Math 111, Fall 2014 - Homework # 4

Due Thursday, September 25, 2014, by 4:30 p.m.

Remember that you are required to fully explain all of your solutions.

- 1. Write a truth table for the following statements.
 - (a) $(Q \lor R) \iff (R \land Q)$
 - (b) $\sim (P \land Q) \land (\sim P)$
 - (c) $P \lor (Q \land \sim R)$
 - (d) $(P \implies Q) \implies (\sim P)$

Solution:

2. Suppose the statement $((P \land Q) \lor R) \implies (R \lor S)$ is false. Without using a truth table, determine the truth values of P, Q, R, and S.

Solution:

3. Use truth tables to show that the following statements are equivalent.

(a)
$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

(b) $\sim P \iff Q = (P \implies \sim Q) \land (\sim Q \implies P)$

Solution:

- 4. Determine whether or not the following pairs of statements are logically equivalent.
 - (a) $\sim (P \implies Q)$ and $P \wedge \sim Q$ (b) $(\sim Q) \implies (P \wedge \sim P)$ and Q(c) $(P \wedge Q) \iff P$ and $P \implies Q$
 - (d) $\sim (P \lor Q)$ and $(\sim P) \lor (\sim Q)$

Solution:

- 5. Write the following as English sentences. State whether they are true or false.
 - (a) $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x^n \ge 0$
 - (b) $\exists n \in \mathbb{N}, \forall X \in \mathcal{P}(\mathbb{N}), |X| < n$
 - (c) $\forall n \in \mathbb{Z}, \exists X \subseteq \mathbb{N}, |X| = n$
 - (d) $\forall X \in \mathcal{P}W(\mathbb{N}), X \subseteq \mathbb{R}$

Solution:

- 6. Translate each of the following sentences into symbolic logic.
 - (a) The number x is positive and the number y is positive.
 - (b) For every positive number ϵ there is a positive number M for which $|f(x) b| < \epsilon$, whenever x > M.
 - (c) There exist integers a and b such that both ab < 0 and a + b > 0.
 - (d) For all real numbers x and y, $x \neq y$ implies that $x^2 + y^2 > 0$.
 - (e) If $\sin x < 0$, then it is not the case that $0 \le x \le \pi$.

Solution:

- 7. Let P(x) and Q(x) be open sentences where the domain of the variable x is T. Which of the following implies that $P(x) \implies Q(x)$ is true for all $x \in T$?
 - (a) $P(x) \wedge Q(x)$ is false for all $x \in T$.
 - (b) Q(x) is true for all $x \in T$.
 - (c) P(x) is false for all $x \in T$.
 - (d) $P(x) \land (\sim Q(x))$ is true for some $x \in T$.
 - (e) $(\sim P(x)) \land (\sim Q(x))$ is false for all $x \in T$.

Solution: