Homework # 12 Solutions

Math 111, Fall 2014 Instructor: Dr. Doreen De Leon

1. Give an example of a relation from \mathbb{Z} to $\{0,1\}$ that is **not** a function.

Solution: Let $R = \{\dots, (-2, -2), (-1, -1), (0, 0), (0, 1), (1, 1), (2, 2), \dots\}$. Relation R is not a function because if x = 0, the pairs (x, 1) and (x, 2) are in R.

2. Suppose $f : \mathbb{N} \cup \{0\} \to \mathbb{Z}$ is defined as $f = \{(x, 4\sqrt{x} - 5) : x \in \mathbb{Z}\}$. State the domain, codomain, and range of f.

Solution: The domain of f is $\mathbb{N} \cup \{0\}$ and the codomain of f is \mathbb{Z} . The smallest value of $x \in \mathbb{N} \cup \{0\}$ is x = 0, and f(0) = -5. Therefore, the smallest value of f(x) is -5. As x gets larger, $4\sqrt{x} - 5$ increases, so the range of f would be $[-5, \infty)$ if the codomain of f were \mathbb{R} . However, the codomain of f is \mathbb{Z} . Since $4\sqrt{x} - 5 \in \mathbb{Z}$ if and only if $\sqrt{x} \in \mathbb{Z}$, we have that $x \in \{0, 1, 4, 9, 16, \ldots\}$. Therefore, the range of f is

$$\{-5, -1, 3, 7, 11, \dots\} = \{-5 + 4n : n \in \mathbb{N} \cup \{0\}\}.$$

- 3. Consider functions from \mathbb{Z} to \mathbb{Z} . Give an example of
 - (a) a function that is injective but not surjective;
 - (b) a function that is surjective but not injective; and
 - (c) a function that is neither injective nor surjective.

For each example, prove that your function satisfies the given property.

Solution:

(a) The function $f = \{(x, 3x) : x \in \mathbb{Z}\}$ is injective but not surjective.

Proof. Let $a, b \in \mathbb{Z}$. Then if f(a) = f(b), we have 3a = 3b. Dividing both sides by 3 gives a = b. Therefore, f is injective.

Consider $2 \in \mathbb{Z}$. Then 3x = 2 only if $x = \frac{2}{3} \notin \mathbb{Z}$. Therefore, there is a point $y \in \mathbb{Z}$ for which there is no x such that f(x) = y and so f is not surjective.

(b) The function

$$g = \begin{cases} x & \text{if } x \ge 1, \\ x+1 & \text{if } x \le 0. \end{cases}$$

is surjective but not injective.

Proof. We have that g(0) = 1 and g(1) = 1 = g(0), but $0 \neq 1$. Therefore, g is not injective

Let $y \in \mathbb{Z}$. If y = 1, then we know that g(0) = g(1) = 1. If y > 1, then choose x = y > 1. Since x = y, g(x) = g(y) = y. If $y \le 0$, then let $x = y - 1 \le 0$. So g(x) = g(y - 1) = (y - 1) + 1 = y. Therefore, for any $y \in \mathbb{Z}$, there exists x such that g(x) = y, and so g is surjective.

(c) The function $h = \{(x, x^2 - 4x + 4) : x \in \mathbb{Z}\}$ is neither injective nor surjective.

Proof. We have that $h(1) = 1^2 - 4(1) + 4 = 1$ and $h(3) = 3^2 - 4(3) + 4 = 1 = h(1)$, but $1 \neq 3$. Therefore, h is not injective. Next, let y = -1. There is no $x \in \mathbb{Z}$ such that $x^2 - 4x + 4 = -1$ (since $x^2 - 4x + 4 = (x - 2)^2$). Therefore, h is not surjective.

4. Prove that the function $f : \mathbb{R} - \{1\} \to \mathbb{R} - \{1\}$ defined by $f(x) = \left(\frac{x+1}{x-1}\right)^3$ is bijective.

Solution: Side work: To show that f is surjective, we need to show that for any $y \in \mathbb{R} - \{1\}$, we can find an x such that

$$\left(\frac{x+1}{x-1}\right)^3 = y$$

Take the cube root of both sides and multiply by x - 1. This gives

$$x + 1 = y^{\frac{1}{3}}(x - 1).$$

Now, we solve for x.

$$\begin{aligned} x+1 &= y^{\frac{1}{3}}x - y^{\frac{1}{3}} \\ x-y^{\frac{1}{3}}x &= -y^{\frac{1}{3}} - 1 \\ x\left(1-y^{\frac{1}{3}}\right) &= -\left(y^{\frac{1}{3}} + 1\right) \\ x &= -\frac{\left(y^{\frac{1}{3}} + 1\right)}{1 - \left(y^{\frac{1}{3}}\right)} \\ &= \frac{\left(y^{\frac{1}{3}} + 1\right)}{\left(y^{\frac{1}{3}} - 1\right)}. \end{aligned}$$

Proof. First, we will show that f is injective. Suppose that there exist $a, b \in \mathbb{R} - \{1\}$ such that f(a) = f(b). Then

$$\left(\frac{a+1}{a-1}\right)^3 = \left(\frac{b+1}{b-1}\right)^3.$$

Take the cube root of both sides to obtain

$$\frac{a+1}{a-1} = \frac{b+1}{b-1}$$

Multiply both sides by (a-1)(b-1):

$$(a+1)(b-1) = (b+1)(a-1)$$

 $ab+b-a-1 = ab+a-b-1.$

Subtract *ab* from and add 1 to both sides:

$$b - a = a - b.$$

Finally, add a + b to both sides to obtain

2b = 2a.

Dividing by 2 gives a = b. Therefore, f is injective.

Next, we will show that f is surjective. Let $y \in \mathbb{R} - \{1\}$. Then, set $x = \frac{\left(y^{\frac{1}{3}} + 1\right)}{\left(y^{\frac{1}{3}} - 1\right)}$. We thus have

ve thus have

$$f(x) = \left(\frac{\frac{(y^{\frac{1}{3}}+1)}{(y^{\frac{1}{3}}-1)} + 1}{(y^{\frac{1}{3}}-1)}\right)^{3}$$
$$= \left(\frac{\frac{(y^{\frac{1}{3}}+1+(y^{\frac{1}{3}}-1))}{(y^{\frac{1}{3}}-1)}}{(y^{\frac{1}{3}}-1)}\right)^{3}$$
$$= \left(\frac{2y^{\frac{1}{3}}}{y^{\frac{1}{3}}-1} \cdot \frac{y^{\frac{1}{3}}-1}{2}\right)^{3}$$
$$= \left(y^{\frac{1}{3}}\right)^{3}$$
$$= y.$$

Since f(x) = y and y was arbitrary, f is surjective.

- 5. Suppose that A, B, and C are nonempty sets and $f: A \to B$ and $g: B \to C$.
 - (a) Prove or disprove. If $g \circ f$ is injective, then f is injective.
 - (b) Prove or disprove. If $g \circ f$ is injective, then g is injective.

Solution:

(a) This statement is true.

Proof. Suppose $g \circ f$ is injective. Let f(x) = f(y) for some $x, y \in A$. Then g(f(x)) = g(f(y)), and so it follows that $(g \circ f)(x) = (g \circ f)(y)$. Since $g \circ f$ is injective, x = y. Therefore, f is injective.

(b) This statement is false.

Counterexample. Let $A = \{1, 2, 3\}, B = \{-1, -2, -3, -4\}$, and $C = \{0, 5, 10\}$. Define $f : A \to B$ by

$$f = \{(1, -1), (2, -2), (3, -3)\}$$

and $g: B \to C$ by

$$g = \{(-1,0), (-2,5), (-3,10), (-4,10)\}.$$

Then $g \circ f : A \to C$ is given by

$$g \circ f = \{(1,0), (2,5), (3,10)\}$$

We see that $g \circ f : A \to C$ is injective, but $g : B \to C$ is not.

6. Consider the functions $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined as f(m, n) = m + n and $g : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined as g(m) = (m, m). Find formulas for $g \circ f$ and $f \circ g$.

Solution:

$$(g \circ f)(m, n) = g(f(m, n))$$
$$= g(m + n)$$
$$= (m + n, m + n).$$
$$(f \circ g)(m) = f(g(m))$$
$$= f(m, m)$$
$$= m + m = 2m.$$