Homework \# 1 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

1. Write the following sets by listing their elements within braces.
(a) $A=\left\{x \in \mathbb{R}: x^{2}-x=0\right\}$
(b) $B=\left\{n \in \mathbb{Z}: n^{2}<7\right\}$
(c) $C=\left\{x \in \mathbb{R}: x^{2}+1=0\right\}$
(d) $D=\{3 n+1: n \in \mathbb{Z}\}$

Solution:

(a) $A=\{0,1\}$
(b) $B=\{-2,-1,0,1,2\}$
(c) $C=\{ \}$
(d) $D=\{\ldots,-5,-2,1,4,7, \ldots\}$
2. Write each of the following sets in the form $\{x \in S: p(x)\}$ or $\{p(x): x \in S\}$, where $p(x)$ is a property concerning x and S is the set containing x.
(a) $A=\{1,2,3,4, \ldots, 9\}$
(b) $B=\{\ldots,-8,-4,0,4,8, \ldots\}$
(c) $C=\{1,8,27,64, \ldots\}$

Solution:

(a) $A=\{n \in \mathbb{N}: n<10\}$
(b) $B=\{4 n: n \in \mathbb{Z}\}$
(c) $C=\left\{n^{3}: n \in \mathbb{N}\right\}$
3. Give an example of three sets A, B, and C such that $A \in B$ and $A \subseteq C$, or state why such an example cannot exist.
Solution: For example, if $A=\{1\}, B=\{\{1\}, 2\}$, and $C=\{0,1\}$. We can see that $\{1\} \in\{\{1\}, 2\}$ and $\{1\} \subseteq\{0,1\}$.
4. Find $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for $A=\{0,\{1\},\{1,2\}$, $\{\varnothing\}\}$.

Solution:

$$
\begin{aligned}
& \mathcal{P}(A)=\{\varnothing,\{0\},\{\{1\}\},\{\{1,2\}\},\{\{\varnothing\}\},\{0,\{1\}\},\{0,\{1,2\}\},\{0,\{\varnothing\}\},\{\{1\},\{1,2\}\},\{\{1\},\{\varnothing\}\}, \\
& \quad\{\{1,2\},\{\varnothing\}\},\{0,\{1\},\{1,2\}\},\{0,\{1\},\{\varnothing\}\},\{0,\{1,2\},\{\varnothing\}\},\{\{1\},\{1,2\},\{\varnothing\}\} \\
& \quad\{0,\{1\},\{1,2\},\{\varnothing\}\}\} .
\end{aligned}
$$

We can see that $|\mathcal{P}(A)|=16$, as expected (since $|A|=4$).
5. True or False: If $\{1\} \in \mathcal{P}(A)$, then $1 \in A$ but $\{1\} \notin A$.

Solution: False. Here is a counterexample. Let $A=\{\{1\}, 1\}$. Then, $\mathcal{P}(A)=\{\varnothing, 1,\{1\},\{\{1\}, 1\}$. Then, $\{1\} \in \mathcal{P}(A), 1 \in A$, and $\{1\} \in A$.
6. True or False: If a set B has one more element than a set A, then $\mathcal{P}(B)$ has at least two more elements than $\mathcal{P}(A)$.
Solution: Since A is arbitrary, the statement is False. Why? Suppose that $A=\varnothing$ and $B=\{1\}$. Then $|A|=0$ and $|B|=1$, but $|\mathcal{P}(A)|=2^{0}=1$ and $\mid \mathcal{P}(B)=2^{1}=2$.
7. For the sets $A=\{1,\{1\}\}$ and $B=\{0,1,2\}$, write down all of the elements of $A \times B$. What is $|A \times B|$?
Solution: $A \times B=\{(1,0),(1,1),(1,2),(\{1\}, 0),(\{1\}, 1),(\{1\}, 2)$. We can see that $\mid A \times$ $B \mid=6$, as expected since $|A|=2,|B|=3$, and $|A \times B|=|A| \cdot|B|=2 \cdot 3=6$.
8. For the set $A=\{1,2\}$ and $B=\{\varnothing\}$, write down all of the elements of $A \times B$ and $\mathcal{P}(A) \times \mathcal{P}(B)$.
Solution: $A \times B=\{(1, \varnothing),(2, \varnothing)\}$.
Since $\mathcal{P}(A)=\{\varnothing,\{1\},\{2\},\{1,2\}\}$ and $\mathcal{P}(B)=\{\varnothing,\{\varnothing\}\}$,

$$
\mathcal{P}(A) \times \mathcal{P}(B)=\{(\varnothing, \varnothing),(\varnothing,\{\varnothing\}),(\{1\}, \varnothing),(\{1\},\{\varnothing\}),(\{2\}, \varnothing),(\{2\},\{\varnothing\})\}
$$

9. Describe the graph of the ellipse $4 x^{2}+9 y^{2}=36$ as a subset of $\mathbb{R} \times \mathbb{R}$.

Note: What I'm looking for here is something like:
The ellipse $4 x^{2}+9 y^{2}=36$ is the set

$$
\{(x, y) \in \mathbb{R} \times \mathbb{R}: \longrightarrow\}
$$

(Now you fill in the blank.)
Solution: The ellipse $4 x^{2}+9 y^{2}=36$ is the set

$$
\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: 4 x^{2}+9 y^{2}=36\right\}
$$

