Extra Credit Solutions

Math 111, Fall 2014 Instructor: Dr. Doreen De Leon

1. The function $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by f(m, n) = (5m + 4n, 4m + 3n) is bijective. Find its inverse.

You do <u>not</u> need to prove that the function is bijective.

Solution: Write f(m, n) = (a, b). Interchange the variables to obtain

$$(m,n) = f(a,b) = (5a+4b,4a+3b).$$

Then, we solve for a and b in terms of m and n. So we have

$$5a + 4b = m$$
$$4a + 3b = n.$$

This is a system of two equations in two unknowns, which we may solve without too much trouble. Multiply the first equation by 4 and the second equation by 5 to obtain

$$20a + 16b = 4m$$

 $20a + 15b = 5n.$

Subtracting the new first equation from the second gives the system

$$20a + 16b = 4m$$
$$-b = 5n - 4m \implies b = 4m - 5n.$$

Finally, substitute the expression for b into the first equation to obtain

$$20a + 16(4m - 5n) = 4m$$

$$20a + 64m - 80n = 4m$$

$$20a = -60m + 80n$$

$$a = -3m + 4n.$$

Therefore,

$$f^{-1}(m,n) = (a,b) = (-3m + 4n, 4m - 5n).$$

- 2. Let $A = \{x \in \mathbb{R} : x \ge 1\}$ and $B = \{x \in \mathbb{R} : x > 0\}$. For each function below, determine $f(A), f^{-1}(A), f^{-1}(B), f^{-1}(\{1\})$.
 - (a) $f : \mathbb{R} \to B$ defined by $f(x) = e^{x^3 + 1}$
 - (b) $f : \mathbb{R} \to \mathbb{R}$ defind by $f(x) = x^2$

Solution:

(a) Note that f(x) is an increasing function, since e^u is increasing when u > 0, and that $f(1) = e^{1^3 + 1} = e^2$. So, $f(A) = \{x \in \mathbb{R} : x \ge e^2\}$.

To determine the remaining answers, note that we can prove that f is bijective (exercise for you), so f is invertible. We will determine f^{-1} before completing this problem. Since $(f \circ f^{-1})(x) = x$ for $x \in B$, we have that

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = e^{(f^{-1}(x))^3 + 1} = x.$$

Let $y = f^{-1}(x)$ and solve for y. We have

$$x = e^{y^3 + 1}$$

 $\ln x = y^3 + 1 \quad (\text{take the natural log of both sides, which we can do since } x \in B.)$ $y^3 = \ln x - 1$

$$y = (\ln x - 1)^{\frac{1}{3}}.$$

Therefore,

$$f^{-1}(x) = (\ln x - 1)^{\frac{1}{3}}.$$

Since $A \subseteq B$, we can determine $f^{-1}(A)$. On B, the function $\ln x$ is increasing and so $f^{-1}(x)$ is increasing. Since $f^{-1}(1) = (\ln 1 - 1)^{\frac{1}{3}}$, we have that $f^{-1}(1) = -1$ and so $f^{-1}(A) = \{x \in \mathbb{R} : x \ge -1\}$. If 0 < x < 1, then $\ln x$ is negative and $\lim_{x \to 0} \ln x = -\infty$. Therefore, $f^{-1}(B) = \mathbb{R}$. Finally, $f^{-1}(\{1\}) = \{-1\}$. To summarize,

$$f(A) = \{x \in \mathbb{R} : x \ge e^2\},\$$

$$f^{-1}(A) = \{x \in \mathbb{R} : x \ge -1\},\$$

$$f^{-1}(B) = \mathbb{R},\$$

$$f^{-1}(\{1\}) = \{-1\}.\$$

(b) First, consider how the function f(x) behaves on A. If $x \ge 1$, we have that $f(x) = x^2$ is increasing (since f'(x) = 2x). Therefore, f(x) takes its minimum value on A at x = 1 and $f(1) = 1^2 = 1$. Therefore, $f(A) = \{x \in \mathbb{R} : x \ge 1\} = [1, \infty) = A$. To find the required inverse images, we first note that $A = [1, \infty)$ and $B = (0, \infty)$. Now, consider $A = [1, \infty)$. If f(x) = 1, then x = -1 or x = 1. For all $f(x) \ge 1$, we have that $x = \pm \sqrt{f(x)}$. Since f(x) is increasing when x > 0 and decreasing for x < 0, we have that

$$f^{-1}(A) = \{x \in \mathbb{R} : x \le -1\} \cup \{x \in \mathbb{R} : x \ge 1\} = (-\infty, -1] \cup [1, \infty).$$

Next, consider $B = (0, \infty)$. Since when f(x) = 0, we have that x = 0 and since f(x) is decreasing for x < 0 and increasing for x > 0, we have that $f^{-1}(B) = \{x \in \mathbb{R} : x < 0\} \cup \{x \in \mathbb{R} : x > 0\} = (-\infty, 0) \cup (0, \infty) = \mathbb{R} - \{0\}$. Finally, if f(x) = 1, then $x = \pm 1$. Therefore, $f^{-1}(\{1\}) = \{-1, 1\}$. To summarize,

$$f(A) = [1, \infty) = A,$$

$$f^{-1}(A) = (-\infty, -1] \cup [1, \infty),$$

$$f^{-1}(B) = \mathbb{R} - \{0\},$$

$$f^{-1}(\{1\}) = \{-1, 1\}.$$

- 3. Given a function $f: C \to Z$ and sets $A, B \subseteq C$ and $X, Y \subseteq Z$.
 - (a) Prove or dispove: $f(A \cap B) = f(A) \cap f(B)$.
 - (b) Prove or disprove: $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$.

Solution:

- (a) This statement is false, because $f(A) \cap f(B) \not\subseteq f(A \cap B)$. Counterexample. Let $C = \mathbb{Z}$, $A = \{x \in \mathbb{Z} : x \ge 0\}$, and $B = \{x \in \mathbb{Z} : x \le 0\}$, and let $Z = \mathbb{Z}$. Define $f : C \to Z$ by $f(x) = x^2$. Then f(A) = A since f(x)is increasing for $x \ge 0$, with its minimum at x = 0 and $f(0) = 0^2 = 0$. On B, while $x \le 0$, f(x) is increasing, taking its minimum value at x = 0. Since $f(0) = 0, f(B) = \{x \in \mathbb{Z} : x \ge 0\} = A$. Therefore, $f(A) \cap f(B) = A$. But, since $A \cap B = \{0\}, f(A \cap B) = f(\{0\}) = \{0\} \ne A$.
- (b) This is a true statement.

Proof. We first show that $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$. Suppose $x \in f^{-1}(X \cap Y)$. This means that $f(x) \in X \cap Y$. Therefore, $f(x) \in X$ and $f(x) \in Y$. If $f(x) \in X$, then $x \in f^{-1}(X)$ and if $f(x) \in Y$, then $x \in f^{-1}(Y)$. Therefore, $x \in f^{-1}(X)$ and $x \in f^{-1}(Y)$, so $x \in f^{-1}(X) \cap f^{-1}(Y)$ and $f^{-1}(X \cap Y) \subseteq f^{-1}(X) \cap f^{-1}(Y)$. Next, we show that $f^{-1}(X) \cap f^{-1}(Y) \subseteq f^{-1}(X \cap Y)$. Suppose $y \in f^{-1}(X) \cap f^{-1}(Y)$. Then $y \in f^{-1}(X)$ and $y \in f^{-1}(Y)$. This means that $f(y) \in X$ and $f(y) \in Y$. Therefore, $f(y) \in X \cap Y$. This means that $y \in f^{-1}(X \cap Y)$. Therefore, $f^{-1}(X) \cap f^{-1}(Y) \subseteq f^{-1}(X \cap Y)$. Since $f^{-1}(X \cap Y) \subseteq f^{-1}(X) \cap f^{-1}(Y)$ and $f^{-1}(X) \cap f^{-1}(Y) \subseteq f^{-1}(X \cap Y)$, $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$.