Math 111, Fall 2014 - Homework \# 5 Due Thursday, October 2, 2014, by 4:30 p.m.

Remember that you are required to fully explain all of your solutions.

1. Write the negation of the following sentences.
(a) Either $x=0$ or $y=0$.
(b) The integers a and b are both nonnegative.
(c) If f is a polynomial and its degree is greater than 1 , than f^{\prime} is not constant.
(d) There exists a rational number r such that $r^{2}=2$.
(e) If $x y$ is even, then either x or y is even.
(f) For every rational number r, the number $\frac{1}{r}$ is rational.

Solution:

2. Let $n \in \mathbb{Z}$. For which implication is its negation the following?

The integer $3 n+4$ is odd and $5 n-6$ is even.

Solution:

3. Find the number of possible user passwords with 7 characters that consist of digits or letters of the alphabet, without repetition.

Solution:

4. How many 7 -digit numbers can be made from the digits $1,2,3,4,5,6,7$ if there is no repetition and the odd digits must appear in an unbroken sequence. (So, 1357246 and 2753146 satisfy this condition, but 7654231 does not.)

Solution:

5. Suppose A is a set such that $|A|=100$.
(a) How many subsets of A have 5 elements?
(b) How many subsets have 10 elements?
(c) How many have 99 elements?

Solution:

6. Determine

$$
|\{X \in P(\{0,1,2,3,4,5,6,7,8,9\}):|X|=4\}| .
$$

Solution:

7. This problem concerns lists made from the symbols $A, B, C, D, E, F, G, H, I$.
(a) How many length- 5 lists can be made if repetition is not allowed and the list must begin with a vowel?
(b) How many length- 5 lists can be made if repetition is not allowed and the list must contain exactly one A ?
(c) How many length- 5 lists can be made if repetition is not allowed and the list is in alphabetical order? (For example, $B D E F I$ or $A B C G H$ is allowed, but $B A C G H$ is not allowed.)
(d) How many length- 5 lists can be made if repetition is not allowed and the list is not in alphabetical order?

Solution:

8. Suppose a set B has the property that $|\{X: X \in P(B),|X|=6\}|=28$. What is $|B|$? Solution:
