Math 111, Fall 2014 - Homework \# 12
 Due Monday, December 8, 2014, by 3:00 p.m.

You must show all of your work and explain all of your answers to receive full credit.

1. Give an example of a relation from \mathbb{Z} to $\{0,1\}$ that is not a function.

Solution:

2. Suppose $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{Z}$ is defined as $f=\{(x, 4 \sqrt{x}-5): x \in \mathbb{Z}\}$. State the domain, codomain, and range of f.

Solution:

3. Consider functions from \mathbb{Z} to \mathbb{Z}. Give an example of
(a) a function that is injective but not surjective;
(b) a function that is surjective but not injective; and
(c) a function that is neither injective nor surjective.

For each example, prove that your function satisfies the given property.

Solution:

4. Prove that the function $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{1\}$ defined by $f(x)=\left(\frac{x+1}{x-1}\right)^{3}$ is bijective.

Solution:

5. Suppose that A, B, and C are nonempty sets and $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove or disprove. If $g \circ f$ is injective, then f is injective.
(b) Prove or disprove. If $g \circ f$ is injective, then g is injective.

Solution:

6. Consider the functions $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(m, n)=m+n$ and $g: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined as $g(m)=(m, m)$. Find formulas for $g \circ f$ and $f \circ g$.

Solution:

