# Homework \# 2 Solutions 

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

1. Suppose that $A=\{5,3,7,1,2\}, B=\{1,4,9\}$, and $C=\{2,4,6\}$. Find
(a) $A \cup B$
(b) $A \cap C$
(c) $A-B$
(d) $B-C$
(e) $A \cup(B \cap C)$

## Solution:

(a) $A \cup B=\{1,2,3,4,5,7,9\}$
(b) $A \cap C=\{2\}$
(c) $A-B=\{2,3,5,7\}$
(d) $B-C=\{1,9\}$
(e) $B \cap C=\{4\}$, so $A \cup(B \cap C)=\{1,2,3,4,5,7\}$
2. Suppose that $A=\{a, b, c\}$ and $B=\{c, d\}$. Find
(a) $(A \times B) \cap(B \times B)$
(b) $(A \times B)-(A \times A)$
(c) $\mathcal{P}(A) \cap \mathcal{P}(B)$
(d) $\mathcal{P}(B \times B)$
(e) $\mathcal{P}(A)-\mathcal{P}(B)$

## Solution:

(a) $A \times B=\{(a, c),(b, c),(c, c),(a, d),(b, d),(c, d)\}$ and $B \times B=\{(c, c),(c, d),(d, c),(d, d)\}$. Therefore, $(A \times B) \cap(B \times B)=\{(c, c),(c, d)\}$
(b) $A \times B=\{(a, c),(b, c),(c, c),(a, d),(b, d),(c, d)\}$ and $A \times A=\{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c)\}$. Therefore, $(A \times B)-(A \times A)=\{(a, d),(b, d),(c, d)\}$.
(c) $\mathcal{P}(A)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ and $\mathcal{P}(B)=\{\varnothing,\{c\},\{d\},\{c, d\}\}$. Therefore, $\mathcal{P}(A) \cap \mathcal{P}(B)=\{\varnothing,\{c\}\}$.
(d) $B \times B=\{(c, c),(c, d),(d, c),(d, d)\}$, so

$$
\begin{aligned}
\mathcal{P}(B \times B)= & \{\varnothing,\{(c, c)\},\{(c, d)\},\{(d, c)\},\{(d, d)\},\{(c, c),(c, d)\},\{(c, c),(d, c)\}, \\
& \{(c, c),(d, d)\},\{(c, d),(d, c)\},\{(c, d),(d, d)\},\{(d, c),(d, d)\},\{(c, c),(c, d),(d, c)\}, \\
& \{(c, c),(c, d),(d, d)\},\{(c, d),(d, c),(d, d)\},\{(c, c),(c, d),(d, c),(d, d)\}\} .
\end{aligned}
$$

(e) $\mathcal{P}(A)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ and $\mathcal{P}(B)=\{\varnothing,\{c\},\{d\},\{c, d\}\}$. Therefore, $\mathcal{P}(A)-\mathcal{P}(B)=\{\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$.
3. Let $A=\{0,2,4,6,8\}$ and $B=\{1,3,5,7\}$ have universal set $U=\{0,1,2, \ldots, 8\}$. Find
(a) $\bar{A}$
(b) $\bar{B}$
(c) $\bar{A} \times B$
(d) $\overline{A \cup B}$
(e) $A-\bar{A}$

## Solution:

(a) $\bar{A}=\{1,3,5,7\}=B$
(b) $\bar{B}=\{0,2,4,6,8\}=A$
(c) $\bar{A} \times B=B \times B=$

$$
\begin{aligned}
& \{(1,1),(1,3),(1,5),(1,7),(3,1),(3,3),(3,5),(3,7),(5,1),(5,3),(5,5),(5,7) \\
& \quad(7,1),(7,3),(7,5),(7,7)\}
\end{aligned}
$$

(d) $A \cup B=\{0,1,2, \ldots, 8\}=U$. Therefore, $\overline{A \cup B}=\varnothing$.
(e) $A-\bar{A}=A-B=\{0,2,4,6,8\}=A$.
4. Suppose that sets $A$ and $B$ are in a universal set $U$. Draw Venn diagrams for each of the following:
(a) $\overline{A \cap B}$
(b) $\bar{A} \cap \bar{B}$
(c) $\overline{A \cup B}$
(d) $\bar{A} \cup \bar{B}$

Based on these sketches, make a conjecture about the equality of these sets.

## Solution:

From the sketches in Figures 1-4, we may conjecture that $\overline{A \cap B}=\bar{A} \cup \bar{B}$ and $\overline{A \cup B}=$ $\bar{A} \cap \bar{B}$.


Figure 1: $\overline{A \cap B}$


Figure 2: $\bar{A} \cap \bar{B}$


Figure 3: $\overline{A \cup B}$


Figure 4: $\bar{A} \cup \bar{B}$
5. Determine the expression involving sets $A, B$, and $C$ that is illustrated by the Venn diagram below.


Solution: We know from our class notes (and the text) that the Venn diagram of $A \cap B \cap C$ has the region that is white in this Venn diagram shaded and the shaded region white. This tells us that the Venn diagram illustrates $(A \cup B \cup C)-(A \cap B \cap C)$.

