
Homework # 7 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

1. Suppose x ∈ R. If x3 − x > 0, then x > −1.
Solution:

Proof. (contrapositive)

Suppose that x ∈ R such that x ≤ −1. Then
x3 − x = x(x2 − 1)

= x(x+ 1)(x− 1).

Since x ≤ −1, we have that x ≤ 0,

x+ 1 ≤ −1 + 1, or x+ 1 ≤ 0,

and x− 1 ≤ −1− 1 = −2, so x− 1 ≤ 0. Since the product of three negative numbers
is negative, we have that x3 − x ≤ 0.

2. The product of an irrational number and a nonzero rational number is irrational.

Solution:

Proof. (contradiction) Suppose to the contrary, that there exist an irrational number
a and a nonzero rational number b whose product is rational. Since ab is rational, we
may write

ab =
m

n
,

where m,n ∈ Z and n 6= 0. And, since a is a nonzero rational number, we can write

a =
k

l
,

where k, l ∈ Z, k 6= 0, and l 6= 0. Then

k

l
(b) =

m

n
,

and multiplying both sides of the equation by
l

k
gives

b =
m

n

l

k
=

ml

nk
.

Sinceml and nk are integers and nk 6= 0, we have that b is rational, a contradiction.
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3. If a ≡ b (mod n), then gcd(a, n) = gcd(b, n).

Solution:

Proof. (direct) Suppose that a ≡ b (mod n). Then, n | (a − b), so there exists an
integer n such that a− b = kn. Let d = gcd(a, n). Then d | a and d | n, so there exist
integers x and y such that a = dx and n = dy. Substituting this into a− b = kn gives
dx− b = k(dy), or

b = dx− dky = d(x− ky),

so since x− ky ∈ Z, d | b. Since d | n and d | b, gcd(b, n) ≥ d, or gcd(b, n) ≥ gcd(a, n).

Now, let e = gcd(b, n). Then, e | b and e | n, so there exist integers w and z such that
b = ew and n = ez. Substituting this into a− b = kn gives a− ew = k(ez), or

a = ekz + ew = e(kz + w),

and so, since kz + w ∈ z, d | a. Since e | a and e | n, e ≤ gcd(a, n), or gcd(b, n) ≤
gcd(a, n).

Since we have gcd(a, n) ≤ gcd(b, n) and gcd(a, n) ≥ gcd(b, n), it must be true that
gcd(a, n) = gcd(b, n).

4. Suppose a ∈ Z. If a2 is not divisible by 4, then a is odd.

Solution:

Proof. (contrapositive) Suppose that a is an even integer. Then a = 2k for some
integer k. Therefore, a2 = (2k)2 = 4k2, so since k2 is an integer, a2 is divisible by
4.

5. If a ∈ Z and a ≡ 1 (mod 5), then a2 ≡ 1 (mod 5).

Solution:

Proof. (direct)

Let a ∈ Z and a ≡ 1 (mod 5). Then 5 | (a− 1), so there exists an integer n such that
a− 1 = 5n. Therefore,

a = 5n+ 1

a2 = (5n+ 1)2

= 25n2 + 10n+ 1

= 5(5n2 + 2n) + 1.

So,

a2 − 1 = 5(n2 + 2n).

Since n2 + 2n is an integer, 5 | (a2 − 1), or a2 ≡ 1 (mod 5).
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6. If a and b are positive real numbers, then a+ b ≥ 2
√
ab.

Solution: Side work: I’m going to do some algebra to see if something comes to mind.

a+ b ≥ 2
√
ab

(a+ b)2 ≥ (2
√
ab)2

a2 + 2ab+ b2 ≥ 4ab

a2 − 2ab+ b2 ≥ 0

(a− b)2 ≥ 0

So, two approaches to this proof come to mind: direct or by contradiction.

Proof. (direct) Let a and b be positive real numbers. Then (a− b)2 ≥ 0. Therefore,

a2 − 2ab+ b2 ≥ 0.

Adding 4ab to both sides gives

a2 + 2ab+ b2 ≥ 4ab

(a+ b)2 ≥ 4ab.

Since a, b, and (a + b)2 are all positive, we can take the square root of both sides,
obtaining

a+ b ≥
√
4ab = 2

√
ab.

Therefore, a+ b ≥ 2
√
ab for any positive real numbers a and b.

Proof. (contradiction) Suppose to the contrary that a and b are positive real numbers
such that a + b < 2

√
ab. Then, since (a + b)2 and 2

√
ab are nonnegative, we can take

the square of both sides, and we have

(a+ b)2 < [2
√
ab]2

a2 + 2ab+ b2 < 4ab

a2 − 2ab+ b2 < 0

(a− b)2 < 0,

a contradiction. Therefore, a+ b ≥ 2
√
ab for any positive real numbers a and b.
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7. Let a ∈ Z. If (a+ 1)2 − 1 is even, then a is even.

Solution:

Proof. (contrapositive) Suppose that a is an odd integer. Then a = 2k + 1 for some
integer k. So

(a+ 1)2 − 1 = (2k + 2)2 − 1

= 4k2 + 8k + 3

= 4k2 + 8k + 2 + 1

= 2(2k2 + 4k + 1) + 1.

Since 2k2 + 4k + 1 is an integer, (a+ 1)2 − 1 is odd.

8. Let a, b ∈ Z. If a ≥ 2, then either a - b or a - (b+ 1).

Solution:

Proof. (contradiction) Suppose to the contrary, that there exist integers a and b such
that a ≥ 2 and both a | b and a | (b + 1). Since a | b, then b = ax for some integer x.
Since a | (b + 1), then b + 1 = ay for some integer y. Solving for b gives b = ay − 1.
Equating the two expressions gives ax = ay − 1, or ay − ax = 1, which gives

a(y − x) = 1.

Since a and y − x are integers and a ≥ 2, this is a contradiction.

9. Evaluate the proof of the following proposition.

Proposition. Let n ∈ Z. If 3n− 8 is odd, then n is odd.

Proof. Assume that n is odd. Then n = 2k + 1 for some integer k. Then

3n− 8 = 3(2k + 1)− 8 = 6k + 3− 8 = 6k − 5 = 2(3k − 3) + 1.

Since 3k − 3 is an integer, 3n− 8 is odd.

Solution: It appears that the person writing the proof tried to do a proof by con-
trapositive. However, what the proof really shows is that if n is an odd integer, then
3n − 8 is odd, the converse of the proposition. To prove the given proposition, we
would use proof by contrapositive in which we would prove that if n is an even integer,
then 3n− 8 is even.
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