Homework \# 10 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

Prove each of the following with either induction, strong induction, or proof by smallest counterexample.

1. For every positive integer $n, 1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.

Solution:

Proof. We will prove this using induction.
(1) If $n=1$, then the statement is $1^{2}=\frac{1(1+1)(2(1)+1)}{6}=1$, which is true.
(2) Let $k \geq 1$. Assume that $1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}$.

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\cdots+k^{2}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)(k(2 k+1)+6(k+1)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+k+6 k+6\right)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} .
\end{aligned}
$$

Therefore, it follows by induction that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for every positive integer n.
2. If $n \in \mathbb{N}$, then $\frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}$.

Solution:

Proof. We will prove this using induction.
(1) If $n=1$, then the statement is $\frac{1}{(1+1)!}=1-\frac{1}{(1+1)!}=\frac{1}{2}$, which is true.
(2) Let $k \geq 1$. Assume that $\frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{k}{(k+1)!}=1-\frac{1}{(k+1)!}$.

$$
\begin{aligned}
\frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{k}{(k+1)!}+\frac{k+1}{((k+1)+1)!} & =1-\frac{1}{(k+1)!}+\frac{k+1}{((k+1)+1)!} \\
& =1-\frac{1}{(k+1)!}+\frac{k+1}{(k+2)!} \\
& =1-\frac{1}{(k+1)!}+\frac{k+1}{(k+2)(k+1)!} \\
& =1-\frac{k+2}{(k+2)(k+1)!}+\frac{k+1}{(k+2)(k+1)!} \\
& =1-\frac{1}{(k+2)!} \\
& =1-\frac{1}{((k+1)+1)!}
\end{aligned}
$$

Therefore, it follows by induction that $\frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}$ for every $n \in \mathbb{N}$.
3. For any integer $n \geq 0$, it follows that $9 \mid\left(4^{3 n}+8\right)$.

Solution:

Proof. We prove this using induction.
(1) If $n=0$, then the statement is $9 \mid\left(4^{3(0)}+8\right)$, or $9 \mid 9$, which is true.
(2) Let $k \geq 0$. Assume that $9 \mid\left(4^{3 k}+8\right)$. We need to show that $9 \mid\left(4^{3(k+1)}+8\right)$.

Since $9 \mid\left(4^{3 k}-1\right)$, there is an integer x such that $4^{3 k}+8=9 x$, so $4^{3 k}=9 x-8$.

Since $4^{3(k+1)}=4^{3 k} 4^{3}$, we have that

$$
\begin{aligned}
4^{3} 4^{3 k} & =4^{3}(9 x-8) \\
4^{3 k+3} & =4^{3}(9 x-8) \\
4^{3(k+1)}+8 & =4^{3}(9 x-8)+8 \\
& =64(9 x)-64(8)+8 \\
& =9(64 x)-63(8) \\
& =9(64 x)-9(56) \\
& =9(64 x-56)
\end{aligned}
$$

Since $64 x-56$ is an integer, $9 \mid\left(4^{3(k+1)}+8\right)$.
Therefore, it follows by induction that $9 \mid\left(4^{3 n}+8\right)$ for every non-negative integer n.
4. Suppose that $A_{1}, A_{2}, \ldots, A_{n}$ are sets in some universal set U, and $n \geq 2$. Then

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n}}=\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n}} .
$$

Solution:

Proof. For this proof, we need to use strong induction.
(1) When $n=2$, the statement is $\overline{A_{1} \cup A_{2}}=\overline{A_{1}} \cap \overline{A_{2}}$. We need to prove that this is true. So,

$$
\begin{aligned}
\overline{A_{1} \cup A_{2}} & =\left\{x:(x \in U) \wedge\left(x \notin\left(A_{1} \cup A_{2}\right)\right)\right\} \quad \text { (definition of complement) } \\
& =\left\{x:(x \in U) \wedge \sim\left(x \in A_{1} \cup A_{2}\right)\right\} \\
& =\left\{x:(x \in U) \wedge \sim\left(\left(x \in A_{1}\right) \vee\left(x \in A_{2}\right)\right)\right\} \quad \text { (definition of union) } \\
& =\left\{x:(x \in U) \wedge\left(\sim\left(x \in A_{1}\right)\right) \wedge\left(\sim\left(x \in A_{2}\right)\right)\right\} \quad \text { (DeMorgan's law) } \\
& =\left\{x:(x \in U) \wedge\left(\left(x \notin A_{1}\right) \wedge\left(x \notin A_{2}\right)\right)\right. \\
& =\left\{x:\left((x \in U) \wedge\left(x \notin A_{1}\right)\right) \wedge\left((x \in U) \wedge\left(x \notin A_{2}\right)\right)\right\} \quad \text { (distributive property) } \\
& =\left\{x:(x \in U) \wedge\left(x \notin A_{1}\right)\right\} \cap\left\{x:(x \in U) \wedge\left(x \notin A_{2}\right)\right\} \quad \text { (definition of intersection) } \\
& =\overline{A_{1}} \cap \overline{A_{2}} \quad \text { (definition of complement). }
\end{aligned}
$$

(2) Let $k \geq 2$. Assume that the statement is true if it involves at most k sets. Then

$$
\begin{aligned}
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{k-1} \cup A_{k} \cup A_{k+1}} & =\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{k-1} \cup\left(A_{k} \cup A_{k+1}\right)} \\
& =\overline{A_{1} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{k-1}} \cup \overline{A_{k} \cup A_{k+1}}} \\
& =\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{k-1}} \cap \overline{A_{k}} \cap \overline{A_{k+1}}
\end{aligned}
$$

5. For every natural number n, it follows that $2^{n}+1 \leq 3^{n}$.

Solution:

Proof. We will use proof by induction for this one.
(1) For $n=1$, we have $2^{1}+1=3$ and $3^{1}=3$. Therefore, the statement is true.
(2) Let $k \geq 1$ and assume that $2^{k}+1 \leq 3^{k}$. Then

$$
\begin{aligned}
2^{k+1}+1 & =2^{k} 2+1 \\
& \leq 2 \cdot 2^{k}+2 \\
& =2\left(2^{k}+1\right) \\
& \leq 2\left(3^{k}\right) \\
& \leq 3\left(3^{k}\right) \\
& =3^{k+1} .
\end{aligned}
$$

Therefore, $2^{k+1}+1 \leq 3^{k+1}$.
So, by induction $2^{n}+1 \leq 3^{n}$ for all natural numbers n.
6. Prove that $(1+2+\cdots+n)^{2}=1^{3}+2^{3}+\cdots+n^{3}$ for every $n \in \mathbb{N}$.

Solution:

Proof. We will prove this by induction.
(1) For $n=1$, we have $1^{2}=1=1^{3}$, which is clearly true. Therefore, the statement is true for $n=1$.
(2) Assume that the statement is true for some $k \geq 1$; i.e., assume that $(1+2+\cdots+$ $k)^{2}=1^{3}+2^{3}+\cdots+k^{3}$. Then, we have

$$
\begin{aligned}
(1+2+\cdots+k+(k+1))^{2} & =((1+2+\cdots+k)+(k+1))^{2} \\
& =(1+2+\cdots+k)^{2}+2(k+1)(1+2+\cdots+k)+(k+1)^{2} \\
& =(1+2+\cdots+k)^{2}+2(k+1) \frac{k(k+1)}{2}+(k+1)^{2} \quad \text { (class notes) } \\
& =1^{3}+2^{3}+\cdots+k^{3}+k(k+1)^{2}+(k+1)^{2} \\
& =1^{3}+2^{3}+\cdots+k^{3}+(k+1)(k+1)^{2} \\
& =1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}
\end{aligned}
$$

Therefore, by induction $(1+2+\cdots+n)^{2}=1^{3}+2^{3}+\cdots+n^{3}$ for every $n \in \mathbb{N}$.
7. Prove that $\sum_{k=s}^{N}\binom{k}{s}=\binom{N+1}{s+1}$ for all natural numbers s and N such that $N \geq s$.

Hint: Prove this by induction on N. You may find an equality from Section 3.4 useful, as well.

Solution:

Proof. We will prove this by induction on N.
(1) For $N=1$, since $s \leq N$, it must be true that $s=1$. Then

$$
\sum_{k=s}^{N}\binom{k}{s}=\sum_{k=1}^{1}\binom{k}{s}=\binom{1}{1}=1=\binom{2}{2}=\binom{N+1}{s+1}
$$

(2) Assume that the statement is true for some $N=n$, where $n \geq 1$; i.e., assume that

$$
\sum_{k=s}^{n}\binom{k}{s}=\binom{n+1}{s+1}
$$

Then, we have

$$
\begin{aligned}
\sum_{k=s}^{n+1}\binom{k}{s} & =\sum_{k=s}^{n}\binom{k}{s}+\binom{n+1}{s} \\
& =\binom{n+1}{s+1}+\binom{n+1}{s} \\
& =\binom{n+2}{s+1} \quad\left(\operatorname{since}\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\right) .
\end{aligned}
$$

Therefore, by induction, $\sum_{k=s}^{N}\binom{k}{s}=\binom{N+1}{s+1}$ for all non-negative integers s and N such that $s \leq N$.
8. Let F_{n} be the $n^{\text {th }}$ term of the Fibonacci sequence. Then $\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}$.

Solution:

Proof. We will prove this by induction.
(1) If $n=1$, then we have $\sum_{k=1}^{n} F_{n}^{2}=F_{1}=1$ and $F_{1} \cdot F_{2}=1 \cdot 1=1=F_{1}$. So, the statement is true if $n=1$.
(2) Suppose that the statement is true for some $N \geq 1$. Then $\sum_{k=1}^{N} F_{k}^{2}=F_{N} F_{N+1}$. Then we have

$$
\begin{aligned}
\sum_{k=1}^{N+1} F_{k}^{2} & =\sum_{k=1}^{N} F_{k}^{2}+F_{N+1}^{2} \\
& =F_{N} F_{N+1}+F_{N+1} F_{N+1} \\
& =F_{N+1}\left(F_{N}+F_{N+1}\right) \\
& =F_{N+1} F_{N+2} .
\end{aligned}
$$

Therefore, by induction, $\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}$ for all integers n where $n \geq 1$.

