Extra Credit Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

1. The function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by $f(m, n)=(5 m+4 n, 4 m+3 n)$ is bijective. Find its inverse.
You do not need to prove that the function is bijective.
Solution: Write $f(m, n)=(a, b)$. Interchange the variables to obtain

$$
(m, n)=f(a, b)=(5 a+4 b, 4 a+3 b) .
$$

Then, we solve for a and b in terms of m and n. So we have

$$
\begin{aligned}
& 5 a+4 b=m \\
& 4 a+3 b=n .
\end{aligned}
$$

This is a system of two equations in two unknowns, which we may solve without too much trouble. Multiply the first equation by 4 and the second equation by 5 to obtain

$$
\begin{aligned}
& 20 a+16 b=4 m \\
& 20 a+15 b=5 n .
\end{aligned}
$$

Subtracting the new first equation from the second gives the system

$$
\begin{aligned}
20 a+16 b & =4 m \\
-b & =5 n-4 m \Longrightarrow b=4 m-5 n .
\end{aligned}
$$

Finally, substitute the expression for b into the first equation to obtain

$$
\begin{aligned}
20 a+16(4 m-5 n) & =4 m \\
20 a+64 m-80 n & =4 m \\
20 a & =-60 m+80 n \\
a & =-3 m+4 n .
\end{aligned}
$$

Therefore,

$$
f^{-1}(m, n)=(a, b)=(-3 m+4 n, 4 m-5 n)
$$

2. Let $A=\{x \in \mathbb{R}: x \geq 1\}$ and $B=\{x \in \mathbb{R}: x>0\}$. For each function below, determine $f(A), f^{-1}(A), f^{-1}(B), f^{-1}(\{1\})$.
(a) $f: \mathbb{R} \rightarrow B$ defined by $f(x)=e^{x^{3}+1}$
(b) $f: \mathbb{R} \rightarrow \mathbb{R}$ defind by $f(x)=x^{2}$

Solution:

(a) Note that $f(x)$ is an increasing function, since e^{u} is increasing when $u>0$, and that $f(1)=e^{1^{3}+1}=e^{2}$. So, $f(A)=\left\{x \in \mathbb{R}: x \geq e^{2}\right\}$.
To determine the remaining answers, note that we can prove that f is bijective (exercise for you), so f is invertible. We will determine f^{-1} before completing this problem. Since $\left(f \circ f^{-1}\right)(x)=x$ for $x \in B$, we have that

$$
\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=e^{\left(f^{-1}(x)\right)^{3}+1}=x .
$$

Let $y=f^{-1}(x)$ and solve for y. We have

$$
x=e^{y^{3}+1}
$$

$\ln x=y^{3}+1 \quad$ (take the natural \log of both sides, which we can do since $x \in B$.)

$$
\begin{aligned}
y^{3} & =\ln x-1 \\
y & =(\ln x-1)^{\frac{1}{3}} .
\end{aligned}
$$

Therefore,

$$
f^{-1}(x)=(\ln x-1)^{\frac{1}{3}}
$$

Since $A \subseteq B$, we can determine $f^{-1}(A)$. On B, the function $\ln x$ is increasing and so $f^{-1}(x)$ is increasing. Since $f^{-1}(1)=(\ln 1-1)^{\frac{1}{3}}$, we have that $f^{-1}(1)=-1$ and so $f^{-1}(A)=\{x \in \mathbb{R}: x \geq-1\}$. If $0<x<1$, then $\ln x$ is negative and $\lim _{x \rightarrow 0} \ln x=-\infty$. Therefore, $f^{-1}(B)=\mathbb{R}$. Finally, $f^{-1}(\{1\})=\{-1\}$. To summarize,

$$
\begin{aligned}
f(A) & =\left\{x \in \mathbb{R}: x \geq e^{2}\right\} \\
f^{-1}(A) & =\{x \in \mathbb{R}: x \geq-1\} \\
f^{-1}(B) & =\mathbb{R} \\
f^{-1}(\{1\}) & =\{-1\} .
\end{aligned}
$$

(b) First, consider how the function $f(x)$ behaves on A. If $x \geq 1$, we have that $f(x)=$ x^{2} is increasing (since $f^{\prime}(x)=2 x$). Therefore, $f(x)$ takes its minimum value on A at $x=1$ and $f(1)=1^{2}=1$. Therefore, $f(A)=\{x \in \mathbb{R}: x \geq 1\}=[1, \infty)=A$. To find the required inverse images, we first note that $A=[1, \infty)$ and $B=(0, \infty)$. Now, consider $A=[1, \infty)$. If $f(x)=1$, then $x=-1$ or $x=1$. For all $f(x) \geq 1$,
we have that $x= \pm \sqrt{f(x)}$. Since $f(x)$ is increasing when $x>0$ and decreasing for $x<0$, we have that

$$
f^{-1}(A)=\{x \in \mathbb{R}: x \leq-1\} \cup\{x \in \mathbb{R}: x \geq 1\}=(-\infty,-1] \cup[1, \infty)
$$

Next, consider $B=(0, \infty)$. Since when $f(x)=0$, we have that $x=0$ and since $f(x)$ is decreasing for $x<0$ and increasing for $x>0$, we have that $f^{-1}(B)=$ $\{x \in \mathbb{R}: x<0\} \cup\{x \in \mathbb{R}: x>0\}=(-\infty, 0) \cup(0, \infty)=\mathbb{R}-\{0\}$. Finally, if $f(x)=1$, then $x= \pm 1$. Therefore, $f^{-1}(\{1\})=\{-1,1\}$. To summarize,

$$
\begin{aligned}
f(A) & =[1, \infty)=A \\
f^{-1}(A) & =(-\infty,-1] \cup[1, \infty), \\
f^{-1}(B) & =\mathbb{R}-\{0\}, \\
f^{-1}(\{1\}) & =\{-1,1\} .
\end{aligned}
$$

3. Given a function $f: C \rightarrow Z$ and sets $A, B \subseteq C$ and $X, Y \subseteq Z$.
(a) Prove or dispove: $f(A \cap B)=f(A) \cap f(B)$.
(b) Prove or disprove: $f^{-1}(X \cap Y)=f^{-1}(X) \cap f^{-1}(Y)$.

Solution:

(a) This statement is false, because $f(A) \cap f(B) \nsubseteq f(A \cap B)$.

Counterexample. Let $C=\mathbb{Z}, A=\{x \in \mathbb{Z}: x \geq 0\}$, and $B=\{x \in \mathbb{Z}: x \leq 0\}$, and let $Z=\mathbb{Z}$. Define $f: C \rightarrow Z$ by $f(x)=x^{2}$. Then $f(A)=A$ since $f(x)$ is increasing for $x \geq 0$, with its minimum at $x=0$ and $f(0)=0^{2}=0$. On B, while $x \leq 0, f(x)$ is increasing, taking its minimum value at $x=0$. Since $f(0)=0, f(B)=\{x \in \mathbb{Z}: x \geq 0\}=A$. Therefore, $f(A) \cap f(B)=A$. But, since $A \cap B=\{0\}, f(A \cap B)=f(\{0\})=\{0\} \neq A$.
(b) This is a true statement.

Proof. We first show that $f^{-1}(X \cap Y)=f^{-1}(X) \cap f^{-1}(Y)$. Suppose $x \in f^{-1}(X \cap$ $Y)$. This means that $f(x) \in X \cap Y$. Therefore, $f(x) \in X$ and $f(x) \in Y$. If $f(x) \in$ X, then $x \in f^{-1}(X)$ and if $f(x) \in Y$, then $x \in f^{-1}(Y)$. Therefore, $x \in f^{-1}(X)$ and $x \in f^{-1}(Y)$, so $x \in f^{-1}(X) \cap f^{-1}(Y)$ and $f^{-1}(X \cap Y) \subseteq f^{-1}(X) \cap f^{-1}(Y)$.
Next, we show that $f^{-1}(X) \cap f^{-1}(Y) \subseteq f^{-1}(X \cap Y)$. Suppose $y \in f^{-1}(X) \cap f^{-1}(Y)$. Then $y \in f^{-1}(X)$ and $y \in f^{-1}(Y)$. This means that $f(y) \in X$ and $f(y) \in$ Y. Therefore, $f(y) \in X \cap Y$. This means that $y \in f^{-1}(X \cap Y)$. Therefore, $f^{-1}(X) \cap f^{-1}(Y) \subseteq f^{-1}(X \cap Y)$.
Since $f^{-1}(X \cap Y) \subseteq f^{-1}(X) \cap f^{-1}(Y)$ and $f^{-1}(X) \cap f^{-1}(Y) \subseteq f^{-1}(X \cap Y)$, $f^{-1}(X \cap Y)=f^{-1}(X) \cap f^{-1}(Y)$.

