Homework \# 12 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

1. Give an example of a relation from \mathbb{Z} to $\{0,1\}$ that is not a function.

Solution: Let $R=\{\ldots,(-2,-2),(-1,-1),(0,0),(0,1),(1,1),(2,2), \ldots\}$. Relation R is not a function because if $x=0$, the pairs $(x, 1)$ and $(x, 2)$ are in R.
2. Suppose $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{Z}$ is defined as $f=\{(x, 4 \sqrt{x}-5): x \in \mathbb{Z}\}$. State the domain, codomain, and range of f.
Solution: The domain of f is $\mathbb{N} \cup\{0\}$ and the codomain of f is \mathbb{Z}. The smallest value of $x \in \mathbb{N} \cup\{0\}$ is $x=0$, and $f(0)=-5$. Therefore, the smallest value of $f(x)$ is -5 . As x gets larger, $4 \sqrt{x}-5$ increases, so the range of f would be $[-5, \infty)$ if the codomain of f were \mathbb{R}. However, the codomain of f is \mathbb{Z}. Since $4 \sqrt{x}-5 \in \mathbb{Z}$ if and only if $\sqrt{x} \in \mathbb{Z}$, we have that $x \in\{0,1,4,9,16, \ldots\}$. Therefore, the range of f is

$$
\{-5,-1,3,7,11, \ldots\}=\{-5+4 n: n \in \mathbb{N} \cup\{0\}\}
$$

3. Consider functions from \mathbb{Z} to \mathbb{Z}. Give an example of
(a) a function that is injective but not surjective;
(b) a function that is surjective but not injective; and
(c) a function that is neither injective nor surjective.

For each example, prove that your function satisfies the given property.

Solution:

(a) The function $f=\{(x, 3 x): x \in \mathbb{Z}\}$ is injective but not surjective.

Proof. Let $a, b \in \mathbb{Z}$. Then if $f(a)=f(b)$, we have $3 a=3 b$. Dividing both sides by 3 gives $a=b$. Therefore, f is injective.
Consider $2 \in \mathbb{Z}$. Then $3 x=2$ only if $x=\frac{2}{3} \notin \mathbb{Z}$. Therefore, there is a point $y \in \mathbb{Z}$ for which there is no x such that $f(x)=y$ and so f is not surjective.
(b) The function

$$
g= \begin{cases}x & \text { if } x \geq 1 \\ x+1 & \text { if } x \leq 0\end{cases}
$$

is surjective but not injective.
Proof. We have that $g(0)=1$ and $g(1)=1=g(0)$, but $0 \neq 1$. Therefore, g is not injective
Let $y \in \mathbb{Z}$. If $y=1$, then we know that $g(0)=g(1)=1$. If $y>1$, then choose $x=y>1$. Since $x=y, g(x)=g(y)=y$. If $y \leq 0$, then let $x=y-1 \leq 0$. So $g(x)=g(y-1)=(y-1)+1=y$. Therefore, for any $y \in \mathbb{Z}$, there exists x such that $g(x)=y$, and so g is surjective.
(c) The function $h=\left\{\left(x, x^{2}-4 x+4\right): x \in \mathbb{Z}\right\}$ is neither injective nor surjective.

Proof. We have that $h(1)=1^{2}-4(1)+4=1$ and $h(3)=3^{2}-4(3)+4=1=h(1)$, but $1 \neq 3$. Therefore, h is not injective.
Next, let $y=-1$. There is no $x \in \mathbb{Z}$ such that $x^{2}-4 x+4=-1$ (since $\left.x^{2}-4 x+4=(x-2)^{2}\right)$. Therefore, h is not surjective.
4. Prove that the function $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{1\}$ defined by $f(x)=\left(\frac{x+1}{x-1}\right)^{3}$ is bijective.

Solution: Side work: To show that f is surjective, we need to show that for any $y \in \mathbb{R}-\{1\}$, we can find an x such that

$$
\left(\frac{x+1}{x-1}\right)^{3}=y
$$

Take the cube root of both sides and multiply by $x-1$. This gives

$$
x+1=y^{\frac{1}{3}}(x-1)
$$

Now, we solve for x.

$$
\begin{aligned}
x+1 & =y^{\frac{1}{3}} x-y^{\frac{1}{3}} \\
x-y^{\frac{1}{3}} x & =-y^{\frac{1}{3}}-1 \\
x\left(1-y^{\frac{1}{3}}\right) & =-\left(y^{\frac{1}{3}}+1\right) \\
x & =-\frac{\left(y^{\frac{1}{3}}+1\right)}{1-\left(y^{\frac{1}{3}}\right)} \\
& =\frac{\left(y^{\frac{1}{3}}+1\right)}{\left(y^{\frac{1}{3}}-1\right)}
\end{aligned}
$$

Proof. First, we will show that f is injective. Suppose that there exist $a, b \in \mathbb{R}-\{1\}$ such that $f(a)=f(b)$. Then

$$
\left(\frac{a+1}{a-1}\right)^{3}=\left(\frac{b+1}{b-1}\right)^{3}
$$

Take the cube root of both sides to obtain

$$
\frac{a+1}{a-1}=\frac{b+1}{b-1} .
$$

Multiply both sides by $(a-1)(b-1)$:

$$
\begin{aligned}
(a+1)(b-1) & =(b+1)(a-1) \\
a b+b-a-1 & =a b+a-b-1 .
\end{aligned}
$$

Subtract $a b$ from and add 1 to both sides:

$$
b-a=a-b .
$$

Finally, add $a+b$ to both sides to obtain

$$
2 b=2 a .
$$

Dividing by 2 gives $a=b$. Therefore, f is injective.

Next, we will show that f is surjective. Let $y \in \mathbb{R}-\{1\}$. Then, set $x=\frac{\left(y^{\frac{1}{3}}+1\right)}{\left(y^{\frac{1}{3}}-1\right)}$. We thus have

$$
\begin{aligned}
& f(x)=\left(\frac{\frac{\left(y^{\frac{1}{3}}+1\right)}{\left(y^{\frac{1}{3}}-1\right)}+1}{\left(y^{\frac{1}{3}}+1\right)}\left(y^{\frac{1}{3}}-1\right)\right. \\
&) \\
&=\left(\frac{\frac{\left(y^{\frac{1}{3}}+1+\left(y^{\frac{1}{3}}-1\right)\right)}{\left(y^{\frac{1}{3}}-1\right)}}{\left.\frac{\left(y^{\frac{1}{3}}+1-\left(y^{\frac{1}{3}}-1\right)\right)}{\left(y^{\frac{1}{3}}-1\right)}\right)^{3}}\right. \\
&=\left(\frac{2 y^{\frac{1}{3}}}{y^{\frac{1}{3}}-1} \cdot \frac{y^{\frac{1}{3}}-1}{2}\right)^{3} \\
&=\left(y^{\frac{1}{3}}\right)^{3} \\
&=y .
\end{aligned}
$$

Since $f(x)=y$ and y was arbitrary, f is surjective.
5. Suppose that A, B, and C are nonempty sets and $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove or disprove. If $g \circ f$ is injective, then f is injective.
(b) Prove or disprove. If $g \circ f$ is injective, then g is injective.

Solution:

(a) This statement is true.

Proof. Suppose $g \circ f$ is injective. Let $f(x)=f(y)$ for some $x, y \in A$. Then $g(f(x))=g(f(y))$, and so it follows that $(g \circ f)(x)=(g \circ f)(y)$. Since $g \circ f$ is injective, $x=y$. Therefore, f is injective.
(b) This statement is false.

Counterexample. Let $A=\{1,2,3\}, B=\{-1,-2,-3,-4\}$, and $C=\{0,5,10\}$. Define $f: A \rightarrow B$ by

$$
f=\{(1,-1),(2,-2),(3,-3)\}
$$

and $g: B \rightarrow C$ by

$$
g=\{(-1,0),(-2,5),(-3,10),(-4,10)\} .
$$

Then $g \circ f: A \rightarrow C$ is given by

$$
g \circ f=\{(1,0),(2,5),(3,10)\} .
$$

We see that $g \circ f: A \rightarrow C$ is injective, but $g: B \rightarrow C$ is not.
6. Consider the functions $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(m, n)=m+n$ and $g: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined as $g(m)=(m, m)$. Find formulas for $g \circ f$ and $f \circ g$.

Solution:

$$
\begin{aligned}
(g \circ f)(m, n) & =g(f(m, n)) \\
& =g(m+n) \\
& =(m+n, m+n) . \\
(f \circ g)(m) & =f(g(m)) \\
& =f(m, m) \\
& =m+m=2 m .
\end{aligned}
$$

