Homework # 8 Solutions

Math 111, Fall 2014 Instructor: Dr. Doreen De Leon

1. Suppose $x \in \mathbb{Z}$. Then x is odd if and only if 3x + 5 is even. Solution:

Proof.

 \implies | Let x be an odd integer. Then x = 2a + 1 for some integer a. So,

$$3x + 5 = 3(2a + 1) + 5 = 6a + 8 = 2(3a + 4).$$

Since 3a + 4 is an integer, 3x + 5 is even.

 \leftarrow (contrapositive) Suppose that x is an even integer. Then x = 2b for some integer b. So,

3x + 5 = 3(2b) + 5 = 6b + 5 = 2(3b + 2) + 1.

Since 3b + 2 is an integer, 3x + 5 is odd.

2. Suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y = -x. Solution:

Proof.

 \implies Let $x, y \in \mathbb{R}$, and suppose that $x^3 + x^2y = y^2 + xy$. Then we have $x^2(x+y) = y(x+y)$.

If $x + y \neq 0$, then we may divide both sides by x + y to obtain

$$x^2 = y.$$

If x + y = 0, then we obtain

0 = 0,

a true statement. But x + y = 0 is the same as y = -x.

Therefore, if $x^3 + x^2y = y^2 + xy$, then $y = x^2$ or y = -x.

 \Leftarrow | Let $x, y \in \mathbb{R}$. We have two possibilities: either $y = x^2$ or y = -x. If $y = x^2$, then

$$x^{3} + x^{2}y = x^{3} + x^{2}(x^{2}) = x^{3} + x^{4},$$

and

$$y^{2} + xy = (x^{2})^{2} + x(x^{2}) = x^{4} + x^{3} = x^{3} + x^{2}y.$$

If y = -x, then

$$x^{3} + x^{2}y = x^{3} + x^{2}(-x) = x^{3} - x^{3} = 0,$$

and

$$y^{2} + xy = (-x)^{2} + x(-x) = x^{2} - x^{2} = 0,$$

and

$$y^{2} + xy = (x^{2})^{2} + x(x^{2}) = x^{4} + x^{3} = x^{3} + x^{2}y.$$

Therefore, if $y = x^2$ or y = -x, then $x^3 + x^2y = y^2 + xy$.

3.	Suppose $a, b \in \mathbb{Z}$.	Then $a \equiv b \pmod{m}$	od 10) if an	nd only if $a \in$	$\equiv b \pmod{2}$	and $a \equiv b$
	(mod 5).					

Solution:

Proof.

- Suppose a and b are integers such that $a \equiv b \pmod{10}$. Then $10 \mid (a-b)$, so there exists an integer k such that a b = 10k. But, this means that a b = 2(5k), and since 5k is an integer, $2 \mid (a b)$ so $a \equiv b \pmod{2}$. This also means that a b = 5(2k), and since 2k is an integer, $5 \mid (a b)$, so $a \equiv \pmod{5}$.
- Suppose a and b are integers such that $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$. Then, $2 \mid (a - b) \text{ and } 5 \mid (a - b)$. Therefore, there exist integers m and n such that a - b = 2m and a - b = 5n. Equating these expressions gives

$$2m = 5n.$$

Since the left-hand side is 2m, an even integer, we know that 5n must be even. Since 5 is not even, we know that n must be even. Therefore, n = 2a for some integer a, and we obtain

$$2m = 5(2a) = 10a.$$

So, we have that a - b = 10a, which means that $10 \mid (a - b)$, or $a \equiv b \pmod{10}$.

4. There exists a positive real number x for which $x^2 < \sqrt{x}$.

Solution: Let $x = \frac{1}{4}$. Then, since $\sqrt{x} = \frac{1}{2}$ and $x^2 = \frac{1}{16} < \sqrt{x}$, $x = \frac{1}{4}$. is one such positive real number.

5. There is a set X such that $\mathbb{N} \in X$ and $\mathbb{N} \subseteq X$. Solution: Let $X = \mathbb{N} \cup \{\mathbb{N}\}$. Then $\mathbb{N} \in X$ and $\mathbb{N} \subseteq X$, so $X = \mathbb{N} \cup \{\mathbb{N}\}$ is one such set.

6. Suppose $a, b \in \mathbb{N}$. Then $a = \operatorname{lcm}(a, b)$ if and only if $b \mid a$.

Solution:

Proof.

- \implies Let a and b be two natural numbers such that a = lcm(a, b). Then there exist integers m and n such that am = a and bn = a. Therefore, $a \mid a$ (obvious) and $b \mid a$.
- $\Leftarrow |$ (direct) Suppose that b | a. Then a = bk for some integer k. So,

$$\operatorname{lcm}(a,b) = \operatorname{lcm}(bk,b) = bk = a.$$

The converse (If $b \mid a$, then a = lcm(a, b) could also be proven by contradiction, as follows.

Proof. (contradiction) Suppose to the contrary that $b \mid a$ and $a \neq \text{lcm}(a, b)$. Since $a \neq \text{lcm}(a, b)$ and $a \mid a$, it must be true that $b \nmid a$. This contradicts our assumption that $b \mid a$.

7. For every real number x, there exist integers a and b such that $a \le x \le b$ and b-a = 1.

Solution: Let $x \in \mathbb{R}$. There are two possibilities: x is an integer or x is not an integer. If x is an integer, then let a = x and b = x + 1. Then $a \le x \le b$ and b - a = 1. If x is not an integer, then we can find an integer a such that a < x < a + 1. So, let b = a + 1. Then $a \le x \le b$ and b - a = 1.