
Homework # 6 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

1. Use the binomial theorem to show that
n∑

k=0

(
n
k

)
6k = 7n.

Solution: We can view 7n as (6 + 1)n. Applying the binomial theorem gives

7n = (6 + 1)n

=
n∑

k=0

(
n
k

)
6k1n−k

=
n∑

k=0

(
n
k

)
6k,

since 1n−k = 1.

2. This problem involves lists made from the letters T,H,E,O,R, Y , with repetition
allowed.

(a) How many 4-letter lists are there that do not begin with a T or do not end in a
Y ?

(b) How many 4-letter lists are there in which the sequence of letters T,H,E appear
consecutively?

Solution:

(a) Let A = the set of 4-letter lists that do not begin with a T , and let B = the set of
4-letter lists that do not end in a Y . Since the number of lists (with repetition)
that do not begin with a T is (5)(6)(6)(6) = 5·63 = 1080, |A| = 1080. The number
of lists (with repetition) that do not end in a Y is (6)(6)(6)(5) = 635 = 1080, so
|B| = 1080. We seek |A ∪B|, which is given by

|A ∪B| = |A|+ |B| − |A ∩B|.

Therefore, we need to determine |A ∩ B|. In other words, we need to determine
the number of 4-letter lists that do not begin with a T and end with a Y , but this
is given by (5)(6)(6)(5) = 5262 = 900. So, there are 1080 + 1080 − 900 = 1, 260
4-letter lists that do not begin with a T or do not end in a Y .
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(b) T,H,E can be either the first three letters or the second three letters. There are
1(1)(1)6 = 6 lists where T,H,E are the first three letters and, similarly, 6 lists
where T,H,E are the second three letters. Therefore, since these two sets are
mutually exclusive, there are 6 + 6 = 12 4-letter lists in which the sequence of
letters T,H,E appear consecutively.

3. Prove that if x is an odd integer, then x3 is odd.

Solution:

Proof. Let x be an odd integer. Then x = 2a + 1 for some integer a. Then

x3 = (2a + 1)3

= (2a)3 + 3(2a)2(1) + 3(2a)(1)2 + (1)3 (by the binomial theorem)

= 8a3 + 12a2 + 6a + 1

= 2(4a3 + 6a2 + 3a) + 1.

Since 4a3 + 6a2 + 3a is an integer, x3 is odd.

4. Suppose a, b, c ∈ Z. Prove that if a|b and a|c, then a|(b + c).

Solution:

Proof. Let a, b, c be integers such that a|b and a|c. Then, b = ma for some integer m
and c = na for some integer n. Therefore,

b + c = ma + na = (m + n)a.

Since m + n is an integer, a|(b + c).

5. Prove that if x ∈ R and 0 < x < 4, then
4

x(4− x)
≥ 1.

Solution: Side work: We want to show that
4

x(4− x)
≥ 1. This is the same as

showing that 4 ≥ x(4− x) = 4x− x2. [You should answer why this is true.]

x2 − 4x + 4 ≥ 0.

Since x2 − 4x + 4 = (x− 2)2, things work out.

2 Homework 6



Proof. Let x be a real number such that 0 < x < 4. Then

(x− 2)2 ≥ 0

x2 − 4x + 4 ≥ 0

4 ≥ 4x− x2

4 ≥ x(4− x)

4

x(4− x)
≥ 1.

6. Prove that if n ∈ Z, then n2 − 3n + 9 is odd.

Solution:

Proof. There are two possibilities: n is even or n is odd.

Case 1: n is even.

In this case, n = 2a for some integer a. Then

n2 − 3n + 9 = (2a)2 − 3(2a) + 9

= 4a2 − 6a + 9

= 2(2a2 − 3a + 4) + 1.

Since 2a2 − 3a + 4 is an integer, n2 − 3n + 9 is odd.

Case 2: n is odd.

In this case, n = 2b + 1 for some integer b. Then

n2 − 3n + 9 = (2b + 1)2 − 3(2b + 1) + 9

= 4b2 + 4b + 1− 6b− 3 + 9

= 4b2 − 2b + 7

= 2(2b2 − b + 3) + 1.

Since 2b2 − b + 3 is an integer, n2 − 3n + 9 is odd.

These cases show that n2 − 3n + 9 is odd for any integer n.

7. Prove for every nonnegative integer n that 2n + 6n is an even integer.

Solution:

Proof. Suppose that n is a nonnegative integer. There are two cases to consider: n = 0
and n > 0.
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Case 1: n = 0.

If n = 0, then 2n + 6n = 20 + 60 = 1 + 1 = 2, which is even.

Case 2: n > 0.

If n > 0, then we have the following.

2n + 6n = 2n + (2 · 3)n

= 2n + 2n3n

= 2 · 2n−1 + 2 · 2n−13n

= 2(2n−1 + 2n−13n).

Since 2n−1 + 2n−13n is an integer, 2n + 6n is even.

These cases show that if n is a nonnegative integer, 2n + 6n is an even integer.

8. Prove that for every two distinct integers a and b, either
a + b

2
> a or

a + b

2
> b.

Solution:

Proof. Let a and b be distinct integers. There are two possibilities: a > b or b > a.

Case 1: a > b.

Since a > b, we have

a + b

2
=

a

2
+

b

2

>
a

2
+

a

2
(since a > b)

=⇒ a + b

2
> a.

Case 2: b > a.

Since b > a, we have

a + b

2
=

a

2
+

b

2

>
b

2
+

b

2
(since b > a)

=⇒ a + b

2
> b.

These cases show that if a and b are distinct integers, then either
a + b

2
> a or

a + b

2
> b.

4 Homework 6



9. Evaluate the proof of the following proposition.

Proposition. If x and y are integers, then xy2 has the same parity as x.

Proof. Assume, without loss of generality, that x is even. Then x = 2a for some integer
a. Thus,

xy2 = (2a)y2 = 2(ay2).

Since ay2 is an integer, xy2 is even.

Solution: The problem with this proof is the assumption “without loss of generality.”
This proof really only shows that if x is an even integer and y is an arbitrary integer,
then xy2 is even. To show the given proposition, we need to also analyze the case
where x is odd.
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