy signals. The spatial 
color is such that the angular noise spectrum of the noise shows sharp peaks at 
±30°.

gldat.mat This file contains the vectors e, g, l, u, x, and z; each vector 
consists of 512 samples. Sequences e, g, l, and u are realizations of i.i.d. 
sequences with exponential, Gaussian, Laplace, and uniform distributions. 
Sequence x is obtained by passing e through the AR filter, [1, –1.5, 0.8]; and, 
z(n) = x3(n). 

harm.mat A harmonics-in-noise synthetic. Two unity amplitude harmonics, 
with frequencies λ1 = 0.1 and λ2 = 0.2, were corrupted with additive colored 
Gaussian noise with a variance of 0.5. Since each of the harmonics has power 
0.5, the SNR is 3 dB. Thirty-two independent realizations, each with 128 
samples were generated. The phases of the harmonics were chosen randomly 
for each realization. The colored Gaussian noise was generated by passing 
white Gaussian noise through an AR filter with coefficients [1, –1.058, 0.81]. 
The noise spectrum has a pole at 0.15 Hz with a damping factor of 0.9. The set 
of realizations is contained in the matrix zmat; the columns correspond to 
independent realizations. 

ma1.mat An MA(3) synthetic; the MA parameters are [1,0.9,0.385, –0.771]; the 
time-series length is 1024 samples; input distribution is single-sided 
exponential; additive white Gaussian noise was added so as to obtain a SNR of 
20 dB. The vector y contains the MA(3) synthetic. The model is mixed-phase. 

nl1.mat This file contains data to test functions nlpow and nltick. A white 
Gaussian process, x, is passed through a second-order Volterra system, to 
obtain the output process y. Matrices x and y are 64 × 64, with columns 
corresponding to realizations. The input-output relationship for a second-order 
Volterra system is given by,
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The filter h was chosen to be the IR of an FIR(12) filter, with a cutoff of 0.2Hz, 
and was generated with h = fir1(11,0.4). The filter q was chosen such that 

q(k,l) = h1(k)h1(l), where h1 is the IR of an FIR(12) filter, with a cutoff of 0.1Hz, 
and was generated by h1 = fir1(11,0.2). The output data were generated 
using function nlgen, y = nlgen (x,h,q). The impulse responses (IR) and 
transfer functions (TF) of the linear part (h), and the quadratic part (q) are 
shown in Figure 1-51. 

Figure 1-51  Transfer Functions of a Second-Order Volterra Model

nl2.mat This file contains data to test function nlpow. This data file was 
generated in the same way as was nl1.mat, except that the process x was 
chosen to be i.i.d. and Laplacian. 
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k 0=

∞

∑ q k l,( )x n k–( )x n l–( ).

l 0=

∞

∑
k 0=

∞

∑+=



Data Files

1-137

qpc.mat A quadratically phase coupled synthetic. The data consist of four 
harmonics corrupted by white Gaussian noise. The frequencies of the 
harmonics are λ1 = 0.1, λ2 = 0.15, λ3 = 0.25 and λ4 = 0.40 Hz. For each 
realization, the phases of the first, second, and fourth harmonics, φ1, φ2, and φ4 
were chosen randomly; the phase of the third harmonic was set to φ3 = φ1 + φ2. 
Note that the triplet of harmonics with frequencies (0.1, 0.15, 0.25) exhibits 
both phase and frequency coupling; the triplet with frequencies (0.15, 0.25, 
0.40) is frequency-coupled, but not phase-coupled. Sixty-four independent 
realizations, each consisting of 64 samples, were generated. The amplitudes of 
all four harmonics were unity, and white Gaussian noise with a variance of 1.5 
was added to the signal. The set of realizations is contained in the matrix zmat; 
the columns correspond to independent realizations. 

riv.mat This data file contains three vectors, y, zw, and zc, each consisting of 
1024 samples. A zero-mean exponentially distributed i.i.d. sequence was 
passed through the AR filter [1, –1.5, 0.8] to obtain y. Additive white Gaussian 
noise was added to y to obtain the noisy signal zw whose SNR is 10 dB. Colored 
Gaussian noise, generated by passing a white Gaussian sequence through the 
AR filter [1, 0, 0.49] was added to y to obtain zc, also at a SNR of 10 dB. 

tde1.mat A synthetic for time-delay estimation. The signal at the first sensor 
is i.i.d., zero mean, single-sided exponentially distributed with unity variance, 
and skewness of two. The signal at the second sensor is a delayed version of the 
signal at the first sensor (delay = 16 samples). The first signal was corrupted 
by white Gaussian noise to obtain a SNR of 0 dB. The signal at the second 
sensor was corrupted by colored Gaussian noise, obtained by passing the noise 
at the first sensor through the MA filter, [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]. Note that 
the two noise signals have a strong spatial correlation at a delay of five 
samples. The signal length is samples. Vectors s1 and s2 contain the simulated 
signals at the two sensors. 

tprony.mat This mat-file contains the 256 sample complex transient x, and is 
used to test the function hprony; here, 

x(n) = exp{jπ/2 + n(–0.1 + j0.84π)} + 2exp{jπ/4 + n(–0.2 + j0.64π)}

wigdat.mat This file contains four signals, s1, s2, s3, and s4, described below, 
which are used to test the functions wig2, wig2c, wig3, wig3c, wig4, and wig4c. 

Signal s1 is a real harmonic, given by

s1(n) = cos(2πƒn),   ƒ = 0.1
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Signals s2 and s3 are generated via

with T = .001, n0 = 20, ƒ = 50, σ = 0.01 for signal s2, and T = .001, n0 = 50, 
ƒ = 150, σ = 0.01 for signal s3. Signal s4 is the sum of s2 and s3. Note that 
signals s2 and s3 are harmonics at frequencies 0.05 and 0.15 Hz, which have 
been multiplied by a Gaussian shaped window function. Signals s1, s2, s3, and 
s4 are displayed in Figure 1-52. 

Figure 1-52  Signals in file wigdat.mat
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Function Tables
The following tables summarize the suite of M-files in the Higher-Order 
Spectral Analysis Toolbox by functionality. Reference entries for the functions 
are then listed in alphabetical order. On-line help is available via the help and 
hosahelp commands.

Higher-Order Spectrum Estimation: Conventional 
Methods

Function Purpose

cum2x Estimates second-order cross-cumulants

cum3x Estimates third-order cross-cumulants

cum4x Estimates fourth-order cross-cumulants

cumest Estimates auto cumulants (orders 2,3,4)

bicoher Estimates auto-bicoherence

bicoherx Estimates cross-bicoherence

bispecd Direct method for bispectrum estimation

bispecdx Direct method for cross-bispectrum estimation

bispeci Indirect method for bispectrum estimation

glstat Detection statistics for Gaussianity and linearity tests
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Higher-Order Spectrum Estimation: Parametric 
Methods

Quadratic Phase Coupling (QPC)

Function Purpose

armaqs ARMA parameter estimation, q-slice algorithm

armarts ARMA parameter estimation, residual time series 
algorithm

armasyn Generates ARMA synthetics

arorder AR order estimation (AR and ARMA processes)

arrcest AR parameter estimation

bispect Computes theoretical bispectrum of an ARMA process

cumtrue Computes true cumulants of ARMA processes

maest MA parameter estimation

maorder MA order estimation

rpiid Generates sequence of i.i.d. random variables

trispect Computes theoretical trispectrum of an ARMA process 

Function Purpose

qpcgen Generates synthetics for the QPC problem

qpctor Parametric QPC detection
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Second-Order Volterra Systems

Harmonic Retrieval

Time-Delay Estimation (TDE)

Array Processing: Direction of Arrival (DOA)

Function Purpose

nlgen Computes output of a second-order Volterra system

nlpow Parameter estimation: arbitrary inputs: Powers’ method

nltick Parameter estimation: Gaussian inputs: Tick’s method

Function Purpose

harmest Estimates frequencies of sinusoidal signals

harmgen Generates synthetics for harmonic retrieval problem

Function Purpose

tde TDE, based on cross-cumulants

tdeb TDE, based on cross-bispectrum

tdegen Generates synthetics for the TDE problem

tder TDE, based on cross-correlation

Function Purpose

doa Estimates DOA from a linear array of sensors based on 
spatial cross-cumulant or covariance matrix

doagen Generates synthetics for the DOA problem
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Adaptive Linear Prediction

Impulse Response (IR), Magnitude and 
Phase Retrieval

Time-Frequency Estimates

Function Purpose

ivcal Computes instrumental variable processes

rivdl Adaptive LP using double lattice filter

rivtr Adaptive LP using transversal filter

Function Purpose

biceps Estimates IR complex cepstrum (lag domain)

bicepsf Estimates IR & complex cepstrum (FFT method)

matul Estimates Fourier phase and magnitude of a signal using 
the Matsuoka-Ulrych algorithm

Function Purpose

wig2 Wigner spectrum

wig2c Wigner spectrum, with Choi-Williams filtering

wig3 Wigner bispectrum

wig3c Wigner bispectrum, with Choi-Williams filtering

wig4 Wigner trispectrum

wig4c Wigner trispectrum, with Choi-Williams filtering
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Utilities

Demo

Function Purpose

hosahelp One line help of Higher-Order Sectral Analysis Toolbox 
commands

hprony Modeling of transient signals via Prony’s method 

pickpeak Picks peaks subject to a separation criterion

tls Total Least Squares solution

trench Trench recursion for non-symmetric Toeplitz matrix 

Function Purpose

hosademo Guided tour of the Higher-Order Sectral Analysis Toolbox
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Miscellaneous 
help hosa will display the list of HOSA Toolbox M-files, along with one-line 
descriptions. For additional help on a function, type help function_name. For 
example, to get help on function doa, type help doa. 

Most of the arguments in the Higher-Order Sectral Analysis Toolbox M-files 
have default settings. Recall that arguments in a function have positional 
significance. Thus, if you want to specify the fourth argument of a function, you 
must specify (at least) the first four arguments. Function invocations of the 
form function_name (a, , , b) are invalid. Vectors must be specified within 
square brackets, e.g., [1,2,3]. Text or string variables must be specified within 
single quotes, that is, ’biased’.  For more details, see the "Tutorial" section of 
the MATLAB User’s Guide. For details on the algorithms and on the theory of 
cumulants and polyspectra, see the "Tutorial" section of this manual. 

Prompting 
Several Higher-Order Sectral Analysis Toolbox routines (such as armasyn and 
qpcgen) are interactive; the routines ask the user to specify various 
parameters; we refer to this as prompting. 

Guided tour 
Invoke the function hosademo for a guided tour of the Higher-Order Sectral 
Analysis Toolbox; demo will take you through all the examples in the manual. 

Addenda 
See the Readme.m file, or type whatsnewhosa at the MATLAB command prompt.
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2armaqsPurpose Estimates ARMA parameters using the q-slice algorithm

Syntax [avec,bvec] = armaqs(y,p,q) 
[avec,bvec] = armaqs(y,p,q,norder,maxlag,samp_seg,overlap,flag)

Description armaqs estimates the ARMA parameters of the ARMA(p,q) process, y, using the 
q-slice algorithm. The AR parameters are estimated via the function arrcest; 
then the impulse response is estimated, and, finally, the MA parameters are 
estimated.

The AR order p must be greater than zero; function maest should be used in the 
p = 0 case; the MA order q must also be specified. 

Variable norder specifies the cumulant-order to be used, and should be 3 or 4; 
the default value is 3. 

maxlag specifies the maximum number of cumulant lags to be used; its default 
value is p+q. 

Variables samp_seg, overlap, and flag control the manner in which sample 
cumulants are estimated: 

samp_seg specifies the number of samples per segment; the default value is the 
length of the time series. 

overlap specifies the percentage overlap between segments; the allowed range 
is [0,99]; and the default value is 0. 

If flag is biased, then biased sample estimates are computed (default); if the 
first letter is not ’b’, unbiased estimates are computed. 

If y is a matrix, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. Cumulants are estimated from each realization, and then 
averaged. 

The estimated AR and MA parameters are returned in the vectors avec and 
bvec, respectively. 
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Algorithm The signal is assumed to be described by

where u(n) is i.i.d. non-Gaussian, and g(n) is Gaussian. 

The AR parameters are obtained as the least-squares solution to the normal 
equations given by

where a(0) = 1, m = q + 1, . . ., maxlag, and ρ = q – p, . . ., q. Since one must have 
at least m = q + 1, . . ., q + p [1,2], it follows from the preceding normal 
equations, that the cumulant lags involved must include 
q + 1 – p, . . ., q + p. The default value of maxlag follows from this. 

The impulse response is then estimated via,

or via,

depending upon whether third- or fourth-order cumulants are used. We 
assume b(0) = h(0) = 1. 
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In our implementation, we estimate the AR and IR parameters 
simultaneously; and we use the Total Least Squares (TLS) solution (see tls). 

The MA parameters are then obtained via,

See Also arrcest, maest, cumest, armarts, tls

References [1] Swami, A., and J.M. Mendel, “ARMA parameter estimation using only 
output cumulants,” IEEE Trans. ASSP, Vol. 38, pp. 1257-65, July 1990. 

[2] Swami, A. and J.M. Mendel, “Identifiability of the AR parameters of an 
ARMA process using cumulants,” IEEE Trans. on Automatic Control, Vol. 37, 
pp. 268-73, Feb. 1992.

b n( ) a k( )h n k–( )

k 0=

p

∑ 0 n 1 … q., ,=,= =
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2armartsPurpose Estimates ARMA parameters using the residual time series method

Syntax [avec,bvec] = armarts(y,p,q)
[avec,bvec] = armarts(y,p,q,norder,maxlag,samp_seg, 

. . . overlap,flag)

Description armarts estimates the ARMA parameters of the ARMA(p,q) process, y, via a 
three-step procedure. First, AR parameters are estimated (via the function 
arrcest); next, the MA(q) residual time series, , is 
created; and, finally, its MA parameters are estimated (via the function maest). 

p and q are the AR and MA orders. 

Variable norder specifies the cumulant-order to be used; norder should be ±3 
or ±4; a negative value indicates that autocorrelations as well as cumulants of 
order |norder| should be used to estimate the AR parameters. The default 
value is 3.

maxlag specifies the maximum number of cumulant lags to be used; its default 
value is q+p.

Variables samp_seg, overlap, and flag control the manner in which sample 
cumulants are estimated: 

samp_seg specifies the number of samples per segment; the default value is the 
length of the time series. 

overlap specifies the percentage overlap between segments; the allowed range 
is [0,99]; and the default value is 0. 

If flag is biased, then biased sample estimates are computed (default); if the 
first letter is not ’b’, unbiased estimates are computed. 

If y is a matrix, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. Cumulants are estimated from each realization, and then 
averaged. 

The estimated AR and MA parameters are returned in the vectors avec and 
bvec, respectively. 

ỹ n( ) a k( )y n k–( )
k 0=

p∑=
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Algorithm The signal is assumed to be described by

where u(n) is i.i.d. non-Gaussian, and g(n) is Gaussian noise. 

The AR parameters are obtained as the least-squares solution to the normal 
equations given by 

where a(0) = 1, m = q + 1, . . ., maxlag, and ρ = q – p, . . ., q. Since one must have 
at least m = q + 1, . . ., q + p [1,2], it follows that the cumulant lags involved 
must include q + 1 – p, . . ., q + p; this leads to the default value of maxlag. 

If the estimated AR parameters are exact, then the residual time series is an 
MA(q) process, 

hence, the MA parameters can now be determined via the algorithms described 
in maest. Note that the even if g(n) is white, the additive noise in  is no 
longer white. We assume that b(0) = h(0) = 1. 

See Also arrcest, maest, cumest, armaqs 
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References [1] Giannakis, G.B. and J.M. Mendel, “Identification of non-minimum phase 
systems using higher-order statistics,” IEEE Trans. ASSP, Vol. 37, pp. 360-77, 
Mar. 1989. 

[2] Swami, A. and J.M. Mendel, “Identifiability of the AR parameters of an 
ARMA process using cumulants,” IEEE Trans. on Automatic Control, Vol. 37, 
pp. 268-73, Feb. 1992.
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2armasynPurpose Generates ARMA synthetics

Syntax zmat = armasyn 
zmat = armasyn(default)

Description armasyn generates the time series described by  

where u(k) is the i.i.d. input to the ARMA(p,q) model whose AR(p) and MA(q) 
polynomials are given by A(z) and B(z), respectively; g(k) is signal-independent 
noise generated via  

where w(k) is an i.i.d. sequence, and the polynomials An(z) and Bn(z) determine 
the spectrum of the noise. 

If armasyn is invoked without any input arguments, then you are prompted for 
all the parameters (samples per realization; number of realizations; ARMA 
parameters for the signal process; pdf of the input driving noise, u(k); noise 
variance; ARMA parameters for the observation noise process, g(k); pdf of the 
noise, w(n); signal-to-noise ratio). 

If the function is invoked as armasyn(default), where the variable default 
may take on any value(s), then, the default settings are used. Time series y in 
file ar1.mat, was generated via y=armasyn(1);. 

zmat returns the generated data: each column corresponds to a different 
realization. 

z k( ) B z( )
A z( )
------------u k( ) g k( )+=

g k( )
Bn z( )
An z( )
---------------w k( )=
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2arorderPurpose Estimates the AR order of an AR or ARMA process

Syntax p = arorder(y,norder,pmax,qmax,flag) 

Description Estimates the AR order of an AR or ARMA process using second-, third-, or 
fourth-order cumulants. 

y is the observed ARMA process and must be a vector. 

norder specifies the cumulant order(s) to be used; valid values are 2, ±3, and 
±4; a value of –3 (–4) indicates that order determination should be based on the 
correlation as well as the third-order (fourth-order) cumulants. The default 
value is 3. 

pmax specifies the maximum expected AR order; the default value is 10. 

qmax specifies the maximum expected MA order; the default value is 10. 

flag — if flag is 1, the internally chosen AR order is returned in p; otherwise, 
the plot of the singular values of the cumulant matrix is displayed on the 
graphics window, and you are prompted to choose the order. The default value 
is 1. 

p is the estimated AR order. 

Algorithm Let  and  denote the maximum expected values of the AR and MA orders 
(the parameters pmax and qmax, respectively). For convenience, let cky(m,ρ) := 
cum(y(n),y(n + m),y(n + ρ),y(n), . . .,y(n)), k > 2 ; note that we are suppressing (k 
– 3) of the lags, all of which are set to zero. Also let

Then, the singular values of the matrix,

are computed, where k = 2, 3, or 4. If norder is specified as –3(–4), the matrices 
C2 and C3 (C4) are concatenated. 

p q

cky m( ) : cky m p–,( )… cky m q,( ),[ ]T
=

Ck

cky q 1+( ) … cky q p+( )

cky q p+ 1+( ) … cky q 2p 1–+( )

= … …. ..



arorder

2-16

Let s(m) denote the singular values. The AR order p is then given by the value 
of n which maximizes s(n) – s(n + 1), that is, it corresponds to the index at which 
the singular values show the maximum drop. 

See Also maorder 

Reference [1] Giannakis, G.B. and J.M. Mendel, “Cumulant-based order determination of 
non-Gaussian ARMA models,” IEEE Trans. ASSP, pp. 1411-21, Aug. 1990 
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2arrcestPurpose Estimates AR parameters using the normal equations based on 
autocorrelations and/or cumulants 

Syntax avec = arrcest(y,p) 
avec =arrcest(y,p,minlag,norder,maxlag,samp_seg,overlap,flag) 

Description arrcest estimates the AR parameters of the ARMA(p,q) process, y, via the 
normal equations based on autocorrelations and/or cumulants. 

p is the AR order and must be specified. 

minlag is the minimum value of m to be used in the normal equations. If you 
want to estimate the AR parameters of an ARMA(p,q) process, minlag should 
be greater than q. (See the Algorithm subsection for more details.) 

The absolute value of norder specifies the cumulant order to be used; if norder 
is negative, least-squares solutions based on the simultaneous solution of both 
autocorrelation- and cumulant-based normal equations are obtained. The 
allowed values of norder are 2, ±3, ±4. The default value is 2. 

maxlag specifies the maximum number of cumulant lags to be used; its default 
value is p+minlag. 

Variables samp_seg, overlap, and flag control the manner in which sample 
cumulants are estimated: 

samp_seg specifies the number of samples per segment; the default value is the 
length of the time series. 

overlap specifies the percentage overlap between segments; the allowed range 
is [0,99]; and the default value is 0. 

If flag is biased, then biased sample estimates are computed (default); if the 
first letter is not ’b’, unbiased estimates are computed. 

If y is a matrix, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. Cumulants are estimated from each realization, and then 
averaged. 

The estimated AR parameters are returned in the p + 1 element column vector 
avec. 
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Algorithm In the noiseless case, the AR parameters are obtained as the least-squares 
solution to the normal equations given by 

The AR identifiability conditions, [1]-[2], require that ρ = qo – p, . . ., qo, for any 
qo, and m  = q + i + 1, . . ., q + i + p, i ≥ 0; this leads to the default value of maxlag. 

If the additive noise is white (Gaussian  or non-Gaussian), the 
autocorrelation-based equations hold only for m > max(p,q). If the additive 
noise is non-Gaussian and white, the cumulant-based equations hold only for 
m > max(p,q); in these cases, choose minlag > max(p,q). 

See Also armarts, armaqs, cumest 

References [1] Swami, A. and J.M. Mendel, “ARMA parameter estimation using only 
output cumulants,” IEEE Trans. ASSP, Vol. 38, pp. 1257-65, July 1990. 

[2] Swami, A. and J.M. Mendel, “Identifiability of the AR parameters of an 
ARMA process using cumulants,” IEEE Trans. on Automatic Control, Vol. 37, 
pp. 268-73, Feb. 1992.

a k( )R m k–( )

k 0=

p

∑ 0 m q>,=

a k( )C3 m k ρ,–( )

k 0=

p

∑ 0 m q>,=

a k( )C4 m k ρ 0, ,–( )

k 0=

p

∑ 0 m q>,=



biceps

2-19

2bicepsPurpose Estimates impulse response via lag-domain bicepstral method

Syntax [hest,ceps,a,b,minh,maxh] = biceps(y,p,q)
[hest,ceps,a,b,minh,maxh] = biceps(y,p,q,samp_seg, 

. . . overlap,flag,lh) 

Description biceps estimates the impulse response of the linear process, y, using the 
bicepstrum (lag-domain) method. 

Variables p and q denote the number of causal and anticausal cepstral 
parameters to be estimated. The total length of the complex cepstrum is p + q 
+ 1. 

Variables samp_seg, overlap, and flag control the manner in which sample 
cumulants are estimated: 

samp_seg specifies the number of samples per segment. Its default value is the 
row dimension of y; if y is a row vector, the column dimension is used as the 
default value. 

overlap specifies the percentage overlap between segments; the allowed range 
is [0,99]; and the default value is 0. 

If y is a matrix, the columns are assumed to correspond to independent 
realizations or records; in this case overlap is set to zero, and samp_seg is set 
to the row dimension.

If flag is 'b', then biased sample estimates of cumulants are estimated 
(default); if the first letter is not ’b’, unbiased estimates are computed; only the 
first letter of flag is checked. Cumulants are estimated from each record, and 
then averaged across the set of records. 

lh: the default value is 2(p+q); the estimated impulse response will range from 
samples –lh to lh. 

hest is the estimated impulse response, h(n), n = –lh, . . . , lh; the impulse 
response is normalized so that h(0) = 1. Samples of h(n), n < 0, will have 
significant values if the original linear system is not minimum-phase (e.g., the 
original system is an ARMA model, some of whose zeros or poles lie outside the 
unit circle). 

ceps is the estimated complex cepstrum , n = –q, . . ., p. ĥ n( )
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a is the vector of the minimum-phase cepstral parameters, A(n), n = 1, . . ., p. 

b is the vector of the maximum-phase cepstral parameters, B(n), n = 1, . . ., q. 

minh is the minimum-phase component of the IR; 
maxh is the maximum-phase component of the IR; so that 
hest = conv(minh,maxh). 

The cepstral parameters and complex cepstral coefficients are related via 

Any linear system can be approximated by an MA(L) model, provided L is large 
enough. If the MA model has Li zeros inside the unit circle, and Lo = L – Li 
zeros outside the unit circle, then, the estimated impulse response will show an 
apparent shift of Losamples to the left of time zero. 

Algorithm Details of the algorithm are given in the “Tutorial”. 

See Also bicepsf

Reference [1] Pan, R. and C.L. Nikias, “The complex cepstrum of higher-order cumulants 
and non-minimum phase system identification,” IEEE Trans ASSP, Vol. 36, 
pp. 186-205, Feb. 1988. 

ĥ n( )
A–

n( ) n n 0>⁄

B n–( ) n n 0<⁄

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2bicepsfPurpose Estimates impulse response via frequency-domain bicepstral method 

Syntax [hest,ceps] = bicepsf(y,nlag,samp_seg,overlap,flag,nfft,wind) 

Description bicepsf estimates the impulse response of the linear process, y, using the 
bicepstrum Fast Fourier Transform (FFT) method. 

y is the data vector or matrix.

nlag specifies the number of cumulant lags to be computed; the third-order 
cumulants of y, C3y(m,n),will be estimated for 
–nlag <= m,n <= nlag. This parameter must be specified. A useful rule of 
thumb is to set nlag to nsamp/10, where nsamp is the length of the time series y. 

Variables samp_seg, overlap, and flag control the manner in which sample 
cumulants are estimated:

samp_seg specifies the number of samples per segment or record. Its default 
value is the row dimension of y; if y is a row vector, the column dimension is 
used as the default value. 

overlap specifies the percentage overlap between segments. The default value 
is 0. The allowed range is [0,99].

If y is a matrix, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. 

If flag is 'b', then biased sample estimates of cumulants are estimated 
(default); if the first letter is not 'b', unbiased estimates are computed; only 
the first letter of flag is checked. 

Cumulants are estimated from each record, and then averaged across the set 
of records. 

nfft: specifies the FFT size to be used for computing the bispectrum and the 
bicepstrum; longer FFT lengths yield better estimates, but also require more 
storage (two arrays of size nfft by nfft). The default value is 128; if nfft is 
smaller than 2*nlag+1, the power of 2 just larger than 2*nlag+1 will be used.

wind specifies the lag-domain smoothing window. If wind is 0, the Parzen 
window will be applied. Otherwise, the usual unit hexagonal window will be 
applied. The Parzen window is the default. 
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The 1-D Parzen window is defined by, 

where L = nlag. The actual window applied to the estimated cumulants is given 
by, 

The unit hexagonal window is given by, 

where d(m) = 1, |m| ≤ nlag. 

hest is the estimated impulse response, h(n), n = –nƒƒt/2, . . ., nƒƒt/2 – 1. 
Samples of h(n), n < 0, will have significant values if the original linear system 
is not minimum-phase (e.g., the original system is an ARMA model, some of 
whose zeros or poles lie outside the unit circle). 

ceps is the estimated complex cepstrum, , 
n = –nƒƒt/2, . . ., nƒƒt/2 – 1. 

Note that the method has an inherent scale and shift ambiguity. Any linear 
system can be approximated by an MA(L) model, provided L is large enough. If 
the MA model has Li zeros inside the unit circle, and 
Lo= L – Li zeros outside the unit circle, then, the estimated impulse response 
will show an apparent shift of Losamples to the left of time zero. 

Algorithm Details of the algorithm are given in the “Tutorial”.

See Also biceps 

Reference [1] Pan, R. and C.L. Nikias, “The complex cepstrum of higher-order cumulants 
and non-minimum phase system identification,” IEEE Trans ASSP, Vol. 36, 
pp. 186-205, Feb. 1988.
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2bicoherPurpose Bicoherence estimation using the direct (FFT-based) method

Syntax [bic, waxis] = bicoher(y) 
[bic, waxis] = bicoher(y,nfft,wind,samp_seg,overlap) 

Description The bicoherence of the process y is estimated via the direct (FFT-based) 
method. 

y is the data vector or matrix. 

nfft specifies the FFT length to use for computing the bicoherence; the 
nominal default value is 128; if nfft is smaller than samp_seg, the power of 2 
just larger than samp_seg will be used. 

wind specifies the time-domain window to be used; it should be a vector of 
length seg_samp. By default, the hanning window is used. Data segments are 
multiplied by the time-domain window, then Fourier transformed to compute 
the frequency-domain double and triple products. The Fourier transform of the 
window function should be real and nonnegative. 

samp_seg specifies the number of samples per segment or record. The default 
value is set such that eight (possibly overlapped) records are obtained. 

overlap specifies the percentage overlap between segments. The default value 
is 0. The allowed range is [0,99].

If y is a matrix, the columns are assumed to correspond to independent 
realizations or records; in this case overlap is set to zero, and samp_seg is set 
to the row dimension. 

bic is the estimated bicoherence; it is an nfft-by-nfft array, with origin at 
the center, and axes pointing down and to the right. 

waxis is the set of frequencies associated with the bicoherence in bic. Thus, the 
ith row (or column) of bic corresponds to the frequency waxis(i), i=1,. . 
.,nfft. Frequencies are normalized; that is, the sampling frequency is 
assumed to be unity. 

A contour plot of the magnitude of the estimated bicoherence is displayed. 

Algorithm The data, y, are segmented into possibly overlapping records; the mean is 
removed from each record, the time-domain window is applied, and the FFT 
computed; the bispectrum of the kth record is computed as, 
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, where Xk denotes the FFT of the kth 
record, and the spectrum is computed as Pk(m) = |Xk(m)|2. The spectral and 
bispectral estimates are averaged across records, and the bicoherence is then 
estimated as 

where B(ƒ1,ƒ2) is the final estimate of the bispectrum, and P(ƒ) is the final 
estimate of the power spectrum. 

See Also bispecd, bispeci 

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and 
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984. 

[2] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal 
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.
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2bicoherxPurpose Cross-bicoherence estimation using the direct (FFT-based) method 

Syntax [bicx, waxis] = bicoherx(w,x,y)
[bicx, waxis] = bicoherx(w,x,y,nfft,wind,samp_seg,overlap)

Description The cross-bicoherence of the three processes w, x and y is estimated via the 
direct (FFT-based) method. 

w,x,y should all have the same dimensions. 

nfft specifies the FFT length to be used for computing the cross-bicoherence; 
the nominal default value is 128; if nfft is smaller than samp_seg, the power 
of 2 just larger than samp_seg will be used. 

wind specifies the time-domain window to be used; it should be a vector of 
length samp_seg. By default, the hanning window is used. Data segments are 
multiplied by the time-domain window, then Fourier transformed to compute 
the frequency-domain double and triple products. The Fourier transform of the 
window function should be real and nonnegative. 

samp_seg specifies the number of samples per segment. The default value is set 
such that eight (possibly overlapped) records are obtained. 

overlap specifies the percentage overlap between segments. The default value 
is 50. The allowed range is [0,99]. 

If w,x,y are matrices, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. 

bicx is the estimated cross-bicoherence; it is an nfft-by-nfft array, with 
origin at the center, and axes pointing down and to the right. 

waxis is the set of frequencies associated with the cross-bicoherence in bicx. 
Thus, the ith row (or column) of bicx corresponds to the frequency waxis(i), 
i=1,. . .,nfft. Frequencies are normalized; that is, the sampling frequency 
is assumed to be unity. 

A contour plot of the magnitude of the estimated cross-bicoherence is 
displayed. 
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Algorithm The data, w,x,y, are segmented into possibly overlapping records; the mean is 
removed from each record, the time-domain window is applied, and the FFT 
computed; the cross-bispectrum of the kth record is computed as, Bwxy,k(m,n) = 
Wk(m)Xk(n) , where Wk, Xk, and Yk denote the FFT of the kth 
segments of w,x, and y. The spectra are computed as Pw,k(m) = |Wk(m)|2, 
Px,k(m) = |Xl(m)|2, and 
Py,k(m) = |Yk(m)|2. The spectral and cross-bispectral estimates are averaged 
across records, and the cross-bicoherence is then estimated as

where Bwxy(ƒ1,ƒ2) is the averaged estimate of the cross-bispectrum, and Pw(ƒ), 
Px(ƒ),  and Py(ƒ) are the averaged estimates of the power spectra of w,x and y. 

See Also bicoher, bispecdx 

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and 
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984. 

[2] Nikias, C.L. and A. Petropulu, Higher-Order Spectra Analysis: A Nonlinear 
Signal Processing Framework, New Jersey: Prentice-Hall, 1993.
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2bispecdPurpose Bispectrum estimation using the direct (FFT-based) method 

Syntax [bspec, waxis] = bispecd(y)
[bspec, waxis] = bispecd(y,nfft,wind,samp_seg,overlap)

Description The bispectrum of the process y is estimated via the direct (FFT-based) 
method. 

y is the data vector or matrix. 

nfft specifies the FFT length to be used for computing the bispectrum; the 
nominal default value is 128; if nfft is smaller than samp_seg, the power of 2 
just larger than samp_seg will be used. 

wind specifies the frequency-domain smoothing window. 

If wind is a scalar, the Rao-Gabr window of length wind will be used. This 
window is defined by [2], 

where N is half the FFT length, nfft, and G is the set of points, (m,n), 
satisfying, 

• A unity value for wind results in no windowing. 

• If wind <= 0, the default value of 5 will be used. 

• If wind is a vector, it is assumed to specify a 1-D window from which a 2-D 
window is computed, W(m,n) = w(m)w(n)w(m + n)[1]-[2]. 

• If wind is a 2-D matrix, it is assumed to specify the 2-D smoother directly. 
The bispectrum estimate averaged across records is smoothed by convolving 
with the 2-D window function. The window function should be real and 
nonnegative. 

samp_seg specifies the number of samples per segment. The default value is set 
such that eight (possibly overlapped) records are obtained. 
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overlap specifies the percentage overlap between segments. The default value 
is 50. The allowed range is [0,99]. 

If y is a matrix, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. 

bspec is the estimated bispectrum; it is an nfft-by-nfft array, with origin at 
the center, and axes pointing down and to the right. 

waxis is the set of frequencies associated with the bispectrum in bspec. Thus, 
the ith row (or column) of bspec corresponds to the frequency waxis(i), i=1,. 
. .,nfft. Frequencies are normalized; that is, the sampling frequency is 
assumed to be unity. 

A contour plot of the magnitude of the estimated bispectrum is displayed. 

Algorithm The data, y, are segmented into possibly overlapping records; the mean is 
removed from each record, and the FFT computed; the bispectrum of the kth 
record is computed as, , where Xk denotes 
the FFT of the kth record, where denotes the FFT of the kth record. The 
bispectral estimates are averaged across records, and an optional 
frequency-domain smoother (specified by parameter wind) is applied. 

See Also bispeci 

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and 
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984. 

[2] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal 
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.

Bk m n,( ) Xk m( )Xk n( )Xk
* m n+( )=
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2bispecdxPurpose Cross-bispectrum estimation using the direct (FFT) method

Syntax [bspec,waxis]=bispecdx(x,y,z,nfft,wind,samp_seg,overlap,flag)

Description The cross-bispectrum of the three processes, x, y, and z, Bxyz(ω1,ω2), is 
estimated via the direct (FFT) method. 

x, y, and z should have the same dimensions. 

nfft specifies the FFT length to be used for computing the cross-bispectrum; 
the nominal default value is 128; the actual FFT size used will be 
max(samp_seg, nfft).

wind specifies the frequency-domain smoothing window. If wind is a scalar, the 
Rao-Gabr window [2] 

of length wind will be used; here is half the FFT length, nfft, and is the set of 
points, (m,n), satisfying, 

• A unity value for wind results in no windowing. 

• If wind <=0, the default value of 5 will be used. 

• If wind is a vector, it is assumed to specify a 1-D window from which a 2-D 
window is computed, W(m,n) = w(m)w(n)w(m + n)  [1]-[2]. 

• If wind is a 2-D matrix, it is assumed to specify the 2-D smoother directly. 
The bispectrum estimate averaged across records is smoothed by convolving 
with the 2-D window function. 

samp_seg specifies the number of samples per segment. The default value is set 
such that eight (possibly overlapped) records are obtained. 

overlap specifies the percentage overlap between segments. The default value 
is 50. The allowed range is [0,99]. 

If y is a matrix, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. 

W m n,( ) 3

π3
------- 1 m2 n2 mn+ +

N2
------------------------------------– m n,( ) G∈,=

m2 n2 mn+ + wind
2

nfft 2⁄( )2
-----------------------.≤
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flag — a contour plot of the estimated cross-bispectrum will be displayed only 
if flag is nonzero; the default value is 1. 

bspec is the estimated cross-bispectrum. It is an nfft-by-nfft array, with 
origin at the center, and axes pointing down and to the right. 

waxis is the set of frequencies associated with the cross-bispectrum in bspec; 
thus, the ith row (or column) of bspec corresponds to the frequency waxis(i), 
i=1,. . .,nfft. Frequencies are normalized; that is, the sampling frequency 
is assumed to be unity. 

Algorithm The cross-bispectrum definition used in this routine is given by, 

and is the 2-D Fourier transform of the cross-cumulant defined by

For a complex process, the cross-cumulant may also be defined by conjugating 
one or more of the terms x, y, and z. This is readily accomplished by using the 
MATLAB function conj.

x, y, and z are segmented into possibly overlapping records; the mean is 
removed from each record, and the FFT computed. The cross-bispectrum of the 
kth record is computed as, 

where Xk, Yk and Zk are the FFT’s of the kth segments of x, y, and z. The 
bispectral estimates are averaged across records, and an optional 
frequency-domain smoother (specified by parameter wind) is applied. 

See Also bispecd 

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and 
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984. 

[2] Nikias, C.L. and A. Petropulu, Higher-Order Spectra Analysis: A Nonlinear 
Signal Processing Framework, New Jersey: Prentice-Hall, 1993.

Bxyz ω1 ω2,( ) : E X ω1( )Y ω2( )Z* ω1 ω2+( ){ },=

Cxyz m n,( ) : E x t m+( )y t n+( )z* t( ){ }.=

Bxyz k, m n,( ) Xk m( )Yk n( )Zk
* m n+( )=
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2bispeciPurpose Bispectrum estimation using the indirect method

Syntax [bspec,waxis] = bispeci(y,nlag) 
[bspec,waxis] = bispeci(y,nlag,samp_seg,
                        overlap,flag,nfft,wind) 

Description The bispectrum of the process y is estimated via the indirect method. 

y is the data vector or matrix.

nlag specifies the number of cumulant lags to be computed; the third-order 
cumulants of y, C3y(m,n), will be estimated for –nlag <=m, n <= nlag. This 
parameter must be specified. A useful rule of thumb is to set nlag to nsamp/10, 
where nsamp is the length of the time series y. 

samp_seg specifies the number of samples per segment or record. The default 
value of samp_seg is the length of the time series. 

overlap specifies the percentage overlap between segments. The default value 
is 0. The allowed range is [0,99].

If y is a matrix, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. 

flag should be either biased (unbiased) for biased(unbiased) sample estimates 
of cumulants. By default, biased estimates are computed. 

If the first letter is not 'b', unbiased estimates are computed. 

nfft specifies the FFT length to be used for computing the bispectrum; the 
default value is 128; if nfft is smaller than 2*nlag+1, the power of 2 just larger 
than 2*nlag+1 will be used.

wind specifies the lag-domain smoothing window. If wind is 0, the Parzen 
window will be applied. Otherwise, the usual unit hexagonal window will be 
applied. The Parzen window is the default. 
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The 1-D Parzen window is defined by, 

where L = nlag. The actual window applied to the estimated cumulants is given 
by, 

W(m,n) = dp(m)dp(n)dp(m – n).

The unit hexagonal window is given by, 

W(m,n) = d(m)d(n)d(m – n).

where d(m) = 1, |m| ≤ nlag.

bspec is the estimated bispectrum; it is an nfft-by-nfft array, with origin at 
the center, and axes pointing down and to the right. 

waxis is the set of frequencies associated with the bispectrum in bspec. Thus, 
the ith row (or column) of bspec corresponds to the frequency waxis(i). 
Frequencies are normalized; that is, the sampling frequency is assumed to be 
unity. 

Algorithm The data, y, are segmented into possibly overlapping records; biased or 
unbiased sample estimates of third-order cumulants are computed for each 
record and then averaged across records; a lag window is applied to the 
estimated cumulants, and the bispectrum is obtained as the 2-D FFT of the 
windowed cumulant function. 

See Also bispecd 

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and 
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984. 

[2] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal 
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.
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2bispectPurpose Theoretical bispectrum of an ARMA process

Syntax [bspec, waxis] = bispect(ma,ar,nfft)

Description The theoretical bispectrum corresponding to an ARMA process is computed. 

ma is the MA parameter vector, and must be specified. 

ar is the AR parameter vector; its default value is [1.0]. 

nfft specifies the FFT length to be used for computing the bispectrum; the 
default value is 512. 

bspec is the bispectrum corresponding to the ARMA model. It is an 
nfft-by-nfft array, with origin at the center, and axes pointing down and to 
the right. 

waxis is the set of frequencies associated with the bispectrum in bspec; thus, 
the ith row (or column) of bspec corresponds to the frequency waxis(i). The 
sampling frequency is assumed to be unity. 

Algorithm Let H(ƒ) = B(ƒ)/A(ƒ) denote the transfer function of the ARMA filter; then, the 
bispectrum is given by, 

B(ƒ1,ƒ2) = H(ƒ1)H(ƒ2)H*(ƒ1 + ƒ2).

See Also cumtrue, trispect 

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and 
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984. 

[2] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal 
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.
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2cum2xPurpose Computes the cross-cumulant (covariance) of two signals 

Syntax cvec = cum2x(x,y,maxlag,samp_seg,overlap,flag) 

Description Computes the second-order cross-cumulant (covariance) of the two signals, x 
and y.

x, y should have identical dimensions. 

maxlag specifies the maximum lag of the cumulant to be computed; its default 
value is 0. 

samp_seg specifies the number of samples per segment. Its default value is the 
row dimension of y; if y is a row vector, the column dimension is used as the 
default value. 

overlap specifies the percentage overlap between segments; the allowed range 
is [0,99]; the default value is 0. 

If flag is biased, then biased sample estimates are computed (default); if the 
first letter is not ’b’, unbiased estimates are computed. 

cvec will contain the sample estimates of 

E{ }, m = –maxlag, . . . , maxlag. 

Here µx denotes the mean of process x, and the superscript * denotes complex 
conjugation. 

If x, y are matrices, columns are assumed to correspond to different 
realizations; in this case, overlap is set to 0, and samp_seg to the row 
dimension; the cross-cumulant is estimated from each realization, and then 
averaged across the suite of realizations. 

x* n( ) µx
*

–( ) y n m+( ) µy–( )
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Algorithm Let x(n) and y(n), n = 1, . . ., N, denote the two time series. Let M denote the 
number of samples per segment (the value of the variable samp_seg). Let O 
denote the percentage overlap between segments (the value of the variable 
overlap). Let M1 = M – M * O/100. Then, the time series, x and y, are  
segmented into K records of M samples each, where 
K = (N – M * O/100)/M. The kth record or segment of x consists of the samples

xk(i) = x(i + (k – 1) * M1), i = 1, . . ., M; k = 1, . . ., K;

yk(i) is defined similarly. 

The sample mean is removed from each record, and sample estimates of the 
cross-covariance are computed as 

where the summation over i extends from 1 + max(0, –m) to 
M – max(0, m). The normalizing parameter M(m) is identically equal to M for 
biased estimates, and equals M – max(0, m) – max(0, –m) for unbiased 
estimates. The cumulants estimated from the K records are then averaged to 
obtain the final estimate, 

See Also cum3x, cum4x, cumest

Ck m( ) 1
M m( )
---------------- xk

*

i
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C m( ) 1
K
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k 1=
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2cum3xPurpose Computes the third-order cross-cumulant of three signals

Syntax cvec = cum3x(x,y,z,maxlag,samp_seg,overlap,flag,k1) 

Description Computes the third-order cross-cumulant of the three signals, x, y, and z, 
which should have identical dimensions. 

maxlag specifies the maximum lag of the cumulant to be computed; its default 
value is 0. 

samp_seg specifies the number of samples per segment. Its default value is the 
row dimension of y; if y is a row vector, the column dimension is used as the 
default value. 

overlap specifies the percentage overlap between segments; the allowed range 
is [0,99]; and the default value is 0. 

If flag is biased, then biased sample estimates are computed (default); if the 
first letter is not 'b', unbiased estimates are computed. 

Parameter k1 controls which 1-D slice of the cross-cumulant is computed; the 
default value is 0. By varying k1, we can obtain the entire third-order cross 
cumulants. 

cvec will contain the sample estimates of 

E{ (z(n + k1) – µz}, m = –maxlag, . . . , maxlag.

Here µx denotes the mean of process x, and the superscript * denotes complex 
conjugation. 

If x, y, z are matrices, columns are assumed to correspond to different 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension; the cross-cumulant is estimated from each realization, and then 
averaged across the suite of realizations. 

x* n( ) µx
*

–( ) y n m+( ) µy–( )
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Algorithm Let x(n), y(n), and z(n), n = 1, . . ., N denote the three time series. Let M denote 
the number of samples per segment (the value of the variable samp_seg). Let O 
denote the percentage overlap between segments (the value of the variable 
overlap). Let M1 = M – M * O/100. Then, the time series, x, y, and z, are 
segmented into K records of M samples each, where K = (N – M * O/100)/M. The 
kth record or segment of x consists of the samples

xk(i) = x(i + (k – 1) * M1), i = 1, . . ., M; k = 1, . . ., K;

yk(i) and zk(i) are defined similarly. 

The sample mean is removed from each record, and sample estimates of the 
third-order cross-cumulants are obtained as, 

where the summation over i extends from 1 + max(0,-m,-n) to M – max(0, m,n). 
The normalizing parameter M(m,n) is identically equal to M for biased 
estimates, and equals M – max(0,m,n) – max(0,-m,-n) for unbiased estimates. 
The cumulants estimated from the K records are then averaged to obtain the 
final estimate, 

See Also cum2x, cum4x, cumest 
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2cum4xPurpose Computes the fourth-order cross-cumulant of four signals

Syntax cvec = cum4x(w,x,y,z,maxlag,samp_seg,overlap,flag,k1,k2) 

Description Computes the fourth-order cross-cumulant of the four signals, w, x,y, and z, 
which should have identical dimensions. 

maxlag specifies the maximum lag of the cumulant to be computed; its default 
value is 0. 

samp_seg specifies the number of samples per segment. Its default value is the 
row dimension of y; if y is a row vector, the column dimension is used as the 
default value. 

overlap specifies the percentage overlap between segments; the allowed range 
is [0,99]; and the default value is 0. 

If flag is biased, then biased sample estimates are computed (default); if the 
first letter is not 'b', unbiased estimates are computed. 

Parameters k1 and k2 control which 1-D slice of the cross-cumulant is 
computed; the default value for both the parameters is 0. By varying k1 and k2, 
we can obtain the entire fourth-order cross-cumulant. 

cvec will contain the sample estimates of

cum(w*(n), x(n + m), y(n + k1), z*(n + k2)),  m = –maxlag, . . ., maxlag, 

where the superscript * denotes complex conjugation, and 
cum(a,b,c,d) = E(abcd) – E(ab)E(cd) – E(ac)E(bd) – E(ad)E(bc), and it is 
assumed that a,b,c,d are zero-mean random variables. 

If w, x, y, z are matrices, columns are assumed to correspond to different 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension; the cross-cumulant is estimated from each realization, and then 
averaged across the suite of realizations. 
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Algorithm Let w(n), x(n), y(n) and z(n), n = 1, . . ., N denote the three time series. Let M 
denote the number of samples per segment (the value of the variable 
samp_seg). Let O denote the percentage overlap between segments (the value 
of the variable overlap). Let M1 = M – M * O/100. Then, the time series, w, x,y, 
and z, are segmented into K records of M samples each, where K = (N – M * O/
100)/M. The kth record or segment of x consists of the samples

xk(i) = x(i + (k – 1) * M1), i = 1, . . ., M; k = 1, . . ., K;

wk(i), yk(i) and zk(i) are defined similarly.

The sample mean is removed from each record, and sample estimates of the 
fourth-order cross-cumulants are obtained as, 

where the summation over i is such that the indices of w(⋅), x(⋅), y(⋅), and z(⋅) are 
all in the range [1,M]. The normalizing parameter M(m,n,t) is identically equal 
to M for biased estimates, and equals 
M – max(0,m,n,t) – max(0,-m,-n,-t) for unbiased estimates, and the normalizing 
parameter M(m) is identically equal to M for biased estimates, and equals M – 
max(0,m) – max(0,-m) for unbiased estimates. The cumulants estimated from 
the K records are then averaged to obtain the final estimate, 

See Also cum2x, cum3x, cumest 
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2cumestPurpose Computes sample estimates of cumulants using the overlapped-segment 
method

Syntax cvec = cumest(y) 
cvec = cumest(y,norder,maxlag,samp_seg,overlap,flag,k1,k2) 

Description cumest computes sample estimates of a 1-D slice of the cumulants of the 
process y. 

y is the data matrix or vector. 

norder specifies the cumulant order, and should be 2, 3, or 4; the default value 
is 2. 

maxlag specifies the maximum lag of the cumulant to be computed; its default 
value is 0. 

samp_seg specifies the number of samples per segment; the default value is the 
length of the time series. 

overlap specifies the percentage overlap between segments; maximum 
allowed value is 99; default value is 0. 

If flag is biased, then biased sample estimates are computed (default); if the 
first letter is not 'b', unbiased estimates are computed. 

If y is a matrix, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. Cumulants are estimated from each realization, and then 
averaged. 

Parameters k1 and k2 control which 1-D slice of the cumulant function is 
computed; their default values are zero. 

cvec will contain C2(m), C3(m,k1) or C4(m,k1,k2),   
m = –maxlag, . . . , maxlag, depending upon the specified cumulant order. 

Note that cumest estimates a 1-D slice of the cumulant. 
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Algorithm Let y(n), n = 1, . . ., N denote the three time series. Let M denote the number of 
samples per segment (the value of the variable samp_seg). Let O denote the 
percentage overlap between segments (variable overlap). Let M1 = M – M * O/
100. Then, the time series, y, is segmented into K records of M samples each, 
where K = (N – M * O/100)/M. The kth record or segment of x consists of the 
samples

yk(i) = y(i + (k – 1) * M1), i = 1, . . ., M; k = 1, . . ., K.

The sample mean is removed from the kth record, and sample estimates of the 
cumulants are computed. For example, sample estimates of third-order 
cumulants are obtained as, 

where M(m,n) ≡ M for biased estimates, and M – max(0,m,n) + min(0,m,n) for 
unbiased estimates. The final estimate is given by Second- and fourth-order 

cumulant estimates are obtained similarly; see also the algorithm descriptions 
for M-files cum2x, and and cum4x.  

See Also cumtrue, cum2x, cum3x, cum4x 

Reference [1] Nikias, C.L. and M.R. Raghuveer, “Bispectrum estimation: A digital signal 
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.
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2cumtruePurpose Computes theoretical (that is, true) cumulants of a linear process

Syntax cmat = cumtrue(ma) 
cmat = cumtrue(ma,ar,norder,nlags,k)

Description cumtrue computes the theoretical (that is, true) cumulants of a linear (ARMA) 
process. 

ma is the MA parameter vector, and must be specified. If q is the MA order, then 
ma will be of length q+1. 

ar is the AR parameter vector; its default value is [1]. If p is the AR order, then 
ar will be of length p+1. 

norder is the cumulant order; allowed values are 2, 3 and 4; the default value 
is 3. 

nlags is the maximum number of cumulant lags to be computed. The default 
value of nlags is q+p. 

If fourth-order cumulants are requested, that is, norder is 4, then, k refers to 
the third-lag of the fourth-order cumulant C4(i,j,k). Its default value is 0. 

cmat is the vector or matrix of theoretical cumulants. If norder is 2, cmat is a 
column vector of length 2*nlags + 1, and consists of C2(m),
m =  nlags,. . ., nlags. 

If norder is 3 or 4, cmat is a 2*nlags + 1 by 2*nlags + 1 matrix. If norder is 
3, the (i,j) element of the matrix is C3(i – nlags – 1, j – nlags – 1), and, if norder 
is 4, the (i,j) element of the matrix is C4(i – nlags – 1, 
j – nlags – 1,k). Note that the (nlags+1,nlags+1) element of the matrix cmat 
contains C3(0,0) or C4(0,0,k). 
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Algorithm Let h(n) denote the impulse response of a linear system, excited by an i.i.d. 
process, u(n), with kth order cumulant, γku. Then, the kth order cumulant of the 
output of the linear system is given by the Bartlett-Brillinger-Rosenblatt 
formula,

In this module, γku is assumed to be unity.

See Also bispect, trispect

Reference [1] Mendel, J.M., “Tutorial on higher-order statistics (spectra) in signal 
processing and system theory: Theoretical results and some applications,” 
Proc. IEEE, Vol. 79, pp. 278-305, 1991.
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2doaPurpose Direction of arrival estimation, based on spatial covariance or fourth-order 
cumulant matrix

Syntax [spec,theta,dvec] = doa(ymat)
[spec,theta,dvec] = doa(ymat,dspace,dtheta,nsource,order,delta)

Description doa estimates the angular spectra (of source bearings), for a uniformly spaced 
linear array, using the Eigenvector, Music, Pisarenko, ML (Capon), AR, 
minimum-norm, beamformer, and ESPRIT methods based either on 
fourth-order cumulants or the spatial covariance matrix. The peaks in the 
angular spectra nominally indicate the direction of arrival (DOA). 

various algorithms based on the diagonal slice of the fourth-order cumulant or 
the spatial cross-correlation. 

ymat is the data array; each column corresponds to a different sensor; the rows 
correspond to “snapshots.” 

dspace is the element spacing in wavelength units; the default value is 0.5 (half 
wavelength spacing) 

dtheta is the angular spacing (in degrees) at which the “spectra” are to be 
computed; the default value is 2 degrees. 

nsource is the number of sources; the default value is 0. If nsource is not 
positive you are prompted to choose the number of sources. This value can be 
inferred from the display of the singular values of the covariance or the 
fourth-order cumulant matrix as follows. If the singular values, σ(k), are more 
or less constant for k > p, then, a useful rule-of-thumb is to choose p as the 
number of sources. (With finite data records, you can expect a slow decrease in 
the smaller singular values.) Usually, there will be a significant drop in the 
singular value from σ(p) to σ(p + 1). 

order specifies the cumulant order to use; it should be either 2 (for 
cross-correlation based estimates) or 4 (for estimates based on the diagonal 
slice of the fourth-order cross-cumulant). The default value is 4. 

delta is the displacement between the two subarrays for ESPRIT; here, we 
assume that the two subarrays are obtained by partitioning a single array. If 
there are m sensors (the column dimension of array ymat), then, the first array 
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will consist of sensors 1,2, . . .,m-delta, and the second array will consist 
of sensors delta, delta+1, . . ., m. The default value of delta is 1. 

spec is the array of estimated “spectra”; the columns correspond to estimates 
based on the Eigenvector, Music, Pisarenko, ML (Capon), AR, minimum-norm 
and beamformer methods; the rows correspond to bearing angles, which are 
returned in the vector theta. All estimated spectra are normalized to a 
maximum value of unity. 

theta is the vector of bearings, corresponding to the rows of spec. 

dvec is the vector of bearings estimated by ESPRIT. 

Algorithm Details of the algorithm are given in the “Tutorial”.

See Also harmest 

References [1] Johnson, D.H., “The application of spectrum estimation methods to bearing 
estimation problems,” Proc. IEEE, Vol. 70, pp. 975-89, 1982. 

[2] Pan, R. and C.L. Nikias, “Harmonic decomposition methods in cumulant 
domains,” Proc. ICASSP-88, pp. 2356-59, New York, 1988.

[3] Roy, R. and T. Kailath, “ESPRIT – Estimation of signal parameters via 
rotational invariance techniques,” IEEE Trans ASSP, Vol. 37, pp. 984-95, July 
1989.  

[4] Swami, A. and J.M. Mendel, “Cumulant-based approach to the harmonic 
retrieval and related problems,” IEEE Trans. ASSP, Vol. 39, pp. 1099-1109, 
May 1991.
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2doagenPurpose Generates synthetics for the direction of arrival (DOA) problem, using a 
uniform linear array

Syntax ymat = doagen
ymat = doagen(default)

Description doagen generates synthetics for the DOA problem. The sensor array is assumed 
to be linear and equispaced (uniform).

zmat returns the generated data: each column corresponds to a different 
realization. 

If doagen is invoked without any input arguments, then you are prompted for 
all parameters: the source bearings, number of sensors (msens), sensor spacing, 
number of samples per sensor record (nsamp), pdf of source signal, variance of 
additive noise, pdf of additive noise, and ARMA parameters for the noise 
spectrum. The sensor array is assumed to be linear and uniformly spaced. 

If the user-specified noise variance is greater than zero, the sensor signals are 
standardized to unity variance, before the additive noise is added to them. 

If the function is invoked as doagen(default), where the variable default 
may take on any value(s), then, the default settings are used. Matrix ymat in 
file doa1.mat was generated via ymat = doagen(1);.

ymat is an nsamp-by-msens array, where nsamp is the number of samples per 
sensor record, and msens is the number of sensors. The kth column contains the 
signal observed at the kth sensor. 
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2glstatPurpose Computes decision statistics for Hinich’s Gaussianity and linearity tests 

Syntax [sg, sl] = glstat(y) 
[sg, sl] = glstat(y,cparm,nfft)

Description glstat estimates the decision statistics for Hinich’s Gaussianity and linearity 
tests. 

The bispectrum is estimated using the direct method, and a frequency-
domain 2-D boxcar smoother is applied. The power spectrum is estimated via 
the direct method, and a boxcar smoother is applied. The bicoherence is then 
estimated. The Gaussianity test (actually zero-skewness test) basically 
involves deciding whether or not the estimated bicoherence is zero. The 
linearity test involves deciding whether or not the estimated bicoherence is 
constant.

y is the time series (should be a vector). 

cparm is the resolution parameter; it should lie between 0.5 and 1.0, if a single 
record is used; the default value is 0.51. Increasing cparm decreases the 
variance of the smoothed bispectral and spectral estimates, but at the expense 
of poorer resolution. 

nfft is the FFT length to be used; the default length is 128. If the length of y 
is greater than nfft, y is segmented into records of length nfft. 

The boxcar window length, M, is the value obtained by rounding off (nfft)cparm. 

sg, the statistic for the Gaussianity test, is a three-element vector:

sg(1) is the estimated statistic S.

sg(2) is the number of degrees of freedom (df), p.

sg(3) is the probability of false alarm (Pfa). 

More specifically, it is the probability that a χ2 random variable with p degrees 
of freedom could have a value larger than the estimated S in sg(1). If this 
probability is small, say, 0.05, then we may reject the hypothesis of zero 
skewness at a Pfa (or significance level) of 0.05. In other words, if you decide to 
accept the hypothesis that the data have nonzero skewness, then the 
probability that the data may actually have zero skewness is given by sg(3). If 
Pfa is large, then the hypothesis of zero skewness cannot be easily rejected. 
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sl, the statistic for the linearity test, is a three-element vector: (see below for 
more details):
sl(1) is the estimated statistic R. 
sl(2) is the estimated parameter λ (this parameter is called λo in Hinich’s 
paper). 
sl(3) is the theoretical value of R. 

The linearity hypothesis should be rejected if the estimated statistic, R, is much 
larger or much smaller than the interquartile range of  (the χ2 
distributed random variable, with 2 degrees of freedom, and noncentrality 
parameter, λ) [1]. In practice, for a nonlinear process, the estimated R value 
may be expected to be much larger than the theoretical R value [1]. The number 
of samples available to estimate the interquartile range is also printed; note 
that the estimate cannot be reliable if the number of samples is small. 

Algorithm Let B3y(ω1,ω2) denote the bispectrum, and let Pyy(ω) denote the power 
spectrum. The normalized bispectrum (or bicoherence) is defined as 

Under the Gaussianity (zero skewness) assumption, the expected value of the 
bicoherence is zero, that is, E{bicy(ω1,ω2)} = 0. The test of Gaussianity is based 
on the mean bicoherence power, 

where the summation is performed over the nonredundant region of the 
bispectrum; details are given in [1]. The statistic S is χ2 distributed, with p 
degrees of freedom, where p is a function of the FFT length, nfft, and the 
resolution parameter, cparm [1].

Under the linearity assumption, Bn(ω1,ω2)  is constant for all ω1 and ω2.

Let 

χ2
2 λ( )

bicy ω1 ω2,( ) = 
B3y ω1 ω2,( )

Pyy ω1( )Pyy ω2( )Pyy ω1 ω2+( )( )1 2⁄--------------------------------------------------------------------------------------------.

S bicy ω1 ω2,( ) 2,∑=

X ω1 ω2,( ) 1

N1 2*cparm–
-------------------------------------Bn ω1 ω2,( ).=
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An estimate of λ := (2N2*cparm-1)γ3x is obtained. Note that X(ω1,ω2) is 
chi-squared distributed with noncentrality parameter λ. The sample 
interquartile range R of the X(m,n)’s is estimated, and should be compared with 
the theoretical interquartile range of a chi-squared distribution with two 
degrees of freedom and noncentrality parameter λ. 

These statistics are defined in Hinich’s paper [1]. Sankaran’s approximations 
in [2] are used to estimate the Pfa and the theoretical interquartile value of 

. 

References [1] Hinich, M.J., “Testing for Gaussianity and linearity of a stationary time 
series,” J. Time Series Analysis, Vol. 3, pp. 169-76, 1982. 

[2] Patel, J.K. and C.B. Read, Handbook of the Normal Distribution, Sec 7.9.4, 
M. Dekker, New York, 1982. 

χ2
2 λ( )
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2harmestPurpose Estimation of frequencies of harmonics in colored Gaussian noise, and power 
spectra

Syntax [Pxx,ar1,ar2] = harmest(y) 
[Pxx,ar1,ar2] = harmest(y,maxlag,p_order,flag,nfft,norder)

Description harmest estimates the frequencies of real harmonics in noise, and power 
spectra using the MUSIC, Eigenvector, Pisarenko, ML (Capon), AR and 
minimum-norm methods based either on the diagonal slice of fourth-order 
cumulants, or on the covariance; it also estimates the conventional 
periodogram. 

y is the data matrix; each of its columns is assumed to correspond to a different 
realization. 

maxlag specifies the number of cumulant lags to be computed;

maxlag should be greater than twice the maximum number of harmonics 
expected. The default value of maxlag is arbitrarily set to nsamp/12, where 
nsamp is the row dimension of the data matrix. 

p_order specifies the order (must be greater than or equal to twice the number 
of harmonics); if this parameter is not specified, or is not positive, you are 
prompted for the value of p_order. The order can be inferred from the display 
of the the singular values of the cumulant matrix as follows. If the singular 
values, σ(k), are more or less constant for k > p, then, a useful rule-of-thumb is 
to choose p as the number of harmonics. (With finite data records, one should 
expect a slow decrease in the singular values.) Usually, there will be a 
significant drop in the singular value from σ(p) to σ(p + 1). 

If flag is biased, biased sample estimates of cumulants are computed 
(default); if the first letter is not 'b', unbiased estimates are computed. 

nfft specifies the FFT length; its default value is 256. 

norder specifies the cumulant order to use; it should be either 2 (for covariance 
based estimates) or 4 (for estimates based on the diagonal slice of the 
fourth-order cumulant). The default value is 4. 

Pxx is an nfft/2 × 7 matrix, whose first five columns, respectively contain 
estimates of “power spectra” obtained via the MUSIC, Eigenvector, Pisarenko, 
ML (Capon) and AR methods based on the diagonal slice of the fourth-order 
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cumulant or the covariance function. The sixth column contains the standard 
power spectrum estimate obtained via the periodogram method. The last 
column is the estimate obtained by applying the minimum norm algorithm. All 
estimated spectra are normalized to a maximum value of unity for purposes of 
display only. The estimated “power spectra” are displayed on the MATLAB 
graphics window. 

ar1 is the estimated parameter vector for the AR method. 

ar2 is the estimated parameter vector for the minimum-norm method. 

Algorithm Let C denote the maxlag by maxlag matrix, with entries, 
C(i,j) = C4y(i – j,0,0)  or C(i,j) = C2y(i – j). Also, let C = VSV′ denote the eigen 
decomposition, where S is the diagonal matrix of eigenvalues, λ(k), and V is the 
matrix of eigenvectors, vk, k = 1, . . ., maxlag. Let

e(ω) := [1,exp(–jω) , . . ., exp(–j(maxlag – 1)ω)]′ 

denote the FFT vector; and let p denote the chosen order (the parameter 
p_order). Then, the “power spectral” estimates are obtained as follows. 

where,

where δ(k) is the Kronecker delta function. 

The AR power spectrum is obtained as follows: First, a rank approximation of 
the matrix C is obtained, as , where  is obtained from S by setting 
λ(k) = 0, k = p + 1, . . ., M. The AR parameter vector is then obtained as the 
solution to ; the method in [5] is used, and the solution is forced to have 
unity modulus. 

P ω( ) w k( ) e′ ω( )vk
2

k p= 1+

M

∑
 
 
 
 

=

w k )( )
1                 MUSIC
1 λ k( )        Eigenvector⁄                             
δ k m–( )      Pisarenko





=
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The ML(Capon) solution is given by, 

Let V denote the matrix of eigenvectors corresponding to the p largest 
eigenvalues of R. Partition matrix V as, 

The AR parameter vector for the minimum-norm solution is given by 

The power spectrum is given by 

References [1] Pan, R., and C.L. Nikias, “Harmonic decomposition methods incumulant 
domains,” Proc. IEEE ICASSP-88, pp. 2356-59, 1988.

[2] Swami, A., and J.M. Mendel, “Cumulant-based approach to the harmonic 
retrieval and related problems,” IEEE Trans. ASSP,  Vol. 39, pp. 1099-1109, 
May 1991; see also Proc. ICASSP-88, pp. 2264-67, 1988. 

[3] Cadzow, J.A., “Spectral Estimation: An Overdetermined Rational Model 
Equation Approach,” Proc. IEEE, Vol. 70, pp. 907-38, 1982. 

[4] Haykin, S., Adaptive Filter Theory, New Jersey: Prentice-Hall, pp. 464-70, 
2nd ed., 1991.

[5] Kumaresan, R. and D.W. Tufts, “Estimating the angles of arrival of multiple 
plane waves,” IEEE Trans. AES, Vol. 19, pp. 134-39, 1983. 
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2harmgenPurpose Generates harmonics in colored Gaussian noise

Syntax zmat = harmgen
zmat = harmgen(default) 

Description harmgen generates independent realizations of the signal 

If harmgen is invoked without any input arguments, then you are prompted for 
the length of the realizations, the number of realizations, the number of 
harmonics (p), their frequencies (λk) and amplitudes (αk), and the variance of 
the additive colored Gaussian noise, g(n). 

The additive colored Gaussian noise, g(n), is generated by passing a white 
Gaussian noise sequence through an user-specified ARMA filter (you are 
prompted for these ARMA parameters). For each realization, the phases φk are 
chosen randomly from an uniform distribution. Note that noise-free 
realizations can be obtained by specifying a value of zero for the noise variance 
(when prompted).

If the function is invoked as harmgen(default), where the variable default 
may take on any value(s), then, the default settings are used (see Examples 
below). 

Each column of zmat corresponds to a different realization. 

The matrix zmat in the file harm.mat can be regenerated via 
zmat = harmgen(1);.

y n( ) ak 2πλkn φk+( )cos

k 1=

p

∑ g n( )+=
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2hosademoPurpose A guided tour of the Higher-Order Spectral Analysis Toolbox

Syntax hosademo

Description hosademo takes you on a guided tour of the Higher-Order Spectral Analysis 
Toolbox; hosademo also offers a brief introduction to the area of higher-order 
statistics. 
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2hosahelpPurpose Gives a one-line synopsis for all M-files in the Higher-Order Spectral Analysis 
Toolbox

Syntax hosahelp

Description hosahelp gives a one-line synopsis for all the documented M-files in the 
Higher-Order Spectral Analysis Toolbox.
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2hpronyPurpose Estimates the parameters of a complex transient signal modeled as the sum of 
complex exponentials with decaying amplitudes 

Syntax [a,theta,alpha,fr] = hprony(x,p) 

Description Models a complex transient signal as the sum of complex exponentials with 
decaying amplitudes, 

where p is the order; the a(k)’s are amplitudes, θ(k)’s are the initial phases, 
α(k)’s are the damping factors, and ƒ(k)’s are the frequencies. 

x is the time series; it must be a vector. 

p is the order; default value is n/10, where n is the length of x. 

a is the vector of estimated amplitudes.

theta is the vector of estimated initial phases. 

alpha is the vector of estimated damping factors. 

fr is the vector of estimated frequencies. 

The input time series, and the time series corresponding to the estimated 
parameters are plotted. 

Algorithm The Signal Processing Toolbox function prony is used to fit an ARMA(p,p-1) 
model to the transient signal; the MATLAB function residue is used to convert 
the ARMA parameters to the pole-residue form; these are then converted to the 
amplitude, phase, frequency, and damping factor terms. 

Note that estimates of the amplitude and starting phase are sensitive to the 
presence of additive noise. 

Reference [1] Krauss, T., J.N. Little, and L. Shure, MATLAB Signal Processing Toolbox 
User’s Guide, The MathWorks Inc., 1994.

x n( ) a k( )ejθ k( ) n α k ) j2πƒ k(+( )( )( )exp ,

k 1=

p

∑=
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2ivcalPurpose Computes instrumental variables. Used by rivdl and rivtr 

Syntax z = ivcal(y)
z = ivcal(y,morder,lambda) 

Description ivcal computes the instrumental variable corresponding to the correlation, or 
to the diagonal slice of third- or fourth-order cumulants. 

y is the time series. If y is a matrix, each column is treated independently. 

morder is the cumulant order: it should be less than 5; default value is 3. 

lambda is the forgetting factor; 0 <  lambda ≤ 1; the default value is 1.

z is the computed instrumental variable. z(n) is obtained from y(n) as follows:

where, for 0 < λ < 1, 

s(n) = s(n – 1) + λy2(n),    s(1) = y2(1).

and, for λ = 1,

Reference [1] Swami, A., and J.M. Mendel, “Adaptive Cumulant-Based Estimation of 
ARMA Parameters,” Proc. Amer. Control Conf., ACC-88, Atlanta, GA, 2114-19, 
June 1988. 

morder z(n)

q <= 0 y(n+q)

 1 sign (y(n)) 

2 y(n)

3 y2(n)

4 y3(n) – 3s(n) * y(n)

s n( ) 1
n
--- y2 k( )

k 1=

n

∑=
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2maestPurpose Estimates MA parameters using the modified GM method 

Syntax bvec = maest(y,q) 
bvec = maest(y,q,norder,samp_seg,overlap,flag) 

Description maest estimates the parameters of the MA(q) process, y, via the modified GM 
method, based on cumulants of order norder and the autocorrelation. 

y is the data vector or matrix. 

q is the MA order. 

norder should be 3 or 4; the default value is 3. 

Variables samp_seg, overlap, and flag control the manner in which sample 
cumulants are estimated: 

samp_seg specifies the number of samples per segment; the default value is the 
length of the time series. 

overlap specifies the percentage overlap between segments; maximum 
allowed value is 99; default value is 0. 

If flag is biased, then biased sample estimates are computed; (default); if the 
first letter is not 'b', unbiased estimates are computed. 

If y is a matrix, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. Cumulants are estimated from each realization, and then 
averaged. 

The estimated MA parameters are returned in the q + 1 element column vector 
bvec. 

Algorithm The GM method obtains the least-squares solution to the set of equations,

where n = –q, . . ., 2q, and norder = 3. For norder = 4, the equations are 

εb k( )C3 n k– n k–,( )

k 0=

q

∑ b2 k( )R n k–( )

k 1=

q

∑ R n( ),=–
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where n = –q, . . ., 2q. Here, R, C3, and C4 are the second-, third- and 
fourth-order cumulants, respectively. 

In order to handle additive white noise, equations involving R(0) are 
eliminated, since the variance of the noise is unknown. 

The modified GM method incorporates a fix, due to Tugnait [2], which appends 
the following set of equations to the preceding set of equations for 

n = –q, . . .,q, or, 

depending upon the specified cumulant order. The least-squares solution to the 
combined system of equations is obtained. Here, , and 

. 

When third-order cumulants are used, the method estimates both b(k) and 
b2(k). Let b1(k) and b2(k) denote the estimates of b(k) and b2(k). If all the 
estimated b2(k)’s are nonnegative, the final MA parameter estimate is obtained 
as, 

otherwise, . 

When fourth-order cumulants are used, the method estimates both b(k) and 
b3(k). Let b1(k) and b3(k) denote the estimates of b(k) and b3(k). If all the 

εb k( )C4 n k– n k– n k–, ,( )

k 0=

q

∑ b3 k( )R n k–( )

k 1=

q

∑ R n( ),=–

ε3R n( ) b k( )C3 k n q,–( )

k 1=

q

∑– C3 n q,–( )=

ε4R n( ) b k( )C4 k n q 0, ,–( )

k 1=

q

∑– C4 n q 0, ,–( )=

ε3 γ3ub q( ) σu
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ε4 γ4ub q( ) σu
2⁄=

b̂ k( ) sign b1 k( )( )* 0.5 b1
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b̂ k( ) b1 k( )=
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estimated b3(k)’s have the same sign as the corresponding b1(k)’s, then the final 
MA parameter estimate is obtained as, 

otherwise, . 

References [1] Giannakis, G.B. and J.M. Mendel, “Identification of non-minimum phase 
systems using higher-order statistics,” IEEE Trans. ASSP, Vol. 37, pp. 360-77, 
Mar. 1989.

[2] Tugnait, J.K., “Approaches to FIR system identification with noisy data 
using higher-order statistics,” IEEE Trans. ASSP, Vol. 38, pp. 1307-17, July 
1990. 

b̂ k( ) sign b1 k( )( )* b1 k( ) b3 k( ) 1 3⁄
+( )/2;=

b̂ k( ) b1 k( )=
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2maorderPurpose Estimates the order of an MA process 

Syntax q = maorder(y,qmin,qmax,pfa,flag) 

Description Estimates the order of an MA process using third-order cumulants. 

y is the observed MA process and must be a vector. 

qmin specifies the minimum expected MA order; the default value is 0. 

qmax specifies the maximum expected MA order; the default value is 10. 

pfa specifies the probability of false alarm for the hypthesis testing procedure; 
the default value is 0.05. 

flag — if flag is nonzero, the sample estimate of C3(q,k), its estimated 
variance, the threshold corresponding to the specified pfa, and whether the 
absolute value of the estimated C3(q,k) is less than the threshold are displayed 
on the command window. The default value is 1. 

q is the estimated MA order. 

Algorithm The basic idea is that for an MA(q) process, the true values of the cumulant 
c3y(m,0) will be identically zero, if m > q. When the true cumulants are replaced 
by sample estimates, the estimated values of c3y(q + 1,0), 
i > 0 will not be identically zero; a statistical test is used to determine whether 
the estimated values are close to zero. The test is based on estimating the 
theoretical variance of the sample estimates of c3y(m,0). 

Sample estimates, , and their variances are estimated for m ranging 
from qmin to qmax. 

For an MA(q) process, the asymptotic variance of the sample estimate of c3y(q 
+ 1,0) is given by,

ĉ3y m 0,( )

σ2 q 1+( ) 1

N2
------- 1 j

N
----– 

 

j q–=

2q 1+

∑
i 1=

N

∑=

y2 i( )y i q 1+ +( ) ĉ3y q 1 0,+( )–[ ]
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where N is the length of the time series. 

The sample estimates are asymptotically normal and unbiased: hence, the 
threshold tc in 

is given by

where erfinv is the MATLAB inverse error function. Let mo denote the largest 
value of m in the range qmin to qmax for which |c3y(m + 1,0)| > tc(m + 1) (so 
that the hypothesis of MA(mo) model fails). Then, the MA order is declared to 
be mo + 1. In the example, mo is 2, and the MA order was declared to be 3. 

This is a statistical test, and pfa specifies the fraction of the time that the test 
results will be wrong. In other words, in a Monte Carlo simulation of 1000 
trials, you should expect the test results to be wrong 1000*pfa times. 
Additionally note that the test condition is necessary, but not sufficient. 

See Also arorder 

Reference [1] Giannakis, G.B. and J.M. Mendel, “Cumulant-based order determination of 
non-Gaussian ARMA models,” IEEE Trans. ASSP, pp. 1411-21, Aug. 1990. 

Pr ĉ3y m 1 0,+( ) tc m 1+( )≤{ } 1 pfa–=

tc m 1+( ) inverƒ 1 pfa–( )* 2*σ2 m 1+( )=
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2matulPurpose Nonparametric magnitude and phase retrieval using the Matsuoka-Ulrych 
algorithm 

Syntax hest = matul(bspec) 

Description The phase and log magnitude of the transfer function are estimated via the 
Matsuoka-Ulrych algorithm, and then converted to the time-domain impulse 
response. 

bspec is the bispectrum array (such as that computed by bispeci or bispecd). 

hest is the estimated impulse response. 

Algorithm The phase unwrapping algorithm in [2] is used to resolve the phase ambiguity 
in the basic algorithm reported in [1]. 

See Also bispecd, bispeci, biceps 

References [1] Matsuoka, T. and T.J. Ulrych, “Phase estimation using the bispectrum,” 
Proc. IEEE, Vol. 72, pp. 1403-11, 1984.  

[2] Rangoussi, M. and G.B. Giannakis, “FIR modeling using log-bispectra: 
Weighted least-squares algorithms and performance analysis,” IEEE Trans. 
Cir Sys, Vol. 38, pp. 281-96, 1991.
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2nlgenPurpose Computes the output of a second-order Volterra system

Syntax y = nlgen(x,h,q) 

Description Computes the output of a second-order Volterra system. 

x is the input to the nonlinear system; it may be a vector or a matrix; if it is a 
matrix, columns are assumed to correspond to different realizations, and each 
column is processed separately. 

h is the impulse response of the linear part; it should be a vector.

q is the impulse response of the quadratic part; it should be a matrix. Note that 
functions nltick and nlpow assume that q is symmetric. 

y is the output of the nonlinear system, and will have the same dimensions as 
x; it is computed via,

where L is the length of h, and q is M-by-N . 

The data files nl1.mat and nl2.mat were generated via this function. 

See Also nltick, nlpow

y n( ) h k( )x n k–( )

k 0=

L 1–

∑ q k l,( )x n k–( )x n l–( ),
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∑
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2nlpowPurpose Nonparametric second-order Volterra System Identification method for 
arbitrary input signals

Syntax [h, q] = nlpow(x,y,nfft) 

Description Implements the nonparametric method of Powers et al [1] for the identification 
of a second-order Volterra system, given both the input and output signals. 

x is the input to the nonlinear system. 

y is the output process; it must have the same dimensions as x. If y is a matrix, 
columns are assumed to correspond to independent realizations. 

nfft is the FFT length to be used; the default value is the power of 2 greater 
than the length of the time series (row dimension for matrices). 

h is the estimated impulse response of the linear part.

q is the estimated impulse response of the quadratic part.

Algorithm The frequency-domain input-output relationship of the second-order Volterra 
system under consideration is, 

It is assumed that Q(ƒ1,ƒ2) =Q(ƒ2,ƒ1) = Q*(–ƒ1,–ƒ2). 

Transfer functions H(ƒ) and Q(ƒ1,ƒ2) are obtained as the least squares solution 
to the set of equations, Y(m) = ATb(m), where, 

and 

Here, M is the FFT length nfft, and m = 0, . . ., M/2 . 

See Also nltick 

Y ƒ( ) H ƒ( )X ƒ( ) Q ƒ1 ƒ2,( )X ƒ1( )X ƒ2( )
ƒ1 ƒ2 ƒ=+

∑+=

b m( ) H m( ) Q m 1+
2

---------------
m 1–

2
--------------, 

  Q m 3+
2

---------------
m 3–

2
--------------, 

  … Q M
4
----- m M

4
-----–, 

 , , , ,
T

=

A X m( ) X m 1+
2

--------------- 
  X m 1–

2
-------------- 

  X m 3+
2

--------------- 
  X m 3–

2
-------------- 

  …X M
4
----- 

  X m M
4
-----– 

 , , ,
T

.=



nlpow

2-66

Reference [1] Powers, E.J., Ch.P. Ritz, C.K. An, S.B. Kim, R.W. Miksad and S.W. Nam, 
“Applications of digital polyspectral analysis to nonlinear systems modeling 
and nonlinear wave phenomena,” Proc. Workshop on Higher-Order Spectral 
Analysis, pp. 73-77, Vail, Colorado, June 1989. 
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2nltickPurpose Nonparametric second-order Volterra System Identification Method for 
Gaussian input signals

Syntax [h, q] = nltick(x,y,nfft,wind,samp_seg,overlap) 

Description Implements Tick’s nonparametric method for the identification of a 
second-order Volterra system, given both inputs and outputs. The inputs are 
assumed to be Gaussian. 

x is the input to the nonlinear system. 

y is the output process; it must have the same dimensions as x. If y is a matrix, 
columns are assumed to correspond to independent realizations. 

nfft is the FFT length for computing power spectra and cross-bispectra; the 
default value is the power of 2 greater than the length of the time series (row 
dimension for matrices). 

wind specifies the frequency-domain smoothing window. If wind is a scalar, the 
Rao-Gabr window of length wind will be used. This window is defined by [2], 

where N is half the FFT length, nfft, and G is the set of points, (m,n), 
satisfying,

• A unity value for wind results in no windowing. 

• If wind <= 0, the default value of 5 will be used.

• If wind is a vector, it is assumed to specify a 1-D window from which a 2-D 
window is computed, W(m,n) = w(m)w(n)w(m + n)  [1]-[2]. 

• If wind is a 2-D matrix, it is assumed to specify the 2-D smoother directly. 
The bispectrum estimate averaged across records is smoothed by convolving 
with the 2-D window function. The window function should be real and 
nonnegative. 
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samp_seg specifies the number of samples per segment. The default value is set 
such that eight (possibly overlapped) records are obtained. 

overlap specifies the percentage overlap between segments. The default value 
is 50. The allowed range is [0,99]. 

h is the estimated impulse response of the linear part.

q is the estimated impulse response of the quadratic part.

Algorithm The output of a second-order Volterra system is given by,

The linear part, h(k), is estimated in the frequency domain from, 

Syx(ω) = H(ω)Sxx(ω)

where Sxx(ω) is the power spectrum of process x(n), and Sxy(ω) is the 
cross-spectrum of the processes x(n) and y(n). This relationship assumes that 
x(n) is symmetrically distributed. 

The quadratic part, q(k,l), is estimated in the frequency domain from,

Syxx(ω1,ω2) = 2Q(ω1,ω2)Sxx(ω1)Sxx(ω2) + Sxx(ω2)δ(ω1 + ω2)E{y(n)}

which is obtained under the assumption that q(k,l) = q(l,k), and that x(n) is 
Gaussian. 

The cross-bispectrum, Syxx(ω1,ω2), is estimated via the direct (FFT) method, 
using function bispecdx. 

See Also nlpow, bispecdx 

Reference [1] Tick, L.J., “The estimation of transfer functions of quadraticsystems,” 
Technometrics, 3, 563-67, Nov 1961.
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2pickpeakPurpose Picks peaks subject to a separation criterion

Syntax [loc, val] = pickpeak(spec,npicks,rdiff) 

Description pickpeak picks the largest npicks peaks in the data vector spec such that the 
peaks are separated by at least rdiff samples. The default values are npicks 
= 2 and rdiff = 5. If spec is a matrix, each column is treated independently.

loc is the matrix of locations (indices) of the picked peaks; the kth column 
corresponds to the kth column of spec. 

val is the matrix of the amplitudes of the picked peaks; the kth column 
corresponds to the kth column of spec. 

A 0 in location (i,j) of array loc (or a NaN in array val) indicates that the jth 
data vector has less than i peaks with a separation of rdiff or more. 
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2qpcgenPurpose Generates synthetics for the quadratically phase-coupled harmonics in colored 
Gaussian noise problem

Syntax zmat = qpcgen
zmat = qpcgen(default)

Description qpcgen generates independent realizations of the signal 

where λk3 = λk2 + λk1, and φk3 = φk2 + φk1; φk1, φk2,  are mutually 
independent, and uniformly distributed over [0,2π]. 

If qpcgen is invoked without any input arguments, then you are prompted for 
the length of the realizations, the number of realizations, the number of 
phase-coupled triplets (p), their frequencies (λk1 and λk2) and amplitudes (αki), 
as well as the corresponding parameters in the uncoupled case (the terms with 
an overbar), and the variance of the colored Gaussian noise, g(n). The colored 
noise is generated by passing a white Gaussian noise sequence through an 
user-specified ARMA filter (you are prompted for these ARMA parameters). 
The phases φk1, φk2, and , i = 1,2,3 are chosen randomly for each realization. 
Note that noise-free realizations can be obtained by specifying a value of zero 
for the noise variance.

If the function is invoked as qpcgen(default), where the variable default 
may take on any value(s), then, the default settings are used (see Examples 
below).

Each column of zmat corresponds to a different realization.

The matrix zmat in the file qpc.mat can be regenerated via 
zmat = qpcgen(1);. 
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2qpctorPurpose Detection of quadratic phase coupling using the TOR method 

Syntax [arvec,bspec] = qpctor(y) 
[arvec,bspec] = qpctor(y,maxlag,arorder,nfft,samp_seg, . . .
                     overlap,flag)

Description qpctor detects quadratically phase coupled harmonics using the TOR method. 

y is the data matrix; each column of y is assumed to correspond to a different 
realization. 

maxlag specifies the maximum number of third-order cumulant lags, C3x(m,m), 
to be used. 

ar_order specifies the AR order to use.If this parameter is not specified, or is 
not positive, a plot of the singular values of the cumulant matrix is displayed, 
and you are prompted to choose an order. 

nfft specifies the FFT length; its default value is 64. 

samp_seg specifies the number of samples per segment; the default value is the 
length of the time series, or the row dimension if y is a matrix. 

overlap specifies the percentage overlap between segments; maximum 
allowed value is 99; default value is 0; the parameter is ignored if y is a matrix. 

If flag is biased, then biased sample estimates of cumulants are computed 
(default); if the first letter is not ’b’, unbiased estimates are computed. 

arvec is the vector of estimated AR parameters. 

bspec is the estimated parametric bispectrum.It is an nfft/2-by-nfft array 
whose upper-left handcornercorresponds to the origin in the bispectral plane; 
the frequenciesincrease downwards and to the right. 

Algorithm Details of the algorithm are given in the “Tutorial”.

Reference [1] Raghuveer, M.R., and C.L. Nikias, “Bispectrum estimation: a parametric 
approach,” IEEE Trans. ASSP, Vol. 33, pp. 1213-30, Oct. 1985. 
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2rivdlPurpose Adaptive AR parameter estimation using the double lattice form of the 
recursive instrumental variable algorithm 

Syntax [arvec, fref, bref, fpe] = rivdl(y) 
[arvec, fref, bref, fpe] = rivdl(y,morder,arorder, . . .

 lambda,delta,thres,nsmuth) 

Description The recursive instrumental variable double lattice algorithm is applied to 
estimate the AR parameters of a possibly nonstationary time series.The model 
is assumed to be causal.

y is the time series (must be a vector). 

morder specifies the cumulant-order to be used; it should be 2, 3, or 4. The 
default value is 4. 

arorder is the AR order (the number of stages in the lattice). The default value 
is 2. 

lambda is the forgetting parameter; 0 < lambda <= 1. The default value is 0.998. 

delta is the initialization value for F(0) and B(0). Its default value is 0.01. 

thres is the threshold check for division by zero.If |x| < thres, 1/x is set to 
zero. The default value is 0.0001 [1].

nsmuth is the window length for estimating the “steady-state” AR parameters. 
Its default value is min(length(y)/4, 50). 

arvec is the steady-state AR parameter vector of length arorder + 1. The last 
nsmuth samples of the reflection coefficients, fref and bref, are averaged, and 
then converted to the AR parameters. 

fref is an nsamp × arorder array containing the forward reflection coefficients 
of the upper lattice,where nsamp is the length of the time series y.

bref is an nsamp × arorder array containing the backward reflection 
coefficients of the upper lattice. 

fpe is the final prediction error. 

Algorithm Details of the algorithm are given in the “Tutorial”. 
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See Also ivcal, rivtr

References [1] Swami, A., and J.M. Mendel, “Adaptive Cumulant-Based Estimation of 
ARMA Parameters,” Proc. Amer. Control Conf., ACC-88, Atlanta, GA, pp. 
2114-19, June 1988.

[2] Porat, B., B. Friedlander, and M. Morf, “Square-root covariance ladder 
algorithms,” in Proc. ICASSP-81, Atlanta, GA, pp. 877-880, March 1981. 
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2rivtrPurpose Adaptive AR parameter estimation using the transversal form of the recursive 
instrumental variable algorithm

Syntax [arvec,fpe,wt] = rivtr(y) 
[arvec,fpe,wt] = rivtr(y,morder,arorder,lambda,delta,nsmuth)

Description The transversal form of the recursive instrumental variable algorithm 
isapplied to estimate the AR parameters of a possibly nonstationary time 
series.The model is assumed to be causal.

y is the time series (must be a vector). 

morder specifies the cumulant-order to be used; it should be 2, 3, or 4. The 
default value is 4. 

arorder is the AR order; the default value is 2. 

lambda is the forgetting parameter; 0 < lambda <= 1. The default value is 0.998. 

delta is the initialization value for F(0) and B(0). Its default value is ±1, where 
the sign is the sign of the cross-correlation between the time series y and the 
corresponding instrumental variable, z, corresponding to order morder and 
unity value for lambda (z is computed via 
z = ivcal(y,morder,1)). 

nsmuth is the window length for estimating the “steady-state” AR parameters. 
Its default value is min(length(y)/4, 50).  

arvec is the AR parameter vector corresponding to the steady-state (final) 
weight vector, and has length arorder + 1. The last nsmuth samples of the 
time-varying weights, wt, are averaged, and then converted to the AR 
parameters. 

fpe is the final prediction error. 

wt is a nsamp × arorder array  of the estimated weights of the adaptive filter as 
a function of time; here nsamp is the length of the time series, y.

Algorithm Details of the algorithm are given in the “Tutorial”. 

See Also ivcal, rivdl
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References [1] Swami, A., and J.M. Mendel, “Lattice Algorithms for Recursive 
Instrumental Variable Methods,” USC-SIPI Report-117, University of 
Southern California, Los Angeles, Dec. 1987. 

[2] Swami, A., System Identification Using Cumulants, Ph.D. Dissertation, 
University of Southern California, pp. 107-8, 1988. 
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2rpiidPurpose Generates i.i.d. random sequence

Syntax u = rpiid(nsamp)
u = rpiid(nsamp,in_type,pspike) 

Description rpiid generates a sequence of nsamp i.i.d. random variables, of the type 
described by in_type. 

The default distribution is “nor.” 

p_spike specifies the event probability for the Bernoulli-Gaussian distribution; 
the default value is 0.1. 

The output sequence, u, is normalized to zero-mean, by subtracting the 
theoretical (not the sample) mean. Note that the mean of any vector u can be 
set to a and its standard deviation to b via, 

u = a + b * (u – mean(u))/std(u).

in_type density function

“exp” Single-sided exponential 

“lap” Double-sided exponential (Laplacian)

“nor” Normal (Gaussian)

“bga” Bernoulli-Gaussian 

“uni” Uniform 
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2tdePurpose Time-delay estimation (TDE) using the parametric third-order cross-cumulant 
method

Syntax [delay,avec] = tde(x,y,max_delay)
[delay,avec] = tde(x,y,max_delay,samp_seg,svdflag) 

Description The time delay between two signals, possibly corrupted with spatially 
correlated colored Gaussian noise, is estimated using the parametric 
third-order cross-cumulant method. 

x and y are the signals at the two sensors; they must have identical dimensions; 
if they are matrices, it is assumed that the columns correspond to different 
realizations. 

max_delay is the absolute value of the maximum expected delay.

samp_seg specifies the number of samples per segment for estimating of 
cumulants; it defaults to the length of the time series (row dimension if x is a 
matrix). 

svdflag is an optional parameter with a default value of zero; if its value is not 
zero, the SVD of the cumulant matrix (see the Algorithm section for details) is 
computed, and you are prompted to choose an order for the SVD low-rank 
approximation. The singular values of the cumulant matrix associated with the 
TDE problem rarely show a clean break (in contrast with those associated with 
the harmonic retrieval problem, solved by harmest, or the DOA problem, solved 
by doa); it is recommended that the order chosen for the SVD low-rank 
approximation be greater than the value of max_delay. 

delay is the estimated delay of signal y with respect to signal x. 

avec is the estimated parameter vector; it is a vector of length 
2-by-max_delay + 1, and corresponds to time samples, –max_delay, . . . , 
max_delay. The estimated delay is the time sample at which avec attains its 
maximum absolute value. 
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Algorithm Let x(n) = s(n) + w1(n), and y(n) = As(n – D) + w2(n), denote the two observed 
signals, where A is the amplitude gain, D is the signal delay between the two 
sensors, and w1(n) and w2(n) are assumed to be jointly Gaussian. Let P be the 
maximum expected delay. Then, 

where a(n) = 0, n ≠ D, and a(D) = A. Let 
Cyxx(τ,ρ) := E{y(n)x(n + τ)x(n + ρ)}, 
and Cyxx(τ,ρ) := E{x(n)x(n + τ)x(n + ρ)}. We obtain the third-order recursion, 

Using this equation for various values of ρ and τ, we get a system of linear 
equations in the a(i)’s, Cxxxa = cyxx. The estimated delay is the index n, which 
maximizes |a(n)|. A low rank approximation of the cumulant matrix Cxxx may 
be used. 

See Also tdeb, tder 

Reference [1] Nikias, C.L. and R. Pan, “Time delay estimation in unknown Gaussian 
spatially correlated noise,” IEEE Trans. ASSP, Vol. 36, pp. 1706-14, Nov. 1988. 
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2tdebPurpose Time-delay estimation (TDE) using the conventional bispectrum method 

Syntax [delay,h] = tdeb(x,y,max_delay,nfft,wind,samp_seg,overlap) 

Description The time delay between two signals, possibly corrupted by colored Gaussian 
noise, is estimated using the conventional bispectrum method. This involves 
computing the third-order hologram (described below) that exhibits a peak at 
the true delay. 

x and y should both be vectors or matrices with identical dimensions. If they 
are matrices, each column is assumed to be a different realization. These are 
the signals at the two sensors. The signals are assumed to have nonzero 
third-order cumulants; for example, they cannot be symmetrically distributed. 

max_delay is the absolute value of the maximum expected delay.

nfft specifies the FFT size to be used; the nominal default value is 128; the 
actual FFT size used will be max(samp_seg, nfft).

wind specifies the frequency-domain smoothing window. If wind is a scalar, the 
Rao-Gabr window [2] 

of length wind will be used; here N is half the FFT length, nfft, and G is the 
set of points, (m,n), satisfying,

• A unity value for wind results in no windowing. 

• If wind <= 0, the default value of 5 will be used.

• If wind is a vector, it is assumed to specify a 1-D window from which a 2-D 
window is computed, W(m,n) = w(m)w(n)w(m + n)  [1]-[2]. 

• If wind is a 2-D matrix, it is assumed to specify the 2-D smoother directly. 
The bispectrum estimate averaged across records is smoothed by convolving 
with the 2-D window function. The window function should be real and 
nonnegative. 
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samp_seg specifies the number of samples per segment. The default value is the 
power of 2 equal to or greater than 4*max_delay+1. 

overlap specifies the percentage overlap between segments. The default value 
is 50. The allowed range is [0,99]. 

If y is a matrix, the columns are assumed to correspond to independent 
realizations; in this case overlap is set to zero, and samp_seg is set to the row 
dimension. 

delay is the estimated delay of signal y with respect to signal x. 

h is the estimated third-order hologram (defined below); it is a vector of length 
nfft, corresponding to  indices of –nfft/2 to nfft/2–1, where nfft is the FFT 
length. 

Algorithm Define auto- and cross-bispectra via,

Bxxx(ω1,ω2) = E{X(ω1)X(ω2)X*(ω1 + ω2)},

Bxyx(ω1,ω2) = E{X(ω1)Y(ω2)X*(ω1 + ω2)}.

The third-order hologram, h(τ), is then defined by

The absolute value of the hologram should display a strong peak at the location 
of the true delay. Since third-order statistics are used, the method is 
insensitive (in theory) to both spatially and temporally colored Gaussian noise. 

Sample estimates of the auto- and cross-bispectra are obtained via routine 
bispecdx: the data is segmented; each segment is Fourier transformed, and the 
triple frequency product is computed; these products are then averaged across 
the suite of segments to give the final cross- and auto-bispectral estimates. In 
order to obtain good estimates, it is critical that the data length be much larger 
than the specified maximum delay. The estimated delay will range from –
nfft/2 to nfft/2–1. 

See Also tde, tder 

Reference [1] Nikias, C.L. and R. Pan, “Time delay estimation in unknown Gaussian 
spatially correlated noise,” IEEE Trans. ASSP, Vol. 36, pp. 1706-14, Nov. 1988. 
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2tdegenPurpose Generates synthetic sequences for the time-delay estimation (TDE) problem 

Syntax [s1,s2] = tdegen 
[s1,s2] = tdegen(default)

Description tdegen generates the data sequences: 

s1(n) = x(n) + g1(n);   s2(n) = Ax(n – D) + g2(n);

where x(n) is a zero-mean i.i.d. random sequence, with single-sided exponential 
density function; g1(n) and g2(n) are zero-mean colored noise sequences; A is 
the amplitude gain from sensor 1 to sensor 2; and D is the delay of the signal 
at the second sensor with respect to that at the first sensor. 

If the function is invoked without any input arguments, then you are prompted 
for all parameters; otherwise, default settings are used.

If the function is invoked as tdegen(default), where the variable default 
may take on any value(s), then, the default settings are used.

The colored noise sequence, g1(n), is obtained by passing an i.i.d. sequence 
(Laplace, uniform, or normally distributed), through an ARMA filter. The 
colored noise sequence, g2(n), is obtained by passing the noise, g1(n), through 
another ARMA filter. Note that the two noise sequences are correlated with 
each other. 

Noise-free signals can be generated by specifying a noise variance of zero when 
prompted. 

Vectors s1 and s2 contain the simulated signals at the two sensors. 

The vectors s1 and s2 in the file tde1.mat can be regenerated via, 
[s1,s2] = tdegen(1);. 
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2tderPurpose Time-delay estimation (TDE) using the ML-windowed cross-correlation 
method 

Syntax [delay,rxy] = tder(x,y,max_delay,samp_seg,overlap,nfft) 

Description The time delay between two signals, possibly corrupted by colored Gaussian 
noise, is estimated using the Maximum Likelihood (ML) windowed 
cross-correlation method. 

x and y should both be vectors or matrices with identical dimensions. If they 
are matrices, each column is assumed to be a different realization. These are 
the signals at the two sensors. 

max_delay is the absolute value of the maximum expected delay.

samp_seg specifies the number of samples per segment; the default value is the 
power of 2 just greater than or equal to 4*max_delay + 1. 

overlap specifies the percentage overlap between segments. The default value 
is 50. The allowed range is [0,99]. 

If x,y are matrices, samp_seg is set to the row dimension of x and overlap is set 
to zero. 

nfft specifies the FFT length to use; the default value is the power of 2 just 
greater than samp_seg. 

delay is the estimated delay of signal y with respect to signal x. 

rxy is the estimate of the windowed autocorrelation (described  below); it is a 
vector of length nfft, corresponding to  indices of –nfft/2 to nfft/2–1. 

Algorithm Let Sxy(ω) denote the cross-spectrum between the two signals, x and y; and let 
Sxx(ω) and Syy(ω) denote the auto-spectra of x and y. The squared coherence 
function is defined by

Cxy ω( )
Sxy ω( ) 2

Sxx ω( )Syy ω( )
-------------------------------------.=
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The optimal-ML window is then 

and the windowed cross-correlation, Rxy(m), is the inverse Fourier transform of 
W(ω)Sxy(ω). 

Estimates of Sxx, Sxy and Cxy are obtained via the Signal Processing Toolbox 
routine spectrum [R1]; the data is segmented, and spectrum estimates from 
individual segments are averaged; the segment length is taken to be the 
smallest power of 2 larger than twice the maximum delay. Since good estimates 
demand a large number of segments, it is critical that the lengths of the time 
series, x and y, be much larger than max_delay. The estimated delay will range 
from –nfft/2 to nfft/2–1. 

The raw delay, d, is estimated as the location of the peak of |Rxy(m)|. A 
three-point interpolation is used to improve the delay estimate:

See Also tde, tdeb 

References [1] Krauss, T., J.N. Little, and L. Shure, MATLAB Signal Processing Toolbox 
User’s Guide, The MathWorks Inc., 1994. 

[2] Nikias, C.L. and R. Pan, “Time delay estimation in unknown Gaussian 
spatially correlated noise,” IEEE Trans. ASSP, Vol. 36, pp. 1706-14, Nov. 1988. 

W ω( ) 1
Sxy ω( )
---------------------

Cxy ω( )
1 Cxy ω( )–
----------------------------,=

di d 1
2
---

Rxy d 1+( ) Rxy d 1–( )–

Rxy d 1+( ) 2∗Rxy d( ) Rxy d 1–( )+–
----------------------------------------------------------------------------------------------.–=



tls

2-84

2tlsPurpose Total Least Squares solution to a system of linear equations 

Syntax [x, flag] = tls(A,b)

Description tls obtains the Total Least Squares (TLS) solution to the linear system of 
equations, Ax = b. If A is m -by- n, and b is m-by- k, it is required that m ≥ n + 
k (that is, in the usual case, where b is a vector, we have k = 1, so that the 
system of equations should be overdetermined). If the problem does not have a 
unique solution, flag will be set to unity. TLS is useful when both A and b have 
“errors.” For example, sample estimates of cumulants have errors in them due 
to finite record lengths. 

Algorithm The least squares solution, xls, to the set of linear equations Ax ≈ b minimizes 
the norm of the residual vector r = Ax – b, subject to the condition that b + r 
is in the range space of A; the implicit assumption is that A is “clean,” but b is 
noisy.

The TLSquares solution [1] assumes that both A and b may be noisy; the TLS 
solution, if one exists, minimizes the Frobenius norm of the matrix [E r] subject 
to the condition that b + r is in the range space of A + E. Here, E and A have 
the same dimensions. 

Let A be m × n, b be m × k, and m ≥ n + k. Consider the SVD of the composite 
matrix [Ab] = UΣV′ where Σ is the diagonal matrix of singular values, σ(t), t = 
1, . . ., n + k. In [1], it is shown that if s(n) > s(n + 1), then the TLS solution 
exists, is unique, and is given by

where the n -by-n matrix and the k -by-k matrix V22 are defined by 

Weighted solutions and other details are discussed in [1]. 

Reference [1] Golub, G.H. and C.F. Van Loan, Matrix Computations, pp. 420-5, Baltimore: 
The Johns Hopkins University Press, 1983. 
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2trenchPurpose Estimates the AR parameters and the reflection coefficients given a slice of a 
cumulant sequence 

Syntax [amat,cmat,pf,gamf,gamb] = trench(c,r) 

Description Given a nonsymmetric Toeplitz matrix, A, described by the first column vector, 
c, and the first row vector, r, obtains the solutions to the set of equations

Ak,kak = [Pk,0]′,

k = 1, . . ., M, where M + 1 is the length of vectors c and r, and Ak,k is the leading 
k × k submatrix of A. If r is not specified, it is set to c′, the conjugate transpose 
of c. 

The typical situation is the estimation of AR parameters based on correlation 
or cumulant sequenes. 

amat is the matrix of estimated forward AR prediction vectors, for orders 1 
through M; the kth column corresponds to the AR(k) model. 

cmat is the matrix of estimated backward AR prediction vectors, for orders 1 
through M; the kth column corresponds to the AR(k) model. 

pf is the final prediction error variance, for orders 1 through M; 

gamf is the vector of forward reflection coefficients. 

gamb is the vector of backward reflection coefficients. 

Algorithm The standard Trench algorithm [2] is implemented; the Levinson-Durbin 
algorithm [1] is obtained when r = c′. 

References [1] Haykin, S., Adaptive Filter Theory, New Jersey: Prentice-Hall, pp. 198-205, 
2nd ed., 1991. 

[2] Zohar, S., “Toeplitz Matrix Inversion: the Algorithm of W.F. Trench,” J. 
Assoc. Comp. Mach., Vol. 16, pp. 592-601, 1968.  
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2trispectPurpose Computes a 2-D slice of the theoretical trispectrum of an ARMA process

Syntax [tspec, waxis] = trispect(ma,ar,nfft,f3) 

Description A 2-D slice of the theoretical trispectrum corresponding to an ARMA process is 
computed. 

ma is the MA parameter vector, and must be specified. 

ar is the AR parameter vector; its default value is [1]. 

nfft is the FFT length to use; its default value is 512. 

f3 specifies the fixed value of the third-frequency, ƒ3, of the trispectrum, 
S3(ƒ1,ƒ2,ƒ3). The default value is 0; the nominal range is [-0.5,0.5]; values 
outside this range are folded back into it. 

tspec is the 2-D slice of the trispectrum corresponding to the ARMA model, 
with fixed ƒ3 = f3. It is an nfft-by-nfft array, with origin at the center, and 
axes pointing down and to the right. 

waxis is the set of frequencies associated with the tspec; thus, the ith row (or 
column) of tspec corresponds to the frequency waxis(i). Frequencies are 
normalized; that is, the sampling frequency is assumed to be unity. 

Algorithm Let H(ƒ) = B(ƒ)/A(ƒ) denote the transfer function of the ARMA filter; then, the 
trispectrum is given by, 

S3(ƒ1,ƒ2,ƒ3) = H(ƒ1)H(ƒ2)H(ƒ3)H*(ƒ1 + ƒ2 + ƒ3).

In this routine, frequency ƒ3 is fixed at the specified value of f3. 

See Also bispect, cumtrue 

References [1] Subba Rao, T. and M. Gabr, An Introduction to Bispectral Analysis and 
Bilinear Time-Series Models, pp. 42-43, New York: Springer-Verlag, 1984.

[2] Nikias, C.L., and M.R. Raghuveer, “Bispectrum estimation: a digital signal 
processing framework,” Proc. IEEE, Vol. 75, pp. 869-91, July 1987.
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2wig2Purpose Computes the Wigner spectrum

Syntax [wx, waxis] = wig2(x,nfft,flag) 

Description Estimates the Wigner spectrum (WS) of a signal using the time-domain 
approach. 

x is the signal and must be a vector. 

nfft specifies the FFT length, and hence, the frequency resolution; this 
parameter must be greater than twice the length of the signal, x, in order to 
avoid aliasing. The default value is the power of 2 equal to or just greater than 
twice the signal length. 

flag — if flag is nonzero and x is real-valued, the analytic form of x is used 
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert 
transform y(t), then, the analytic signal is defined as the complex-valued signal 
z(t) = x(t) + jy(t). 

wx is the computed WS. The rows correspond to time samples, and the columns 
to frequencies. 

waxis is a vector whose entries are the frequencies associated with the columns 
of the WS. 

Algorithm Let the instantaneous autocorrelation be defined by

r(m,n) = x*(n – m)x(n + m)

where n is identified with time and m with lag. The WS is then given by 

The original signal must be sampled at twice the Nyquist rate or faster, in 
order to avoid aliasing. 

See Also wig2c, wig3, wig3c, wig4, wig4c 

References [1] Hlaswatch, F., and G.F. Boudreaux-Bartels, “Linear and Quadratic 
Time-Frequency Representations,” IEEE Signal Processing Magazine, pp. 
21-67, Apr. 1992. 

[2] Cohen, L., “Time-Frequency Distributions: A Review,” Proc. IEEE, pp. 
941-81, July 1989. 

W ƒ,n( ) r m n,( ) jπƒm–( ).exp
m
∑=
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2wig2cPurpose Computes the Wigner spectrum with Choi-Williams filtering

Syntax [wx, waxis] = wig2c(x,nfft,sigma,flag) 

Description Estimates the Wigner spectrum (WS) of a signal; eliminates cross-terms in the 
WS of multi-component signals by applying the Choi-Williams filter. 

x is the signal and must be a vector. 

nfft specifies the FFT length, and hence, the frequency resolution; this 
parameter must be greater than twice the length of the signal, x, in order to 
avoid aliasing. The default value is the power of 2 equal to or just greater than 
twice the signal length. 

sigma is the parameter in the Choi-Williams window, and controls the amount 
of cross-term suppression; very large values result in no suppression, whereas 
very small values result in loss of signal terms. The default value is 0.05. 

flag — if flag is nonzero and x is real-valued, the analytic form of x is used 
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert 
transform y(t), then, the analytic signal is defined as the complex-valued signal 
z(t) = x(t) + jy(t). 

wx is the computed WS. The rows correspond to time samples, and the columns 
to frequencies. 

waxis is a vector whose entries are the frequencies associated with the columns 
of the WS. 

Algorithm Let the instantaneous autocorrelation be defined by

r(m,n) = x*(n – m)x(n + m)

where n is identified with time and m with lag. The ambiguity function, AF, is 
then given by 

The AF is multiplied by the Choi-Williams window function, 

w(m,θ) = exp(–(mθ/sigma)2).

AF m θ,( ) r m n,( ) j2πnθ–( ).exp
m
∑=
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The 2-D FT of AF(m,θ)w(m,θ) (θ to n and m to ƒ) yields the filtered WS, Wc(ƒ,n). 

The original signal must be sampled at twice the Nyquist rate or faster. 

See Also wig2, wig3, wig3c, wig4, wig4c 

References [1] Hlaswatch, F., and G.F. Boudreaux-Bartels, “Linear and Quadratic 
Time-Frequency Representations,” IEEE Signal Processing Magazine, pp. 
21-67, Apr. 1992.  

[2] Cohen, L., “Time-Frequency Distributions: A Review,” Proc. IEEE, pp. 
941-81, July 1989. 

[3] Choi, H. and W.J. Williams, “Improved Time-Frequency Representation of 
Multicomponent Signals Using Exponential Kernels,” IEEE Trans. ASSP, pp. 
862-71, June 1989.
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2wig3Purpose Computes the ƒ1 = ƒ2 slice of the Wigner bispectrum

Syntax [wx, waxis] = wig3(x,nfft,flag) 

Description Computes the diagonal slice of the Wigner bispectrum (WB). 

x is the signal and must be a vector. 

nfft specifies the FFT length, and hence, the frequency resolution; this 
parameter must be greater than three times the length of the signal, x, in order 
to avoid aliasing. The default value is the power of 2 equal to or just greater 
than three times the signal length. 

flag — if flag is nonzero and x is real-valued, the analytic form of x is used 
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert 
transform y(t), then, the analytic signal is defined as the complex-valued signal 
z(t) = x(t) + jy(t). 

wx is the computed WB. The rows correspond to time samples, and the columns 
to frequencies. 

waxis is a vector whose entries are the frequencies associated with the columns 
of the WB. 

Algorithm Define the instantaneous triple product

r3(t,τ1,τ2) = x*(t – ατ1 – ατ2)x(t + βτ1 – ατ2)x(t – ατ1 + βτ2)

where α = 1/3  and β = 2/3. The WB is then given by 

In this routine we compute the slice ƒ1 = ƒ2. 

Note that the original signal should be sampled at twice the Nyquist rate, in 
order to avoid aliasing. Also note that the frequency axes are scaled by the 
factor of 2/3; in this routine, we undo the scaling so that you can find the peaks 
at the expected frequencies. 

See Also wig2, wig2c, wig3c, wig4, wig4c 

W n ƒ1 ƒ2, ,( ) dτ1dτ2e
j2π– ƒ1τ1 ƒ2τ2+( )

r3 t τ1 τ2, ,( )∫∫=
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References [1] Fonollosa, J.R. and C.L. Nikias, “Wigner Higher-Order Moment Spectra: 
Definitions, Properties, Computation and Applications to Transient Signal 
Detection,” IEEE Trans. SP, Jan. 1993.

[2] Gerr, N.L., “Introducing a third-order Wigner distribution,” Proc. IEEE, pp. 
290-92, Mar. 1988.

[3] Swami, A., “Third-order Wigner distributions,” Proc. ICASSP-91, pp. 
3081-84, Toronto, Canada, May 1991.
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2wig3cPurpose Computes the diagonal slice of the Wigner bispectrum, with Choi-Williams 
filtering

Syntax [wx, waxis] = wig3c(x,nfft,sigma,flag) 

Description Computes the diagonal slice of the Wigner bispectrum (WB); the Choi-Williams 
filter is applied in order to suppress the cross-terms in the WB of 
multicomponent signals. 

x is the signal and must be a vector. 

nfft specifies the FFT length, and hence, the frequency resolution; this 
parameter must be greater than three times the length of the signal, x, in order 
to avoid aliasing. The default value is the power of 2 equal to or just greater 
than thrice the signal length. 

sigma is the parameter in the Choi-Williams window, and controls the amount 
of cross-term suppression; very large values result in no suppression, whereas 
very small values result in loss of signal terms. The default value is 0.5. 

flag — if flag is nonzero and x is real-valued, the analytic form of x is used 
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert 
transform y(t), then, the analytic signal is defined as the complex-valued signal 
z(t) = x(t) + jy(t). 

wx is the computed WB. The rows correspond to time samples, and the columns 
to frequencies. 

waxis is a vector whose entries are the frequencies associated with the columns 
of the WB. 

Algorithm Define the instantaneous triple product

r3(t,τ1,τ2) = x*(t – ατ1 – ατ2)x(t + βτ1 – ατ2)x(t – ατ1 + βτ2)

where α = 1/3  and β = 2/3. Define the smoothing kernel, 

Φ θ τ1 τ2, ,( ) θ–
2 r1

2 r2
2

+( )/sigma( )exp=
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The filtered WB is then given by  

In this routine we compute the slice ƒ1 = ƒ2. 

Note that the original signal should be sampled at twice the Nyquist rate, in 
order to avoid aliasing. Also note that the frequency axes are scaled by the 
factor of 2/3. In this routine, we undo the scaling so that you can find the peaks 
at the expected frequencies. 

NOTE:  The application of the Choi-Williams kernel to the Wigner bispectrum 
does not guarantee preservation of the auto-terms; consequently, this routine 
should be used with great caution. 

See Also wig2, wig2c, wig4, wig4c

References [1] Choi, H. and W.J. Williams, “Improved Time-Frequency Representation of 
Multicomponent Signals Using Exponential Kernels,” IEEE Trans. ASSP, pp. 
862-71, June 1989.

[2] Fonollosa, J.R. and C.L. Nikias, “Wigner Higher-Order Moment Spectra: 
Definitions, Properties, Computation and Applications to Transient Signal 
Detection,” IEEE Trans. SP, Jan. 1993.

W n ƒ1 ƒ2, ,( ) dθdτ1dτ2du e
j2π– ƒ1τ1 ƒ2τ2+( )

e j2πtθ– ej2πuθ∫∫∫∫=

r3 t τ1 τ2, ,( )Φ θ τ1 τ2, ,( )
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2wig4Purpose Computes the ƒ1 = ƒ2 = –ƒ3 slice of the Wigner trispectrum

Syntax [wx, waxis] = wig4(x,nfft,flag)

Description Estimates the ƒ1 = ƒ2 = –ƒ3 slice of the Wigner trispectrum (WT) of a signal 
using the time-domain approach. 

x is the signal and must be a vector. 

nfft specifies the FFT length, and hence, the frequency resolution; this 
parameter must be greater than four times the length of the signal, x, in order 
to avoid aliasing. The default value is the power of 2 equal to or just greater 
than four times the signal length. 

flag — if flag is nonzero and x is real valued, the analytic form of x is used 
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert 
transform y(t), then, the analytic signal is defined as the complex-valued signal 
z(t) = x(t) + jy(t). 

wx is the computed WT. The rows correspond to time samples, and the columns 
to frequencies. 

waxis is a vector whose entries are the frequencies associated with the columns 
of the WT. 

Algorithm For a complex signal, the Wigner trispectrum can be defined in two different 
ways; here, we implement the symmetric Wigner trispectrum [1]. 

Define the instantaneous fourth-order product,

r4(t,τ1,τ2,τ3) = x*(t – τ)x(t – τ + τ1)x(t – τ + τ2)x*(t – τ + τ3)

where τ := (τ1 +τ2 +τ3)/4. Notice that two of the terms are conjugated. 

The symmetric Wigner trispectrum (WT) is then given by 

In this routine we compute the slice ƒ1 = ƒ2 = –ƒ3 = ƒ. 

Note that the original signal should be sampled at twice the Nyquist rate, in 
order to avoid aliasing. Also note that the frequency axes are scaled by the 

W n ƒ1 ƒ2 ƒ3, , ,( ) dτ1dτ2dτ3e
j2π– ƒ1τ1 ƒ2τ2 ƒ3τ3+ +( )

r4 t τ1 τ2 τ3, , ,( )∫∫∫=
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factor of 1/2; in this routine, we undo the scaling so that you can find the peaks 
at the expected frequencies. 

See Also wig2, wig2c, wig3, wig3c, wig4c

References [1] Fonollosa, J.R. and C.L. Nikias, “Analysis of finite-energy signals using 
higher-order moments- and spectra-based time-frequency distributions,” 
Signal Processing, Vol. 36, pp. 315-28, 1994. 

[2] Swami, A., “Higher-Order Wigner Distributions,” in Proc. SPIE-92, Session 
on Higher-Order and Time-Varying Spectral Analysis, Vol. $1770, 290-301, 
San Diego, CA, July 19-24, 1992. 
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2wig4cPurpose Computes the Sliced Reduced-Interference Wigner trispectrum

Syntax [wx, waxis] = wig4c(x,nfft,sigma,flag) 

Description Computes the Sliced Reduced-Interference Wigner trispectrum (WT) [2]; 
eliminates cross-terms in the WT of multicomponent signals by applying the 
Choi-Williams filter. 

x is the signal and must be a vector. 

nfft specifies the FFT length, and hence, the frequency resolution; this 
parameter must be greater than four times the length of the signal, x, in order 
to avoid aliasing. The default value is the power of 2 equal to or just greater 
than four times the signal length. 

sigma is the parameter in the Choi-Williams window, and controls the amount 
of cross-term suppression; very large values result in no suppression, whereas 
very small values result in loss of signal terms. The default value is 0.05. 

flag — if flag is nonzero and x is real valued, the analytic form of x is used 
instead of x; the default value is 1. If x(t) is a real-valued signal, with Hilbert 
transform y(t), then, the analytic signal is defined as the complex-valued signal 
z(t) = x(t) + jy(t). 

wx is the computed WT. The rows correspond to time samples, and the columns 
to frequencies. 

waxis is a vector whose entries are the frequencies associated with the columns 
of the WT. 

Algorithm For a complex signal, the Wigner trispectrum can be defined in two different 
ways; here, we implement the symmetric Wigner trispectrum [1]. 

Define the instantaneous fourth-order product,

r4(t,τ1,τ2,τ3) = x*(t – τ)x(t – τ + τ1)x(t – τ + τ2)x*(t – τ + τ3)

where τ := (τ1 +τ2 +τ3)/4. Define the smoothing kernel, 

Φ θ τ1 τ2 τ3, , ,( ) θ–
2 r1

2 r2
2 r3

2
+ +( )/sigma( )exp=
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The filtered WT is then given by  

In this routine we compute the slice ƒ1 = ƒ1 = –ƒ3. 

Note that the original signal should be sampled at twice the Nyquist rate, in 
order to avoid aliasing. Also note that the frequency axes are scaled by the 
factor of 1/2. In this routine, we undo the scaling so that you can find the peaks 
at the expected frequencies. 

It should be noted that the Wigner trispectrum is real valued. 

See Also wig2, wig2c, wig3, wig3c, wig4 

References [1] Choi, H. and W.J. Williams, “Improved Time-Frequency Representation of 
Multicomponent Signals Using Exponential Kernels,” IEEE Trans. ASSP, pp. 
862-71, June 1989.

[2]Fonollosa, J.R. and C.L. Nikias, “Analysis of finite-energy signals using 
higher-order moments- and spectra-based time-frequency distributions,” 
Signal Processing, Vol. 36, pp. 315-28, 1994.

W n ƒ1 ƒ2 ƒ3, , ,( ) dθdτ1dτ2dτ3due
j2π– ƒ1τ1 ƒ2τ2 ƒ3τ3+ +( )

∫∫∫∫∫=

e j2πtθ– ej2πuθr4 t τ1 τ2 τ3, , ,( )Φ θ τ1 τ2 τ3, , ,( )
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