Homework \# 3 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

1. For a real number r, define $A_{r}=\left\{r^{2}\right\}, B_{r}$ as the closed interval $[r-1, r+1]$, and C_{r} as the interval (r, ∞). For $S=\{1,2,4\}$, determine
(a) $\bigcup_{r \in S} A_{r}$ and $\bigcap_{r \in S} A_{r}$
(b) $\bigcup_{r \in S} B_{r}$ and $\bigcap_{r \in S} B_{r}$
(c) $\bigcup_{r \in S} C_{r}$ and $\bigcap_{r \in S} C_{r}$.

Solution:

(a) $A_{1}=\{1\},, A_{2}=\{2\}$, and $A_{4}=\{16\}$, so $\bigcup_{r \in S} A_{r}=\{1,4,16\}$ and $\bigcap_{r \in S} A_{r}=\varnothing$
(b) $B_{1}=[0,1], B_{2}=[1,3]$, and $B_{4}=[3,5]$, so $\bigcup_{r \in S} B_{r}=[0,5]$ and $\bigcap_{r \in S} B_{r}=\varnothing$
(c) $C_{1}=(1, \infty), C_{2}=(2, \infty)$, and $C_{4}=(4, \infty)$.

Therefore, $\bigcup_{r \in S} C_{r}=(1, \infty)$ and $\bigcap_{r \in S} C_{r}=(4, \infty)$.
2. For $r \in \mathbb{R}^{+}\left(\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}\right)$, let $A_{r}=\{x \in \mathbb{R}:|x|<r\}$. Determine $\bigcup_{r \in \mathbb{R}^{+}} A_{r}$ and $\bigcap_{r \in \mathbb{R}^{+}} A_{r}$.
Solution: $A_{r}=\{x \in \mathbb{R}:|x|<r\}=\{x \in \mathbb{R}:-r<x<r\}=(-r, r)$. So, as r increases, the intervals get larger and larger. Therefore, $\bigcup_{r \in \mathbb{R}^{+}} A_{r}=(-\infty, \infty)=\mathbb{R}$. As r gets smaller and smaller, the intervals are decreasing in size. Since $r>0,0 \in(-r, r)$ for all r. Therfore, $\bigcap_{r \in \mathbb{R}^{+}} A_{r}=\{0\}$
3. Determine which of the following are statements. For statements, determine if they are true or false.
(i) Every even integer is a real number.
(ii) $\mathbb{N} \notin P(\mathbb{N})$.
(iii) The integer x is divisible by 5 .
(iv) $\varnothing=\{\varnothing\}$.

Solution:

(i) Every even integer is a real number. - Statement. True, since $\mathbb{Z} \subseteq \mathbb{R}$.
(ii) $\mathbb{N} \notin P(\mathbb{N})$. - Statement. False, becuase the power set contains the original set as an element.
(iii) The integer x is divisible by 5 . - Not a statement.
(iv) $\varnothing=\{\varnothing\}$. - Statement. False (see Chapter 1).
4. Express each statement or open sentence in one of the forms $P \wedge Q, P \vee Q$, or $\sim P$. Make sure to state exactly what statements P and Q stand for.
(i) The matrix A is not invertible.
(ii) $x<y$
(iii) At least one of the numbers x and y equals 0 .
(iv) $x \in A \cap B$

Solution:

(i) P : The matrix A is invertible. The given statement, then, is $\sim P$.
(ii) $P: x \geq y$. The given statement, then, is $\sim P$.
(iii) $P: x$ equals 0
$Q: y$ equals 0 . The given statement is thus $P \vee Q$.
(iv) $P: x \in A ; Q: x \in B$. Therefore, the given statement is $P \wedge Q$.
5. State the negation of each of the following statements without using the word "not."
(a) The real number r is at most 2 .
(b) The absolute value of the number a is less than 3 .
(c) Two sides of the triangle have the same length.
(d) No one expected it to rain.
(e) It is surprising that two students received the same exam score.

Solution:

(a) The real number r is greater than 2.
(b) The absolute value of the number a is at least 3 .
(c) The sides of the triangle have different lengths.
(d) Someone expected it to rain.
(e) It is expected that two students received the same exam score.
6. Consider the statements $P: 17$ is even and $Q: 19$ is prime. Write each of the following statements in words and indicate whether it is true or false.
(a) $\sim P$
(b) $P \wedge Q$
(c) $P \vee Q$

Solution:

(a) $\sim P$ is " 17 is odd." True, because 17 is odd.
(b) $P \wedge Q$ is " 17 is even and 19 is prime." False. Although Q is true, P is false. Therefore, $P \wedge Q$ is false.
(c) $P \vee Q$ is " 17 is even or 19 is prime." True. Although P is false, Q is true. Therefore, $P \vee Q$ is true.
7. Without changing their meanings, convert each of the following sentences into a sentence having the form "If P, then Q."
(a) Whenever three sides of a triangle are equal, the angles of the triangle are equal.
(b) The square of every integer is positive.
(c) The integer n^{3} is even only if n is even.

Solution:

(a) If three sides of a triangle are equal, the angles if the triangle are equal.
(b) If a number is an integer, then its square is positive.
(c) If the integer n is even, then n^{3} is also even.
8. Without changing their meanings, convert each of the following sentences into a sentence having the form " P if and only if Q."
(a) If a function has constant derivative, it is linear, and conversely.
(b) For a circle to have both a perimeter and an area of 4π, it is necessary and sufficient that its radius be 2 .

Solution:

(a) A function has a constant derivative if and only if it is linear.
(b) A circle has both a perimeter and an area of 4π if and only if its radius is 2 .
9. Consider the statements $P: \sqrt{2}$ is rational and $Q: \frac{22}{7}$ is rational. Write each of the following statements in words and indicate whether it is true or false.
(a) $P \Longrightarrow Q$
(b) $Q \Longrightarrow P$
(c) $P \Longleftrightarrow Q$

Solution:

(a) $P \Longrightarrow Q$ is "If $\sqrt{2}$ is rational, then $\frac{22}{7}$ is rational." True, since $\frac{22}{7}$ is rational.
(b) $Q \Longrightarrow P$ is "If $\frac{22}{7}$ is rational, then $\sqrt{2}$ is rational." False, since $\frac{22}{7}$ is rational but $\sqrt{2}$ is not.
(c) $P \Longleftrightarrow Q$ is " $\sqrt{2}$ is rational if and only if $\frac{22}{7}$ is rational." False, since $\sqrt{2}$ is not rational.

