Homework # 3 Solutions

Math 111, Fall 2014 Instructor: Dr. Doreen De Leon

- 1. For a real number r, define $A_r = \{r^2\}$, B_r as the closed interval [r-1, r+1], and C_r as the interval (r, ∞) . For $S = \{1, 2, 4\}$, determine
 - (a) $\bigcup_{r \in S} A_r$ and $\bigcap_{r \in S} A_r$ (b) $\bigcup_{r \in S} B_r$ and $\bigcap_{r \in S} B_r$ (c) $\bigcup_{r \in S} C_r$ and $\bigcap_{r \in S} C_r$.

Solution:

(a)
$$A_1 = \{1, \}, A_2 = \{2\}, \text{ and } A_4 = \{16\}, \text{ so } \bigcup_{r \in S} A_r = \{1, 4, 16\} \text{ and } \bigcap_{r \in S} A_r = \emptyset$$

(b) $B_1 = [0, 1], B_2 = [1, 3], \text{ and } B_4 = [3, 5], \text{ so } \bigcup_{r \in S} B_r = [0, 5] \text{ and } \bigcap_{r \in S} B_r = \emptyset$
(c) $C_1 = (1, \infty), C_2 = (2, \infty), \text{ and } C_4 = (4, \infty).$
Therefore, $\bigcup_{r \in S} C_r = (1, \infty) \text{ and } \bigcap_{r \in S} C_r = (4, \infty).$

2. For $r \in \mathbb{R}^+$ ($\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$), let $A_r = \{x \in \mathbb{R} : |x| < r\}$. Determine $\bigcup_{r \in \mathbb{R}^+} A_r$ and $\bigcap_{r \in \mathbb{R}^+} A_r$.

Solution: $A_r = \{x \in \mathbb{R} : |x| < r\} = \{x \in \mathbb{R} : -r < x < r\} = (-r, r)$. So, as r increases, the intervals get larger and larger. Therefore, $\bigcup_{r \in \mathbb{R}^+} A_r = (-\infty, \infty) = \mathbb{R}$. As r gets smaller and smaller, the intervals are decreasing in size. Since $r > 0, 0 \in (-r, r)$ for all r. Therfore, $\bigcap_{r \in \mathbb{R}^+} A_r = \{0\}$

- 3. Determine which of the following are statements. For statements, determine if they are true or false.
 - (i) Every even integer is a real number.
 - (ii) $\mathbb{N} \notin P(\mathbb{N})$.
 - (iii) The integer x is divisible by 5.
 - (iv) $\emptyset = \{\emptyset\}.$

Solution:

- (i) Every even integer is a real number. Statement. True, since $\mathbb{Z} \subseteq \mathbb{R}$.
- (ii) $\mathbb{N} \notin P(\mathbb{N})$. Statement. False, becuase the power set contains the original set as an element.
- (iii) The integer x is divisible by 5. Not a statement.
- (iv) $\emptyset = \{\emptyset\}$. Statement. False (see Chapter 1).
- 4. Express each statement or open sentence in one of the forms $P \wedge Q$, $P \vee Q$, or $\sim P$. Make sure to state exactly what statements P and Q stand for.
 - (i) The matrix A is not invertible.
 - (ii) x < y
 - (iii) At least one of the numbers x and y equals 0.
 - (iv) $x \in A \cap B$

Solution:

- (i) P: The matrix A is invertible. The given statement, then, is $\sim P$.
- (ii) $P: x \ge y$. The given statement, then, is $\sim P$.
- (iii) P: x equals 0 Q: y equals 0. The given statement is thus $P \lor Q$.
- (iv) $P: x \in A; Q: x \in B$. Therefore, the given statement is $P \wedge Q$.
- 5. State the negation of each of the following statements without using the word "not."
 - (a) The real number r is at most 2.
 - (b) The absolute value of the number a is less than 3.
 - (c) Two sides of the triangle have the same length.
 - (d) No one expected it to rain.
 - (e) It is surprising that two students received the same exam score.

Solution:

- (a) The real number r is greater than 2.
- (b) The absolute value of the number a is at least 3.
- (c) The sides of the triangle have different lengths.
- (d) Someone expected it to rain.
- (e) It is expected that two students received the same exam score.
- 6. Consider the statements P: 17 is even and Q: 19 is prime. Write each of the following statements in words and indicate whether it is true or false.
 - (a) $\sim P$
 - (b) $P \wedge Q$
 - (c) $P \lor Q$

Solution:

- (a) $\sim P$ is "17 is odd." True, because 17 is odd.
- (b) $P \wedge Q$ is "17 is even and 19 is prime." False. Although Q is true, P is false. Therefore, $P \wedge Q$ is false.
- (c) $P \lor Q$ is "17 is even or 19 is prime." True. Although P is false, Q is true. Therefore, $P \lor Q$ is true.
- 7. Without changing their meanings, convert each of the following sentences into a sentence having the form "If P, then Q."
 - (a) Whenever three sides of a triangle are equal, the angles of the triangle are equal.
 - (b) The square of every integer is positive.
 - (c) The integer n^3 is even only if n is even.

Solution:

- (a) If three sides of a triangle are equal, the angles if the triangle are equal.
- (b) If a number is an integer, then its square is positive.
- (c) If the integer n is even, then n^3 is also even.

- 8. Without changing their meanings, convert each of the following sentences into a sentence having the form "P if and only if Q."
 - (a) If a function has constant derivative, it is linear, and conversely.
 - (b) For a circle to have both a perimeter and an area of 4π , it is necessary and sufficient that its radius be 2.

Solution:

- (a) A function has a constant derivative if and only if it is linear.
- (b) A circle has both a perimeter and an area of 4π if and only if its radius is 2.
- 9. Consider the statements $P: \sqrt{2}$ is rational and $Q: \frac{22}{7}$ is rational. Write each of the following statements in words and indicate whether it is true or false.
 - (a) $P \implies Q$
 - (b) $Q \implies P$
 - (c) $P \iff Q$

Solution:

- (a) $P \implies Q$ is "If $\sqrt{2}$ is rational, then $\frac{22}{7}$ is rational." True, since $\frac{22}{7}$ is rational.
- (b) $Q \implies P$ is "If $\frac{22}{7}$ is rational, then $\sqrt{2}$ is rational." False, since $\frac{22}{7}$ is rational but $\sqrt{2}$ is not.
- (c) $P \iff Q$ is " $\sqrt{2}$ is rational if and only if $\frac{22}{7}$ is rational." False, since $\sqrt{2}$ is not rational.