Homework # 6 Solutions

Math 111, Fall 2014 Instructor: Dr. Doreen De Leon

1. Use the binomial theorem to show that

$$\sum_{k=0}^{n} \binom{n}{k} 6^k = 7^n$$

Solution: We can view 7^n as $(6+1)^n$. Applying the binomial theorem gives

$$7^{n} = (6+1)^{n}$$
$$= \sum_{k=0}^{n} {n \choose k} 6^{k} 1^{n-k}$$
$$= \sum_{k=0}^{n} {n \choose k} 6^{k},$$

since $1^{n-k} = 1$.

- 2. This problem involves lists made from the letters T, H, E, O, R, Y, with repetition allowed.
 - (a) How many 4-letter lists are there that do not begin with a T or do not end in a Y?
 - (b) How many 4-letter lists are there in which the sequence of letters T, H, E appear consecutively?

Solution:

(a) Let A = the set of 4-letter lists that do not begin with a T, and let B = the set of 4-letter lists that do not end in a Y. Since the number of lists (with repetition) that do not begin with a T is $(5)(6)(6)(6) = 5 \cdot 6^3 = 1080$, |A| = 1080. The number of lists (with repetition) that do not end in a Y is $(6)(6)(6)(5) = 6^35 = 1080$, so |B| = 1080. We seek $|A \cup B|$, which is given by

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Therefore, we need to determine $|A \cap B|$. In other words, we need to determine the number of 4-letter lists that do not begin with a T and end with a Y, but this is given by $(5)(6)(6)(5) = 5^26^2 = 900$. So, there are 1080 + 1080 - 900 = 1,2604-letter lists that do not begin with a T or do not end in a Y.

- (b) T, H, E can be either the first three letters or the second three letters. There are 1(1)(1)6 = 6 lists where T, H, E are the first three letters and, similarly, 6 lists where T, H, E are the second three letters. Therefore, since these two sets are mutually exclusive, there are 6 + 6 = 12 4-letter lists in which the sequence of letters T, H, E appear consecutively.
- 3. Prove that if x is an odd integer, then x³ is odd.Solution:

Proof. Let x be an odd integer. Then x = 2a + 1 for some integer a. Then

$$x^{3} = (2a + 1)^{3}$$

= $(2a)^{3} + 3(2a)^{2}(1) + 3(2a)(1)^{2} + (1)^{3}$ (by the binomial theorem)
= $8a^{3} + 12a^{2} + 6a + 1$
= $2(4a^{3} + 6a^{2} + 3a) + 1$.

Since $4a^3 + 6a^2 + 3a$ is an integer, x^3 is odd.

4. Suppose $a, b, c \in \mathbb{Z}$. Prove that if a|b and a|c, then a|(b+c). Solution:

Proof. Let a, b, c be integers such that a|b and a|c. Then, b = ma for some integer m and c = na for some integer n. Therefore,

$$b + c = ma + na = (m + n)a.$$

Since m + n is an integer, a|(b + c).

5. Prove that if $x \in R$ and 0 < x < 4, then $\frac{4}{x(4-x)} \ge 1$.

Solution: Side work: We want to show that $\frac{4}{x(4-x)} \ge 1$. This is the same as showing that $4 \ge x(4-x) = 4x - x^2$. [You should answer why this is true.]

$$x^2 - 4x + 4 \ge 0.$$

Since $x^2 - 4x + 4 = (x - 2)^2$, things work out.

Proof. Let x be a real number such that 0 < x < 4. Then

$$(x-2)^2 \ge 0$$

$$x^2 - 4x + 4 \ge 0$$

$$4 \ge 4x - x^2$$

$$4 \ge x(4-x)$$

$$\frac{4}{x(4-x)} \ge 1.$$

6.	Prove that if $n \in \mathbb{Z}$,	then	$n^2 -$	3n + 9	9 is	odd
	Solution:					

Proof. There are two possibilities: n is even or n is odd.

Case 1: n is even.

In this case, n = 2a for some integer a. Then

$$n^{2} - 3n + 9 = (2a)^{2} - 3(2a) + 9$$
$$= 4a^{2} - 6a + 9$$
$$= 2(2a^{2} - 3a + 4) + 1$$

Since $2a^2 - 3a + 4$ is an integer, $n^2 - 3n + 9$ is odd.

Case 2: n is odd.

In this case, n = 2b + 1 for some integer b. Then

$$n^{2} - 3n + 9 = (2b + 1)^{2} - 3(2b + 1) + 9$$

= $4b^{2} + 4b + 1 - 6b - 3 + 9$
= $4b^{2} - 2b + 7$
= $2(2b^{2} - b + 3) + 1.$

Since
$$2b^2 - b + 3$$
 is an integer, $n^2 - 3n + 9$ is odd.

These cases show that $n^2 - 3n + 9$ is odd for any integer n.

7. Prove for every nonnegative integer n that $2^n + 6^n$ is an even integer. Solution:

Proof. Suppose that n is a nonnegative integer. There are two cases to consider: n = 0 and n > 0.

Case 1: n = 0.

If n = 0, then $2^n + 6^n = 2^0 + 6^0 = 1 + 1 = 2$, which is even. Case 2: n > 0.

If n > 0, then we have the following.

$$2^{n} + 6^{n} = 2^{n} + (2 \cdot 3)^{n}$$

= 2ⁿ + 2ⁿ3ⁿ
= 2 \cdot 2^{n-1} + 2 \cdot 2^{n-1}3^{n}
= 2(2^{n-1} + 2^{n-1}3^{n}).

Since $2^{n-1} + 2^{n-1}3^n$ is an integer, $2^n + 6^n$ is even.

These cases show that if n is a nonnegative integer, $2^n + 6^n$ is an even integer. \Box

8. Prove that for every two distinct integers a and b, either $\frac{a+b}{2} > a$ or $\frac{a+b}{2} > b$. Solution:

Proof. Let a and b be distinct integers. There are two possibilities: a > b or b > a.

Case 1: a > b.

Since a > b, we have

$$\frac{a+b}{2} = \frac{a}{2} + \frac{b}{2}$$
$$> \frac{a}{2} + \frac{a}{2} \text{ (since } a > b)$$
$$\implies \frac{a+b}{2} > a.$$

Case 2: b > a.

Since b > a, we have

$$\frac{a+b}{2} = \frac{a}{2} + \frac{b}{2}$$
$$> \frac{b}{2} + \frac{b}{2} \text{ (since } b > a)$$
$$\implies \frac{a+b}{2} > b.$$

These cases show that if a and b are distinct integers, then either $\frac{a+b}{2} > a$ or $\frac{a+b}{2} > b$.

9. Evaluate the proof of the following proposition.

Proposition. If x and y are integers, then xy^2 has the same parity as x.

Proof. Assume, without loss of generality, that x is even. Then x = 2a for some integer a. Thus,

$$xy^2 = (2a)y^2 = 2(ay^2).$$

Since ay^2 is an integer, xy^2 is even.

Solution: The problem with this proof is the assumption "without loss of generality." This proof really only shows that if x is an even integer and y is an arbitrary integer, then xy^2 is even. To show the given proposition, we need to also analyze the case where x is odd.