# Math 111, Fall 2014 - Homework \# 10 

 Due Thursday, November 20, 2014, by 4:30 p.m.Prove each of the following with either induction, strong induction, or proof by smallest counterexample.

1. For every positive integer $n, 1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.

## Solution:

2. If $n \in \mathbb{N}$, then $\frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}$.

## Solution:

3. For any integer $n \geq 0$, it follows that $9 \mid\left(4^{3 n}+8\right)$.

## Solution:

4. Suppose that $A_{1}, A_{2}, \ldots, A_{n}$ are sets in some universal set $U$, and $n \geq 2$. Then

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n}}=\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n}} .
$$

## Solution:

5. For every natural number $n$, it follows that $2^{n}+1 \leq 3^{n}$.

## Solution:

6. Prove that $(1+2+\cdots+n)^{2}=1^{3}+2^{3}+\cdots+n^{3}$ for every $n \in \mathbb{N}$.

## Solution:

7. Prove that $\sum_{k=s}^{N}\binom{k}{s}=\binom{N+1}{s+1}$ for all natural numbers $s$ and $N$ such that $N \geq s$.

Hint: Prove this by induction on N. You may find an equality from Section 3.4 useful, as well.

## Solution:

8. Let $F_{n}$ be the $n^{\text {th }}$ term of the Fibonacci sequence. Then $\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}$.

## Solution:

