Math 111, Fall 2014 - Homework \# 6
 Due Thursday, October 16, 2014, by 4:30 p.m.

Remember that you are required to fully explain all of your solutions.

1. Use the binomial theorem to show that

$$
\sum_{k=0}^{n}\binom{n}{k} 6^{k}=7^{n} .
$$

Solution:

2. This problem involves lists made from the letters T, H, E, O, R, Y, with repetition allowed.
(a) How many 4-letter lists are there that do not begin with a T or do not end in a Y ?
(b) How many 4-letter lists are there in which the sequence of letters T, H, E appear consecutively?

Solution:

3. Prove that if x is an odd integer, then x^{3} is odd.

Solution:

4. Suppose $a, b, c \in \mathbb{Z}$. Prove that if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.

Solution:

5. Prove that if $x \in \mathbb{R}$ and $0<x<4$, then $\frac{4}{x(4-x)} \geq 1$.

Solution:

6. Prove that if $n \in \mathbb{Z}$, then $n^{2}-3 n+9$ is odd.

Solution:

7. Prove for every nonnegative integer n that $2^{n}+6^{n}$ is an even integer.

Solution:

8. Prove that for every two distinct integers a and b, either $\frac{a+b}{2}>a$ or $\frac{a+b}{2}>b$.

Solution:

9. Evaluate the proof of the following proposition.

Proposition. If x and y are integers, then $x y^{2}$ has the same parity as x.
Proof. Assume, without loss of generality, that x is even. Then $x=2 a$ for some integer a. Thus,

$$
x y^{2}=(2 a) y^{2}=2\left(a y^{2}\right)
$$

Since $a y^{2}$ is an integer, $x y^{2}$ is even.

Solution:

