Homework # 4 Solutions

Math 111, Fall 2014 Instructor: Dr. Doreen De Leon

- 1. Write a truth table for the following statements.
 - (a) $(Q \lor R) \iff (R \land Q)$
 - (b) $\sim (P \land Q) \land (\sim P)$
 - (c) $P \lor (Q \land \sim R)$
 - (d) $(P \implies Q) \implies (\sim P)$

Solution:

(a)
$$(Q \lor R) \iff (R \land Q)$$

Q	R	$Q \vee R$	$R \wedge Q$	$(Q \lor R) \iff (R \land Q)$
Т	Т	Т	Т	Т
Т	F	Т	F	F
F	Т	Т	F	F
F	F	F	F	Т

(b) $\sim (P \land Q) \land (\sim P)$

P	Q	$P \land Q$	$\sim (P \land Q)$	$\sim P$	$\sim (P \land Q) \land (\sim P)$
Т	Т	Т	F	F	F
Т	F	F	Т	F	F
F	Т	F	Т	Т	Т
F	F	F	Т	Т	Т

(c) $P \lor (Q \land \sim R)$

P	Q	R	$\sim R$	$Q \wedge \sim R$	$P \lor (Q \land \sim R)$
Т	Т	Т	F	F	Т
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	Т
Т	F	F	Т	F	Т
F	Т	Т	F	F	F
F	Т	F	Т	Т	Т
F	F	Т	F	F	F
F	F	F	Т	F	F

(d)
$$(P \implies Q) \implies (\sim P)$$

P	Q	$P \implies Q$	$\sim P$	$(P \implies Q) \implies (\sim P)$
Т	Т	Т	F	F
Т	F	F	F	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

2. Suppose the statement $((P \land Q) \lor R) \implies (R \lor S)$ is false. Without using a truth table, determine the truth values of P, Q, R, and S.

Solution: If the implication is false, that means that the statement on the left is true and the statement on the right is false. The statement $(R \lor S)$ is only false if both R and S are false. Since $(P \land Q) \lor R$ is true, this means that $P \land Q$ must be true, which is only the case if both P and Q are true. Therefore, we have that P is true, Q is true, R is false, and S is false.

3. Use truth tables to show that the following statements are equivalent.

(a)
$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

(b) $\sim P \iff Q = (P \implies \sim Q) \land (\sim Q \implies P)$

Solution:

(a) $P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$

P	Q	R	$Q \wedge R$	$P \lor (Q \land R)$	$P \lor Q$	$P \lor R$	$(P \lor Q) \land (P \lor R)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

(b)
$$\sim P \iff Q = (P \implies \sim Q) \land (\sim Q \implies P)$$

P	Q	$\sim P$	$\sim P \iff Q$	$\sim Q$	$P \implies (\sim Q)$	$\sim Q \implies P$	$(P \implies \sim Q) \land (\sim Q \implies P)$
Π	Τ	F	F	F	F	Т	F
Γ	' F	F	Т	Т	Т	Т	Т
F	Т	Т	Т	F	Т	Т	Т
F	F	Т	F	Т	Т	F	F

4. Determine whether or not the following pairs of statements are logically equivalent.

- (a) $\sim (P \implies Q)$ and $P \wedge \sim Q$
- (b) $(\sim Q) \implies (P \land \sim P)$ and Q
- (c) $(P \land Q) \iff P$ and $P \implies Q$
- (d) ~ ($P \lor Q$) and (~ P) \lor (~ Q)

Solution:

(a)
$$\sim (P \implies Q)$$
 and $P \land \sim Q$

P	Q	$P \implies Q$	$\sim (P \implies Q)$	$\sim Q$	$P \land (\sim Q)$
Т	Т	Т	F	F	F
Т	F	F	Т	Т	Т
F	Т	Т	F	F	F
F	F	Т	F	Т	F

Since the truth tables of the two statements are identical, they are logically equivalent.

(b) $(\sim Q) \implies (P \land \sim P)$ and Q

P	Q	$\sim Q$	$P \wedge \sim P$	$(\sim Q) \implies (P \land \sim P)$	Q
Т	Т	F	F	Т	Т
Т	F	Т	F	F	F
F	Т	F	F	Т	Т
F	F	Т	F	F	F

Since the truth tables of the two statements are identical, they are logically equivalent.

(c) $(P \land Q) \iff P$ and $P \implies Q$

P	Q	$P \wedge Q$	$(P \land Q) \iff P$	$P \implies Q$
Т	Т	Т	Т	Т
Т	F	F	F	F
F	Т	F	Т	Т
F	F	F	Т	Т

Since the truth tables of the two statements are identical, they are logically equivalent.

(d) $\sim (P \lor Q)$ and $(\sim P) \lor (\sim Q)$

P	Q	$P \lor Q$	$\sim (P \lor Q)$	$\sim P$	$\sim Q$	$(\sim P) \lor (\sim Q)$
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	Т
F	Т	Т	F	Т	F	Т
F	F	F	Т	Т	Т	Т

Since the truth tables of the two statements are not identical, they are not logically equivalent.

- 5. Write the following as English sentences. State whether they are true or false.
 - (a) $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x^n \ge 0$
 - (b) $\exists n \in \mathbb{N}, \forall X \in \mathcal{P}(\mathbb{N}), |X| < n$
 - (c) $\forall n \in \mathbb{Z}, \exists X \subseteq \mathbb{N}, |X| = n$
 - (d) $\forall X \in \mathcal{P}(\mathbb{N}), X \subseteq \mathbb{R}$

Solution:

- (a) For all real numbers x, there exists a natural number n such that $x^n \ge 0$. True. If n = 2 (or any even number), $x^n \ge 0$.
- (b) There exists a natural number n such that for all sets X in the power set of the natural numbers, |X| < n. False. The set $\mathbb{N} \in \mathcal{P}(\mathbb{N})$, and cardinality is not defined for sets with infinitely many elements.
- (c) For all integers n, there exists a subset X of the natural numbers such that |X| = n. False. Since cardinality is defined to be a nonnegative number, if n < 0, this is not true.
- (d) For all sets X in the power set of \mathbb{N} , X is a subset of \mathbb{R} . True, because $\mathbb{N} \subseteq \mathbb{R}$, so if $X \subseteq \mathbb{N}$, then $X \subseteq \mathbb{R}$.
- 6. Translate each of the following sentences into symbolic logic.
 - (a) The number x is positive and the number y is positive.
 - (b) For every positive number ϵ there is a positive number M for which $|f(x) b| < \epsilon$, whenever x > M.
 - (c) There exist integers a and b such that both ab < 0 and a + b > 0.
 - (d) For all real numbers x and y, $x \neq y$ implies that $x^2 + y^2 > 0$.
 - (e) If $\sin x < 0$, then it is not the case that $0 \le x \le \pi$.

Solution:

- (a) $(x > 0) \land (y > 0)$
- (b) $\forall \epsilon > 0, \exists M > 0, (x > M) \implies |f(x) b| < \epsilon$
- (c) $\exists a, b \in \mathbb{Z}, (ab < 0) \land (a + b > 0)$
- (d) $\forall x, y \in \mathbb{R}, (x \neq y) \implies (x^2 + y^2 > 0)$
- (e) $\sin x < 0 \implies \sim (0 \le x \le \pi)$
- 7. Let P(x) and Q(x) be open sentences where the domain of the variable x is T. Which of the following implies that $P(x) \implies Q(x)$ is true for all $x \in T$?
 - (a) $P(x) \wedge Q(x)$ is false for all $x \in T$.
 - (b) Q(x) is true for all $x \in T$.
 - (c) P(x) is false for all $x \in T$.
 - (d) $P(x) \land (\sim Q(x))$ is true for some $x \in T$.
 - (e) $(\sim P(x)) \land (\sim Q(x))$ is false for all $x \in T$.

Solution: The correct answer is (b) and (c).

- (a) If $P(x) \wedge Q(x)$ is false for all $x \in T$, then at least one of P(x) and Q(x) is false. But, if P(x) is true and Q(x) is false, then $P(x) \wedge Q(x)$ is false and $P(x) \implies Q(x)$ is false.
- (b) If Q(x) is true for all $x \in T$, then $P(x) \implies Q(x)$ is true for all $x \in T$.
- (c) If P(x) is false for all $x \in T$, then for any truth value of Q(x), we have $P(x) \implies Q(x)$ is true.
- (d) If $P(x) \wedge (\sim Q(x))$ is true for some $x \in T$, then we only know that both P(x)and $\sim Q(x)$ are true for some $x \in T$, which means P(x) is true and Q(x) is false. Therefore, for some $x \in T$, $P(x) \implies Q(x)$ is false.
- (e) If $(\sim P(x)) \land (\sim Q(x))$ is false for all $x \in T$, then at least one of $\sim P(x)$ and $\sim Q(x)$ is false. This means that at least one of P(x) and Q(x) is true. If Q(x) is true while P(x) is false, then $(\sim P(x)) \land (\sim Q(x))$ is false, but $P(x) \implies Q(x)$ is also false.