Math 111, Fall 2014 - Homework \# 1

Remember that you are required to fully explain all of your solutions.

1. Write the following sets by listing their elements within braces.
(a) $A=\left\{x \in \mathbb{R}: x^{2}-x=0\right\}$
(b) $B=\left\{n \in \mathbb{Z}: n^{2}<7\right\}$
(c) $C=\left\{x \in \mathbb{R}: x^{2}+1=0\right\}$
(d) $D=\{3 n+1: n \in \mathbb{Z}\}$

Solution:

2. Write each of the following sets in the form $\{x \in S: p(x)\}$ or $\{p(x): x \in S\}$, where $p(x)$ is a property concerning x and S is the set containing x.
(a) $A=\{1,2,3,4, \ldots, 9\}$
(b) $B=\{\ldots,-8,-4,0,4,8, \ldots\}$
(c) $C=\{1,8,27,64, \ldots\}$

Solution:

3. Give an example of three sets A, B, and C such that $A \in B$ and $A \subseteq C$, or state why such an example cannot exist.

Solution:

4. Find $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for $A=\{0,\{1\},\{1,2\}$, $\{\varnothing\}\}$.

Solution:

5. True or False: If $\{1\} \in \mathcal{P}(A)$, then $1 \in A$ but $\{1\} \notin A$.

Solution:

6. True or False: If a set B has one more element than a set A, then $\mathcal{P}(B)$ has at least two more elements than $\mathcal{P}(A)$.

Solution:

7. For the sets $A=\{1,\{1\}\}$ and $B=\{0,1,2\}$, write down all of the elements of $A \times B$. What is $|A \times B|$?

Solution:

8. For the set $A=\{1,2\}$ and $B=\{\varnothing\}$, write down all of the elements of $A \times B$ and $\mathcal{P}(A) \times \mathcal{P}(B)$.

Solution:

9. Describe the graph of the ellipse $4 x^{2}+9 y^{2}=36$ as a subset of $\mathbb{R} \times \mathbb{R}$.

Note: What I'm looking for here is something like:
The ellipse $4 x^{2}+9 y^{2}=36$ is the set

$$
\{(x, y) \in \mathbb{R} \times \mathbb{R}: \square
$$

(Now you fill in the blank.)

Solution:

