Math 111, Fall 2014 - Homework \# 11

Due Monday, December 1, 2014, by 3:00 p.m.

You must show all of your work and explain all of your answers to receive full credit.

1. Define a relation R on \mathbb{Z} by $x R y$ if $x \cdot y \geq 0$. Prove or disprove the following:
(a) R is reflexive;
(b) R is symmetric;
(c) R is transitive.

Solution:

2. Let $A=\{1,2,3,4\}$. Give an example of a relation on A that is:
(a) reflexive and symmetric, but not transitive;
(b) symmetric and transitive, but not reflexive;
(c) symmetric, but neither transitive nor reflexive.

Solution:

3. Let R be an equivalence relation on $A=\{a, b, c, d, e, f, g\}$ such that $a R c, c R d, d R g$, and $b R f$. If there are three distinct equivalence classes that result from R, then determine these equivalence classes and determine all elements of R.

Solution:

4. Define a relation R on \mathbb{Z} as $x R y$ if and only if $x^{2}+y^{2}$ is even. Prove R is an equivalence relation and determine its distinct equivalence classes.

Solution:

5. Prove or disprove. If R and S are two equivalence relations on a set A, then $R \cap S$ is also an equivalence relation on A.

Solution:

6. Describe the partition of \mathbb{Z} resulting from the equivalence relation $\equiv(\bmod 3)$.

Solution:

7. Write the addition and multiplication tables for \mathbb{Z}_{8}.

Solution:

8. Prove or disprove. If $[a],[b] \in \mathbb{Z}_{6}$ and $[a][b]=[0]$, then either $[a]=[0]$ or $[b]=[0]$. Solution:
