Math 111, Fall 2014 - Homework # 8

Due Thursday, October 30, 2014, by 4:30 p.m.

Remember that you are required to fully explain all of your solutions.

Prove each of the following statements.

- 1. Suppose $x \in \mathbb{Z}$. Then x is odd if and only if 3x + 5 is even. Solution:
- 2. Suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y = -x. Solution:
- 3. Suppose a, b ∈ Z. Then a ≡ b (mod 10) if and only if a ≡ b (mod 2) and a ≡ b (mod 5).
 Solution:
- 4. There exists a positve real number x for which $x^2 < \sqrt{x}$. Solution:
- 5. There is a set X such that $\mathbb{N} \in X$ and $\mathbb{N} \subseteq X$. Solution:
- 6. Suppose a, b ∈ N. Then a = lcm(a, b) if and only if b | a.
 Solution:
- 7. For every real number x, there exist integers a and b such that $a \le x \le b$ and b-a = 1. Solution: