Homework \# 7 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

1. Suppose $x \in \mathbb{R}$. If $x^{3}-x>0$, then $x>-1$.

Solution:

Proof. (contrapositive)
Suppose that $x \in \mathbb{R}$ such that $x \leq-1$. Then

$$
\begin{aligned}
x^{3}-x & =x\left(x^{2}-1\right) \\
& =x(x+1)(x-1) .
\end{aligned}
$$

Since $x \leq-1$, we have that $x \leq 0$,

$$
x+1 \leq-1+1, \text { or } x+1 \leq 0,
$$

and $x-1 \leq-1-1=-2$, so $x-1 \leq 0$. Since the product of three negative numbers is negative, we have that $x^{3}-x \leq 0$.
2. The product of an irrational number and a nonzero rational number is irrational.

Solution:

Proof. (contradiction) Suppose to the contrary, that there exist an irrational number a and a nonzero rational number b whose product is rational. Since $a b$ is rational, we may write

$$
a b=\frac{m}{n},
$$

where $m, n \in Z$ and $n \neq 0$. And, since a is a nonzero rational number, we can write

$$
a=\frac{k}{l},
$$

where $k, l \in \mathbb{Z}, k \neq 0$, and $l \neq 0$. Then

$$
\frac{k}{l}(b)=\frac{m}{n},
$$

and multiplying both sides of the equation by $\frac{l}{k}$ gives

$$
b=\frac{m}{n} \frac{l}{k}=\frac{m l}{n k} .
$$

Since $m l$ and $n k$ are integers and $n k \neq 0$, we have that b is rational, a contradiction.
3. If $a \equiv b(\bmod n)$, then $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.

Solution:

Proof. (direct) Suppose that $a \equiv b(\bmod n)$. Then, $n \mid(a-b)$, so there exists an integer n such that $a-b=k n$. Let $d=\operatorname{gcd}(a, n)$. Then $d \mid a$ and $d \mid n$, so there exist integers x and y such that $a=d x$ and $n=d y$. Substituting this into $a-b=k n$ gives $d x-b=k(d y)$, or

$$
b=d x-d k y=d(x-k y),
$$

so since $x-k y \in \mathbb{Z}, d \mid b$. Since $d \mid n$ and $d \mid b, \operatorname{gcd}(b, n) \geq d$, or $\operatorname{gcd}(b, n) \geq \operatorname{gcd}(a, n)$. Now, let $e=\operatorname{gcd}(b, n)$. Then, $e \mid b$ and $e \mid n$, so there exist integers w and z such that $b=e w$ and $n=e z$. Substituting this into $a-b=k n$ gives $a-e w=k(e z)$, or

$$
a=e k z+e w=e(k z+w),
$$

and so, since $k z+w \in z, d \mid a$. Since $e \mid a$ and $e \mid n, e \leq \operatorname{gcd}(a, n)$, or $\operatorname{gcd}(b, n) \leq$ $\operatorname{gcd}(a, n)$.
Since we have $\operatorname{gcd}(a, n) \leq \operatorname{gcd}(b, n)$ and $\operatorname{gcd}(a, n) \geq \operatorname{gcd}(b, n)$, it must be true that $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.
4. Suppose $a \in \mathbb{Z}$. If a^{2} is not divisible by 4 , then a is odd.

Solution:

Proof. (contrapositive) Suppose that a is an even integer. Then $a=2 k$ for some integer k. Therefore, $a^{2}=(2 k)^{2}=4 k^{2}$, so since k^{2} is an integer, a^{2} is divisible by 4.
5. If $a \in \mathbb{Z}$ and $a \equiv 1(\bmod 5)$, then $a^{2} \equiv 1(\bmod 5)$.

Solution:

Proof. (direct)
Let $a \in \mathbb{Z}$ and $a \equiv 1(\bmod 5)$. Then $5 \mid(a-1)$, so there exists an integer n such that $a-1=5 n$. Therefore,

$$
\begin{aligned}
a & =5 n+1 \\
a^{2} & =(5 n+1)^{2} \\
& =25 n^{2}+10 n+1 \\
& =5\left(5 n^{2}+2 n\right)+1 .
\end{aligned}
$$

So,

$$
a^{2}-1=5\left(n^{2}+2 n\right) .
$$

Since $n^{2}+2 n$ is an integer, $5 \mid\left(a^{2}-1\right)$, or $a^{2} \equiv 1(\bmod 5)$.
6. If a and b are positive real numbers, then $a+b \geq 2 \sqrt{a b}$.

Solution: Side work: I'm going to do some algebra to see if something comes to mind.

$$
\begin{aligned}
a+b & \geq 2 \sqrt{a b} \\
(a+b)^{2} & \geq(2 \sqrt{a b})^{2} \\
a^{2}+2 a b+b^{2} & \geq 4 a b \\
a^{2}-2 a b+b^{2} & \geq 0 \\
(a-b)^{2} & \geq 0
\end{aligned}
$$

So, two approaches to this proof come to mind: direct or by contradiction.
Proof. (direct) Let a and b be positive real numbers. Then $(a-b)^{2} \geq 0$. Therefore,

$$
a^{2}-2 a b+b^{2} \geq 0
$$

Adding $4 a b$ to both sides gives

$$
\begin{aligned}
a^{2}+2 a b+b^{2} & \geq 4 a b \\
(a+b)^{2} & \geq 4 a b .
\end{aligned}
$$

Since a, b, and $(a+b)^{2}$ are all positive, we can take the square root of both sides, obtaining

$$
a+b \geq \sqrt{4 a b}=2 \sqrt{a b} .
$$

Therefore, $a+b \geq 2 \sqrt{a b}$ for any positive real numbers a and b.
Proof. (contradiction) Suppose to the contrary that a and b are positive real numbers such that $a+b<2 \sqrt{a b}$. Then, since $(a+b)^{2}$ and $2 \sqrt{a b}$ are nonnegative, we can take the square of both sides, and we have

$$
\begin{aligned}
(a+b)^{2} & <[2 \sqrt{a b}]^{2} \\
a^{2}+2 a b+b^{2} & <4 a b \\
a^{2}-2 a b+b^{2} & <0 \\
(a-b)^{2} & <0,
\end{aligned}
$$

a contradiction. Therefore, $a+b \geq 2 \sqrt{a b}$ for any positive real numbers a and b.
7. Let $a \in \mathbb{Z}$. If $(a+1)^{2}-1$ is even, then a is even.

Solution:

Proof. (contrapositive) Suppose that a is an odd integer. Then $a=2 k+1$ for some integer k. So

$$
\begin{aligned}
(a+1)^{2}-1 & =(2 k+2)^{2}-1 \\
& =4 k^{2}+8 k+3 \\
& =4 k^{2}+8 k+2+1 \\
& =2\left(2 k^{2}+4 k+1\right)+1 .
\end{aligned}
$$

Since $2 k^{2}+4 k+1$ is an integer, $(a+1)^{2}-1$ is odd.
8. Let $a, b \in \mathbb{Z}$. If $a \geq 2$, then either $a \nmid b$ or $a \nmid(b+1)$.

Solution:

Proof. (contradiction) Suppose to the contrary, that there exist integers a and b such that $a \geq 2$ and both $a \mid b$ and $a \mid(b+1)$. Since $a \mid b$, then $b=a x$ for some integer x. Since $a \mid(b+1)$, then $b+1=a y$ for some integer y. Solving for b gives $b=a y-1$. Equating the two expressions gives $a x=a y-1$, or $a y-a x=1$, which gives

$$
a(y-x)=1 .
$$

Since a and $y-x$ are integers and $a \geq 2$, this is a contradiction.
9. Evaluate the proof of the following proposition.

Proposition. Let $n \in \mathbb{Z}$. If $3 n-8$ is odd, then n is odd.
Proof. Assume that n is odd. Then $n=2 k+1$ for some integer k. Then

$$
3 n-8=3(2 k+1)-8=6 k+3-8=6 k-5=2(3 k-3)+1
$$

Since $3 k-3$ is an integer, $3 n-8$ is odd.
Solution: It appears that the person writing the proof tried to do a proof by contrapositive. However, what the proof really shows is that if n is an odd integer, then $3 n-8$ is odd, the converse of the proposition. To prove the given proposition, we would use proof by contrapositive in which we would prove that if n is an even integer, then $3 n-8$ is even.

