Homework # 1 Solutions

Math 111, Fall 2014 Instructor: Dr. Doreen De Leon

- 1. Write the following sets by listing their elements within braces.
 - (a) $A = \{x \in \mathbb{R} : x^2 x = 0\}$
 - (b) $B = \{n \in \mathbb{Z} : n^2 < 7\}$
 - (c) $C = \{x \in \mathbb{R} : x^2 + 1 = 0\}$
 - (d) $D = \{3n+1 : n \in \mathbb{Z}\}$

Solution:

- (a) $A = \{0, 1\}$ (b) $B = \{-2, -1, 0, 1, 2\}$ (c) $C = \{\}$ (d) $D = \{\dots, -5, -2, 1, 4, 7, \dots\}$
- 2. Write each of the following sets in the form $\{x \in S : p(x)\}$ or $\{p(x) : x \in S\}$, where p(x) is a property concerning x and S is the set containing x.
 - (a) $A = \{1, 2, 3, 4, \dots, 9\}$ (b) $B = \{\dots, -8, -4, 0, 4, 8, \dots\}$ (c) $C = \{1, 8, 27, 64, \dots\}$

Solution:

- (a) $A = \{n \in \mathbb{N} : n < 10\}$
- (b) $B = \{4n : n \in \mathbb{Z}\}$
- (c) $C = \{n^3 : n \in \mathbb{N}\}$
- 3. Give an example of three sets A, B, and C such that $A \in B$ and $A \subseteq C$, or state why such an example cannot exist.

Solution: For example, if $A = \{1\}$, $B = \{\{1\}, 2\}$, and $C = \{0, 1\}$. We can see that $\{1\} \in \{\{1\}, 2\}$ and $\{1\} \subseteq \{0, 1\}$.

- 4. Find $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for $A = \{0, \{1\}, \{1, 2\}, \{\emptyset\}\}$. Solution:
 - $$\begin{split} \mathcal{P}(A) &= \{ \varnothing, \{0\}, \{\{1\}\}, \{\{1,2\}\}, \{\{\varnothing\}\}, \{0,\{1\}\}, \{0,\{1,2\}\}, \{0,\{\emptyset\}\}, \{\{1\},\{1,2\}\}, \{\{1\},\{\emptyset\}\}\}, \\ & \{\{1,2\},\{\varnothing\}\}, \{0,\{1\},\{1,2\}\}, \{0,\{1\},\{\emptyset\}\}, \{0,\{1,2\},\{\varnothing\}\}, \{\{1\},\{1,2\},\{\varnothing\}\}\}, \\ & \{0,\{1\},\{1,2\},\{\varnothing\}\}\}. \end{split}$$

We can see that $|\mathcal{P}(A)| = 16$, as expected (since |A| = 4).

- 5. True or False: If $\{1\} \in \mathcal{P}(A)$, then $1 \in A$ but $\{1\} \notin A$. **Solution:** False. Here is a counterexample. Let $A = \{\{1\}, 1\}$. Then, $\mathcal{P}(A) = \{\emptyset, 1, \{1\}, \{\{1\}, 1\}$. Then, $\{1\} \in \mathcal{P}(A), 1 \in A$, and $\{1\} \in A$.
- 6. True or False: If a set B has one more element than a set A, then $\mathcal{P}(B)$ has at least two more elements than $\mathcal{P}(A)$.

Solution: Since A is arbitrary, the statement is False. Why? Suppose that $A = \emptyset$ and $B = \{1\}$. Then |A| = 0 and |B| = 1, but $|\mathcal{P}(A)| = 2^0 = 1$ and $|\mathcal{P}(B) = 2^1 = 2$.

7. For the sets $A = \{1, \{1\}\}$ and $B = \{0, 1, 2\}$, write down all of the elements of $A \times B$. What is $|A \times B|$?

Solution: $A \times B = \{(1,0), (1,1), (1,2), (\{1\},0), (\{1\},1), (\{1\},2)\}$. We can see that $|A \times B| = 6$, as expected since |A| = 2, |B| = 3, and $|A \times B| = |A| \cdot |B| = 2 \cdot 3 = 6$.

8. For the set $A = \{1, 2\}$ and $B = \{\emptyset\}$, write down all of the elements of $A \times B$ and $\mathcal{P}(A) \times \mathcal{P}(B)$.

Solution: $A \times B = \{(1, \emptyset), (2, \emptyset)\}.$ Since $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ and $\mathcal{P}(B) = \{\emptyset, \{\emptyset\}\},$ $\mathcal{P}(A) \times \mathcal{P}(B) = \{(\emptyset, \emptyset), (\emptyset, \{\emptyset\}), (\{1\}, \emptyset), (\{1\}, \{\emptyset\}), (\{2\}, \emptyset), (\{2\}, \{\emptyset\})\}.$

- 9. Describe the graph of the ellipse $4x^2 + 9y^2 = 36$ as a subset of $\mathbb{R} \times \mathbb{R}$.
 - **Note**: What I'm looking for here is something like:

The ellipse $4x^2 + 9y^2 = 36$ is the set

 $\{(x,y) \in \mathbb{R} \times \mathbb{R} : ___\}$

(Now you fill in the blank.)

Solution: The ellipse $4x^2 + 9y^2 = 36$ is the set

$$\left\{ (x,y) \in \mathbb{R} \times \mathbb{R} : 4x^2 + 9y^2 = 36 \right\}$$