Homework # 7 Solutions

Math 111, Fall 2014 Instructor: Dr. Doreen De Leon

1. Suppose $x \in \mathbb{R}$. If $x^3 - x > 0$, then x > -1. Solution:

Proof. (contrapositive)

Suppose that $x \in \mathbb{R}$ such that $x \leq -1$. Then

$$x^{3} - x = x(x^{2} - 1)$$

= $x(x + 1)(x - 1)$

Since $x \leq -1$, we have that $x \leq 0$,

$$x + 1 \le -1 + 1$$
, or $x + 1 \le 0$,

and $x - 1 \le -1 - 1 = -2$, so $x - 1 \le 0$. Since the product of three negative numbers is negative, we have that $x^3 - x \le 0$.

2. The product of an irrational number and a nonzero rational number is irrational. Solution:

Proof. (contradiction) Suppose to the contrary, that there exist an irrational number a and a nonzero rational number b whose product is rational. Since ab is rational, we may write

$$ab = \frac{m}{n},$$

where $m, n \in \mathbb{Z}$ and $n \neq 0$. And, since a is a nonzero rational number, we can write

$$a = \frac{k}{l},$$

where $k, l \in \mathbb{Z}, k \neq 0$, and $l \neq 0$. Then

$$\frac{k}{l}(b) = \frac{m}{n},$$

and multiplying both sides of the equation by $\frac{l}{k}$ gives

$$b = \frac{m}{n}\frac{l}{k} = \frac{ml}{nk}$$

Since ml and nk are integers and $nk \neq 0$, we have that b is rational, a contradiction. \Box

3. If $a \equiv b \pmod{n}$, then gcd(a, n) = gcd(b, n). Solution:

Proof. (direct) Suppose that $a \equiv b \pmod{n}$. Then, $n \mid (a - b)$, so there exists an integer n such that a - b = kn. Let $d = \gcd(a, n)$. Then $d \mid a$ and $d \mid n$, so there exist integers x and y such that a = dx and n = dy. Substituting this into a - b = kn gives dx - b = k(dy), or

$$b = dx - dky = d(x - ky),$$

so since $x - ky \in \mathbb{Z}$, $d \mid b$. Since $d \mid n$ and $d \mid b$, $gcd(b, n) \ge d$, or $gcd(b, n) \ge gcd(a, n)$. Now, let e = gcd(b, n). Then, $e \mid b$ and $e \mid n$, so there exist integers w and z such that b = ew and n = ez. Substituting this into a - b = kn gives a - ew = k(ez), or

$$a = ekz + ew = e(kz + w),$$

and so, since $kz + w \in z$, $d \mid a$. Since $e \mid a$ and $e \mid n, e \leq \text{gcd}(a, n)$, or $\text{gcd}(b, n) \leq \text{gcd}(a, n)$.

Since we have $gcd(a, n) \leq gcd(b, n)$ and $gcd(a, n) \geq gcd(b, n)$, it must be true that gcd(a, n) = gcd(b, n).

4. Suppose $a \in \mathbb{Z}$. If a^2 is not divisible by 4, then a is odd.

Solution:

Proof. (contrapositive) Suppose that a is an even integer. Then a = 2k for some integer k. Therefore, $a^2 = (2k)^2 = 4k^2$, so since k^2 is an integer, a^2 is divisible by 4.

5. If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$. Solution:

Proof. (direct)

Since $n^2 + 2n$ is

Let $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$. Then $5 \mid (a-1)$, so there exists an integer n such that a-1 = 5n. Therefore,

$$a = 5n + 1$$

$$a^{2} = (5n + 1)^{2}$$

$$= 25n^{2} + 10n + 1$$

$$= 5(5n^{2} + 2n) + 1$$

So,

$$a^2 - 1 = 5(n^2 + 2n).$$

an integer, $5 \mid (a^2 - 1)$, or $a^2 \equiv 1 \pmod{5}.$

6. If a and b are positive real numbers, then $a + b \ge 2\sqrt{ab}$.

Solution: Side work: I'm going to do some algebra to see if something comes to mind.

$$a+b \ge 2\sqrt{ab}$$
$$(a+b)^2 \ge (2\sqrt{ab})^2$$
$$a^2 + 2ab + b^2 \ge 4ab$$
$$a^2 - 2ab + b^2 \ge 0$$
$$(a-b)^2 \ge 0$$

So, two approaches to this proof come to mind: direct or by contradiction.

Proof. (direct) Let a and b be positive real numbers. Then $(a - b)^2 \ge 0$. Therefore,

$$a^2 - 2ab + b^2 \ge 0.$$

Adding 4ab to both sides gives

$$a^{2} + 2ab + b^{2} \ge 4ab$$
$$(a+b)^{2} \ge 4ab.$$

Since $a, b, and (a + b)^2$ are all positive, we can take the square root of both sides, obtaining

$$a+b \ge \sqrt{4ab} = 2\sqrt{ab}.$$

Therefore, $a + b \ge 2\sqrt{ab}$ for any positive real numbers a and b.

Proof. (contradiction) Suppose to the contrary that a and b are positive real numbers such that $a + b < 2\sqrt{ab}$. Then, since $(a + b)^2$ and $2\sqrt{ab}$ are nonnegative, we can take the square of both sides, and we have

$$(a+b)^{2} < [2\sqrt{ab}]^{2}$$

$$a^{2} + 2ab + b^{2} < 4ab$$

$$a^{2} - 2ab + b^{2} < 0$$

$$(a-b)^{2} < 0,$$

a contradiction. Therefore, $a + b \ge 2\sqrt{ab}$ for any positive real numbers a and b. \Box

7. Let $a \in \mathbb{Z}$. If $(a+1)^2 - 1$ is even, then a is even.

Solution:

Proof. (contrapositive) Suppose that a is an odd integer. Then a = 2k + 1 for some integer k. So

$$(a+1)^2 - 1 = (2k+2)^2 - 1$$

= 4k² + 8k + 3
= 4k² + 8k + 2 + 1
= 2(2k² + 4k + 1) + 1

Since $2k^2 + 4k + 1$ is an integer, $(a + 1)^2 - 1$ is odd.

8. Let $a, b \in \mathbb{Z}$. If $a \ge 2$, then either $a \nmid b$ or $a \nmid (b+1)$.

Solution:

Proof. (contradiction) Suppose to the contrary, that there exist integers a and b such that $a \ge 2$ and both $a \mid b$ and $a \mid (b+1)$. Since $a \mid b$, then b = ax for some integer x. Since $a \mid (b+1)$, then b+1 = ay for some integer y. Solving for b gives b = ay - 1. Equating the two expressions gives ax = ay - 1, or ay - ax = 1, which gives

$$a(y-x) = 1.$$

Since a and y - x are integers and $a \ge 2$, this is a contradiction.

9. Evaluate the proof of the following proposition.

Proposition. Let $n \in \mathbb{Z}$. If 3n - 8 is odd, then n is odd.

Proof. Assume that n is odd. Then n = 2k + 1 for some integer k. Then

$$3n - 8 = 3(2k + 1) - 8 = 6k + 3 - 8 = 6k - 5 = 2(3k - 3) + 1.$$

Since 3k - 3 is an integer, 3n - 8 is odd.

Solution: It appears that the person writing the proof tried to do a proof by contrapositive. However, what the proof really shows is that if n is an odd integer, then 3n - 8 is odd, the converse of the proposition. To prove the given proposition, we would use proof by contrapositive in which we would prove that if n is an even integer, then 3n - 8 is even.