Homework # 10 Solutions

Math 111, Fall 2014 Instructor: Dr. Doreen De Leon

Prove each of the following with either induction, strong induction, or proof by smallest counterexample.

1. For every positive integer n, $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$. Solution:

Proof. We will prove this using induction.

(1) If n = 1, then the statement is $1^2 = \frac{1(1+1)(2(1)+1)}{6} = 1$, which is true. (2) Let $k \ge 1$. Assume that $1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$. $1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2$ $= \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$ $= \frac{(k+1)(k(2k+1) + 6(k+1))}{6}$ $= \frac{(k+1)(2k^2 + k + 6k + 6)}{6}$ $= \frac{(k+1)(2k^2 + 7k + 6)}{6}$ $= \frac{(k+1)(k+2)(2k+3)}{6}$ $= \frac{(k+1)((k+1) + 1)(2(k+1) + 1)}{6}$.

Therefore, it follows by induction that $1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$ for every positive integer n.

2. If
$$n \in \mathbb{N}$$
, then $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$.
Solution:

Proof. We will prove this using induction.

(1) If
$$n = 1$$
, then the statement is $\frac{1}{(1+1)!} = 1 - \frac{1}{(1+1)!} = \frac{1}{2}$, which is true.
(2) Let $k \ge 1$. Assume that $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!} + \frac{1}{(k+1)!}$.
 $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{k}{(k+1)!} + \frac{k+1}{((k+1)+1)!} = 1 - \frac{1}{(k+1)!} + \frac{k+1}{((k+1)+1)!}$
 $= 1 - \frac{1}{(k+1)!} + \frac{k+1}{(k+2)(k+1)!}$
 $= 1 - \frac{1}{(k+2)(k+1)!} + \frac{k+1}{(k+2)(k+1)!}$
 $= 1 - \frac{1}{(k+2)!}$
 $= 1 - \frac{1}{((k+1)+1)!}$

Therefore, it follows by induction that $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$ for every $n \in \mathbb{N}$.

3. For any integer $n \ge 0$, it follows that $9 \mid (4^{3n} + 8)$. Solution:

Proof. We prove this using induction.

- (1) If n = 0, then the statement is $9 \mid (4^{3(0)} + 8)$, or $9 \mid 9$, which is true.
- (2) Let $k \ge 0$. Assume that $9 \mid (4^{3k} + 8)$. We need to show that $9 \mid (4^{3(k+1)} + 8)$. Since $9 \mid (4^{3k} - 1)$, there is an integer x such that $4^{3k} + 8 = 9x$, so $4^{3k} = 9x - 8$.

Since $4^{3(k+1)} = 4^{3k}4^3$, we have that

$$4^{3}4^{3k} = 4^{3}(9x - 8)$$

$$4^{3k+3} = 4^{3}(9x - 8)$$

$$4^{3(k+1)} + 8 = 4^{3}(9x - 8) + 8$$

$$= 64(9x) - 64(8) + 8$$

$$= 9(64x) - 63(8)$$

$$= 9(64x) - 9(56)$$

$$= 9(64x - 56).$$

Since 64x - 56 is an integer, $9 \mid (4^{3(k+1)} + 8)$.

Therefore, it follows by induction that $9 \mid (4^{3n}+8)$ for every non-negative integer n. \Box

4. Suppose that A_1, A_2, \ldots, A_n are sets in some universal set U, and $n \ge 2$. Then

$$\overline{A_1 \cup A_2 \cup \dots \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n}.$$

Solution:

Proof. For this proof, we need to use strong induction.

(1) When n = 2, the statement is $\overline{A_1 \cup A_2} = \overline{A_1} \cap \overline{A_2}$. We need to prove that this is true. So,

$$\overline{A_1 \cup A_2} = \{x : (x \in U) \land (x \notin (A_1 \cup A_2))\} \quad (\text{definition of complement}) \\
= \{x : (x \in U) \land \sim (x \in A_1 \cup A_2)\} \\
= \{x : (x \in U) \land \sim ((x \in A_1) \lor (x \in A_2))\} \quad (\text{definition of union}) \\
= \{x : (x \in U) \land (\sim (x \in A_1)) \land (\sim (x \in A_2))\} \quad (\text{DeMorgan's law}) \\
= \{x : (x \in U) \land ((x \notin A_1) \land (x \notin A_2)) \\
= \{x : ((x \in U) \land (x \notin A_1)) \land ((x \in U) \land (x \notin A_2))\} \quad (\text{distributive property}) \\
= \{x : (x \in U) \land (x \notin A_1)\} \cap \{x : (x \in U) \land (x \notin A_2)\} \quad (\text{definition of intersection}) \\
= \overline{A_1} \cap \overline{A_2} \quad (\text{definition of complement}).$$

(2) Let $k \geq 2$. Assume that the statement is true if it involves at most k sets. Then

$$\overline{A_1 \cup A_2 \cup \dots \cup A_{k-1} \cup A_k \cup A_{k+1}} = \overline{A_1 \cup A_2 \cup \dots \cup A_{k-1} \cup (A_k \cup A_{k+1})}$$
$$= \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_{k-1}} \cup \overline{A_k \cup A_{k+1}}$$
$$= \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_{k-1}} \cap \overline{A_k} \cap \overline{A_{k+1}}$$

5. For every natural number n, it follows that $2^n + 1 \le 3^n$. Solution:

Proof. We will use proof by induction for this one.

- (1) For n = 1, we have $2^1 + 1 = 3$ and $3^1 = 3$. Therefore, the statement is true.
- (2) Let $k \ge 1$ and assume that $2^k + 1 \le 3^k$. Then

$$2^{k+1} + 1 = 2^{k}2 + 1$$

$$\leq 2 \cdot 2^{k} + 2$$

$$= 2(2^{k} + 1)$$

$$\leq 2(3^{k})$$

$$\leq 3(3^{k})$$

$$= 3^{k+1}.$$

Therefore, $2^{k+1} + 1 \le 3^{k+1}$.

So, by induction $2^n + 1 \leq 3^n$ for all natural numbers n.

6. Prove that $(1 + 2 + \dots + n)^2 = 1^3 + 2^3 + \dots + n^3$ for every $n \in \mathbb{N}$. Solution:

Proof. We will prove this by induction.

- (1) For n = 1, we have $1^2 = 1 = 1^3$, which is clearly true. Therefore, the statement is true for n = 1.
- (2) Assume that the statement is true for some $k \ge 1$; i.e., assume that $(1+2+\cdots+k)^2 = 1^3 + 2^3 + \cdots + k^3$. Then, we have

$$(1+2+\dots+k+(k+1))^{2} = ((1+2+\dots+k)+(k+1))^{2}$$

= $(1+2+\dots+k)^{2}+2(k+1)(1+2+\dots+k)+(k+1)^{2}$
= $(1+2+\dots+k)^{2}+2(k+1)\frac{k(k+1)}{2}+(k+1)^{2}$ (class notes)
= $1^{3}+2^{3}+\dots+k^{3}+k(k+1)^{2}+(k+1)^{2}$
= $1^{3}+2^{3}+\dots+k^{3}+(k+1)(k+1)^{2}$
= $1^{3}+2^{3}+\dots+k^{3}+(k+1)^{3}$.

Therefore, by induction $(1 + 2 + \dots + n)^2 = 1^3 + 2^3 + \dots + n^3$ for every $n \in \mathbb{N}$. \Box

7. Prove that $\sum_{k=s}^{N} \binom{k}{s} = \binom{N+1}{s+1}$ for all natural numbers s and N such that $N \ge s$. Hint: Prove this by induction on N. You may find an equality from Section 3.4 useful, as well.

Solution:

Proof. We will prove this by induction on N.

(1) For N = 1, since $s \leq N$, it must be true that s = 1. Then

$$\sum_{k=s}^{N} \binom{k}{s} = \sum_{k=1}^{1} \binom{k}{s} = \binom{1}{1} = 1 = \binom{2}{2} = \binom{N+1}{s+1}.$$

(2) Assume that the statement is true for some N = n, where $n \ge 1$; i.e., assume that

$$\sum_{k=s}^{n} \binom{k}{s} = \binom{n+1}{s+1}.$$

Then, we have

$$\sum_{k=s}^{n+1} \binom{k}{s} = \sum_{k=s}^{n} \binom{k}{s} + \binom{n+1}{s}$$
$$= \binom{n+1}{s+1} + \binom{n+1}{s}$$
$$= \binom{n+2}{s+1} \quad \left(\operatorname{since} \ \binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}\right)$$

Therefore, by induction, $\sum_{k=s}^{N} \binom{k}{s} = \binom{N+1}{s+1}$ for all non-negative integers s and N such that $s \leq N$.

8. Let F_n be the n^{th} term of the Fibonacci sequence. Then $\sum_{k=1}^n F_k^2 = F_n F_{n+1}$.

Solution:

Proof. We will prove this by induction.

(1) If n = 1, then we have $\sum_{k=1}^{n} F_n^2 = F_1 = 1$ and $F_1 \cdot F_2 = 1 \cdot 1 = 1 = F_1$. So, the statement is true if n = 1.

(2) Suppose that the statement is true for some $N \ge 1$. Then $\sum_{k=1}^{N} F_k^2 = F_N F_{N+1}$. Then we have

$$\sum_{k=1}^{N+1} F_k^2 = \sum_{k=1}^{N} F_k^2 + F_{N+1}^2$$
$$= F_N F_{N+1} + F_{N+1} F_{N+1}$$
$$= F_{N+1} (F_N + F_{N+1})$$
$$= F_{N+1} F_{N+2}.$$

Therefore, by induction, $\sum_{k=1}^{n} F_k^2 = F_n F_{n+1}$ for all integers *n* where $n \ge 1$.