Math 111, Fall 2014 - Homework \# 7
 Due Thursday, October 23, 2014, by 4:30 p.m.

Remember that you are required to fully explain all of your solutions.

Prove the following statements using direct proof, contrapositive proof, or proof by contradiction.

1. Suppose $x \in \mathbb{R}$. If $x^{3}-x>0$, then $x>-1$.

Solution:

2. The product of an irrational number and a nonzero rational number is irrational.

Solution:

3. If $a \equiv b(\bmod n)$, then $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.

Solution:

4. Suppose $a \in \mathbb{Z}$. If a^{2} is not divisible by 4 , then a is odd.

Solution:

5. If $a \in \mathbb{Z}$ and $a \equiv 1(\bmod 5)$, then $a^{2} \equiv 1(\bmod 5)$.

Solution:

6. If a and b are positive real numbers, then $a+b \geq 2 \sqrt{a b}$.

Solution:

7. Let $a \in \mathbb{Z}$. If $(a+1)^{2}-1$ is even, then a is even.

Solution:

8. Let $a, b \in \mathbb{Z}$. If $a \geq 2$, then either $a \nmid b$ or $a \nmid(b+1)$.

Solution:

9. Evaluate the proof of the following proposition.

Proposition. Let $n \in \mathbb{Z}$. If $3 n-8$ is odd, then n is odd.
Proof. Assume that n is odd. Then $n=2 k+1$ for some integer k. Then

$$
3 n-8=3(2 k+1)-8=6 k+3-8=6 k-5=2(3 k-3)+1 .
$$

Since $3 k-3$ is an integer, $3 n-8$ is odd.

Solution:

