
Homework # 10 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

Prove each of the following with either induction, strong induction, or proof by smallest
counterexample.

1. For every positive integer n, 12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

Solution:

Proof. We will prove this using induction.

(1) If n = 1, then the statement is 12 =
1(1 + 1)(2(1) + 1)

6
= 1, which is true.

(2) Let k ≥ 1. Assume that 12 + 22 + 32 + · · ·+ k2 =
k(k + 1)(2k + 1)

6
.

12 + 22 + 32 + · · ·+ k2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)(k(2k + 1) + 6(k + 1)

6

=
(k + 1)(2k2 + k + 6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6
.

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

Therefore, it follows by induction that 12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6
for

every positive integer n.

1



2. If n ∈ N, then
1

2!
+

2

3!
+ · · ·+ n

(n + 1)!
= 1− 1

(n + 1)!
.

Solution:

Proof. We will prove this using induction.

(1) If n = 1, then the statement is
1

(1 + 1)!
= 1− 1

(1 + 1)!
=

1

2
, which is true.

(2) Let k ≥ 1. Assume that
1

2!
+

2

3!
+ · · ·+ k

(k + 1)!
= 1− 1

(k + 1)!
.

1

2!
+

2

3!
+ · · ·+ k

(k + 1)!
+

k + 1

((k + 1) + 1)!
= 1− 1

(k + 1)!
+

k + 1

((k + 1) + 1)!

= 1− 1

(k + 1)!
+

k + 1

(k + 2)!

= 1− 1

(k + 1)!
+

k + 1

(k + 2)(k + 1)!

= 1− k + 2

(k + 2)(k + 1)!
+

k + 1

(k + 2)(k + 1)!

= 1− 1

(k + 2)!

= 1− 1

((k + 1) + 1)!

Therefore, it follows by induction that
1

2!
+

2

3!
+ · · ·+ n

(n + 1)!
= 1− 1

(n + 1)!
for every

n ∈ N.

3. For any integer n ≥ 0, it follows that 9 | (43n + 8).

Solution:

Proof. We prove this using induction.

(1) If n = 0, then the statement is 9 | (43(0) + 8), or 9 | 9, which is true.

(2) Let k ≥ 0. Assume that 9 | (43k + 8). We need to show that 9 | (43(k+1) + 8).

Since 9 | (43k − 1), there is an integer x such that 43k + 8 = 9x, so 43k = 9x− 8.

2 Homework 10 Solutions



Since 43(k+1) = 43k43, we have that

4343k = 43(9x− 8)

43k+3 = 43(9x− 8)

43(k+1) + 8 = 43(9x− 8) + 8

= 64(9x)− 64(8) + 8

= 9(64x)− 63(8)

= 9(64x)− 9(56)

= 9(64x− 56).

Since 64x− 56 is an integer, 9 | (43(k+1) + 8).

Therefore, it follows by induction that 9 | (43n+8) for every non-negative integer n.

4. Suppose that A1, A2, . . . , An are sets in some universal set U , and n ≥ 2. Then

A1 ∪ A2 ∪ · · · ∪ An = A1 ∩ A2 ∩ · · · ∩ An.

Solution:

Proof. For this proof, we need to use strong induction.

(1) When n = 2, the statement is A1 ∪ A2 = A1 ∩ A2. We need to prove that this is
true. So,

A1 ∪ A2 = {x : (x ∈ U) ∧ (x /∈ (A1 ∪ A2))} (definition of complement)

= {x : (x ∈ U)∧ ∼ (x ∈ A1 ∪ A2)}
= {x : (x ∈ U)∧ ∼ ((x ∈ A1) ∨ (x ∈ A2))} (definition of union)

= {x : (x ∈ U) ∧ (∼ (x ∈ A1)) ∧ (∼ (x ∈ A2))} (DeMorgan’s law)

= {x : (x ∈ U) ∧ ((x /∈ A1) ∧ (x /∈ A2))

= {x : ((x ∈ U) ∧ (x /∈ A1)) ∧ ((x ∈ U) ∧ (x /∈ A2))} (distributive property)

= {x : (x ∈ U) ∧ (x /∈ A1)} ∩ {x : (x ∈ U) ∧ (x /∈ A2)} (definition of intersection)

= A1 ∩ A2 (definition of complement).

(2) Let k ≥ 2. Assume that the statement is true if it involves at most k sets. Then

A1 ∪ A2 ∪ · · · ∪ Ak−1 ∪ Ak ∪ Ak+1 = A1 ∪ A2 ∪ · · · ∪ Ak−1 ∪ (Ak ∪ Ak+1)

= A1 ∩ A2 ∩ · · · ∩ Ak−1 ∪ Ak ∪ Ak+1

= A1 ∩ A2 ∩ · · · ∩ Ak−1 ∩ Ak ∩ Ak+1
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5. For every natural number n, it follows that 2n + 1 ≤ 3n.

Solution:

Proof. We will use proof by induction for this one.

(1) For n = 1, we have 21 + 1 = 3 and 31 = 3. Therefore, the statement is true.

(2) Let k ≥ 1 and assume that 2k + 1 ≤ 3k. Then

2k+1 + 1 = 2k2 + 1

≤ 2 · 2k + 2

= 2(2k + 1)

≤ 2(3k)

≤ 3(3k)

= 3k+1.

Therefore, 2k+1 + 1 ≤ 3k+1.

So, by induction 2n + 1 ≤ 3n for all natural numbers n.

6. Prove that (1 + 2 + · · ·+ n)2 = 13 + 23 + · · ·+ n3 for every n ∈ N.

Solution:

Proof. We will prove this by induction.

(1) For n = 1, we have 12 = 1 = 13, which is clearly true. Therefore, the statement
is true for n = 1.

(2) Assume that the statement is true for some k ≥ 1; i.e., assume that (1 + 2 + · · ·+
k)2 = 13 + 23 + · · ·+ k3. Then, we have

(1 + 2 + · · ·+ k + (k + 1))2 = ((1 + 2 + · · ·+ k) + (k + 1))2

= (1 + 2 + · · ·+ k)2 + 2(k + 1)(1 + 2 + · · ·+ k) + (k + 1)2

= (1 + 2 + · · ·+ k)2 + 2(k + 1)
k(k + 1)

2
+ (k + 1)2 (class notes)

= 13 + 23 + · · ·+ k3 + k(k + 1)2 + (k + 1)2

= 13 + 23 + · · ·+ k3 + (k + 1)(k + 1)2

= 13 + 23 + · · ·+ k3 + (k + 1)3.

Therefore, by induction (1 + 2 + · · ·+ n)2 = 13 + 23 + · · ·+ n3 for every n ∈ N.
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7. Prove that
N∑
k=s

(
k
s

)
=

(
N + 1
s + 1

)
for all natural numbers s and N such that N ≥ s.

Hint: Prove this by induction on N . You may find an equality from Section 3.4 useful,
as well.

Solution:

Proof. We will prove this by induction on N .

(1) For N = 1, since s ≤ N , it must be true that s = 1. Then

N∑
k=s

(
k
s

)
=

1∑
k=1

(
k
s

)
=

(
1
1

)
= 1 =

(
2
2

)
=

(
N + 1
s + 1

)
.

(2) Assume that the statement is true for some N = n, where n ≥ 1; i.e., assume
that

n∑
k=s

(
k
s

)
=

(
n + 1
s + 1

)
.

Then, we have

n+1∑
k=s

(
k
s

)
=

n∑
k=s

(
k
s

)
+

(
n + 1
s

)
=

(
n + 1
s + 1

)
+

(
n + 1
s

)
=

(
n + 2
s + 1

) (
since

(
n
r

)
=

(
n− 1
r − 1

)
+

(
n− 1
r

))
.

Therefore, by induction,
N∑
k=s

(
k
s

)
=

(
N + 1
s + 1

)
for all non-negative integers s and N

such that s ≤ N .

8. Let Fn be the nth term of the Fibonacci sequence. Then
n∑

k=1

F 2
k = FnFn+1.

Solution:

Proof. We will prove this by induction.

(1) If n = 1, then we have
n∑

k=1

F 2
n = F1 = 1 and F1 · F2 = 1 · 1 = 1 = F1. So, the

statement is true if n = 1.
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(2) Suppose that the statement is true for some N ≥ 1. Then
N∑
k=1

F 2
k = FNFN+1.

Then we have

N+1∑
k=1

F 2
k =

N∑
k=1

F 2
k + F 2

N+1

= FNFN+1 + FN+1FN+1

= FN+1(FN + FN+1)

= FN+1FN+2.

Therefore, by induction,
n∑

k=1

F 2
k = FnFn+1 for all integers n where n ≥ 1.
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