Math 111, Fall 2014 - Homework \# 4
 Due Thursday, September 25, 2014, by 4:30 p.m.

Remember that you are required to fully explain all of your solutions.

1. Write a truth table for the following statements.
(a) $(Q \vee R) \Longleftrightarrow(R \wedge Q)$
(b) $\sim(P \wedge Q) \wedge(\sim P)$
(c) $P \vee(Q \wedge \sim R)$
(d) $(P \Longrightarrow Q) \Longrightarrow(\sim P)$

Solution:

2. Suppose the statement $((P \wedge Q) \vee R) \Longrightarrow(R \vee S)$ is false. Without using a truth table, determine the truth values of P, Q, R, and S.

Solution:

3. Use truth tables to show that the following statements are equivalent.
(a) $P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)$
(b) $\sim P \Longleftrightarrow Q=(P \Longrightarrow \sim Q) \wedge(\sim Q \Longrightarrow P)$

Solution:
4. Determine whether or not the following pairs of statements are logically equivalent.
(a) $\sim(P \Longrightarrow Q)$ and $P \wedge \sim Q$
(b) $(\sim Q) \Longrightarrow(P \wedge \sim P)$ and Q
(c) $(P \wedge Q) \Longleftrightarrow P$ and $P \Longrightarrow Q$
(d) $\sim(P \vee Q)$ and $(\sim P) \vee(\sim Q)$

Solution:

5. Write the following as English sentences. State whether they are true or false.
(a) $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x^{n} \geq 0$
(b) $\exists n \in \mathbb{N}, \forall X \in \mathcal{P}(\mathbb{N}),|X|<n$
(c) $\forall n \in \mathbb{Z}, \exists X \subseteq \mathbb{N},|X|=n$
(d) $\forall X \in \mathcal{P} W(\mathbb{N}), X \subseteq \mathbb{R}$

Solution:

6. Translate each of the following sentences into symbolic logic.
(a) The number x is positive and the number y is positive.
(b) For every positive number ϵ there is a positive number M for which $|f(x)-b|<\epsilon$, whenever $x>M$.
(c) There exist integers a and b such that both $a b<0$ and $a+b>0$.
(d) For all real numbers x and $y, x \neq y$ implies that $x^{2}+y^{2}>0$.
(e) If $\sin x<0$, then it is not the case that $0 \leq x \leq \pi$.

Solution:

7. Let $P(x)$ and $Q(x)$ be open sentences where the domain of the variable x is T. Which of the following implies that $P(x) \Longrightarrow Q(x)$ is true for all $x \in T$?
(a) $P(x) \wedge Q(x)$ is false for all $x \in T$.
(b) $Q(x)$ is true for all $x \in T$.
(c) $P(x)$ is false for all $x \in T$.
(d) $P(x) \wedge(\sim Q(x))$ is true for some $x \in T$.
(e) $(\sim P(x)) \wedge(\sim Q(x))$ is false for all $x \in T$.

Solution:

