Homework \# 8 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

1. Suppose $x \in \mathbb{Z}$. Then x is odd if and only if $3 x+5$ is even.

Solution:

Proof.
\Longrightarrow Let x be an odd integer. Then $x=2 a+1$ for some integer a. So,

$$
3 x+5=3(2 a+1)+5=6 a+8=2(3 a+4) .
$$

Since $3 a+4$ is an integer, $3 x+5$ is even.
$\Longleftarrow \downharpoonleft$ (contrapositive) Suppose that x is an even integer. Then $x=2 b$ for some integer b. So,

$$
3 x+5=3(2 b)+5=6 b+5=2(3 b+2)+1
$$

Since $3 b+2$ is an integer, $3 x+5$ is odd.
2. Suppose $x, y \in \mathbb{R}$. Then $x^{3}+x^{2} y=y^{2}+x y$ if and only if $y=x^{2}$ or $y=-x$.

Solution:

Proof.
\Longrightarrow Let $x, y \in \mathbb{R}$, and suppose that $x^{3}+x^{2} y=y^{2}+x y$. Then we have

$$
x^{2}(x+y)=y(x+y) .
$$

If $x+y \neq 0$, then we may divide both sides by $x+y$ to obtain

$$
x^{2}=y
$$

If $x+y=0$, then we obtain

$$
0=0
$$

a true statement. But $x+y=0$ is the same as $y=-x$.

Therefore, if $x^{3}+x^{2} y=y^{2}+x y$, then $y=x^{2}$ or $y=-x$.
\Longleftarrow Let $x, y \in \mathbb{R}$. We have two possibilities: either $y=x^{2}$ or $y=-x$. If $y=x^{2}$, then

$$
x^{3}+x^{2} y=x^{3}+x^{2}\left(x^{2}\right)=x^{3}+x^{4},
$$

and

$$
y^{2}+x y=\left(x^{2}\right)^{2}+x\left(x^{2}\right)=x^{4}+x^{3}=x^{3}+x^{2} y .
$$

If $y=-x$, then

$$
x^{3}+x^{2} y=x^{3}+x^{2}(-x)=x^{3}-x^{3}=0,
$$

and

$$
y^{2}+x y=(-x)^{2}+x(-x)=x^{2}-x^{2}=0
$$

and

$$
y^{2}+x y=\left(x^{2}\right)^{2}+x\left(x^{2}\right)=x^{4}+x^{3}=x^{3}+x^{2} y .
$$

Therefore, if $y=x^{2}$ or $y=-x$, then $x^{3}+x^{2} y=y^{2}+x y$.
3. Suppose $a, b \in \mathbb{Z}$. Then $a \equiv b(\bmod 10)$ if and only if $a \equiv b(\bmod 2)$ and $a \equiv b$ $(\bmod 5)$.

Solution:

Proof.

\Longrightarrow Suppose a and b are integers such that $a \equiv b(\bmod 10)$. Then $10 \mid(a-b)$, so there exists an integer k such that $a-b=10 k$. But, this means that $a-b=2(5 k)$, and since $5 k$ is an integer, $2 \mid(a-b)$ so $a \equiv b(\bmod 2)$. This also means that $a-b=5(2 k)$, and since $2 k$ is an integer, $5 \mid(a-b)$, so $a \equiv(\bmod 5)$.
\Longleftarrow Suppose a and b are integers such that $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 5)$. Then, $2 \mid(a-b)$ and $5 \mid(a-b)$. Therefore, there exist integers m and n such that $a-b=2 m$ and $a-b=5 n$. Equating these expressions gives

$$
2 m=5 n .
$$

Since the left-hand side is $2 m$, an even integer, we know that $5 n$ must be even. Since 5 is not even, we know that n must be even. Therefore, $n=2 a$ for some integer a, and we obtain

$$
2 m=5(2 a)=10 a
$$

So, we have that $a-b=10 a$, which means that $10 \mid(a-b)$, or $a \equiv b(\bmod 10)$.
4. There exists a positve real number x for which $x^{2}<\sqrt{x}$.

Solution: Let $x=\frac{1}{4}$. Then, since $\sqrt{x}=\frac{1}{2}$ and $x^{2}=\frac{1}{16}<\sqrt{x}, x=\frac{1}{4}$. is one such positive real number.
5. There is a set X such that $\mathbb{N} \in X$ and $\mathbb{N} \subseteq X$.

Solution: Let $X=\mathbb{N} \cup\{\mathbb{N}\}$. Then $\mathbb{N} \in X$ and $\mathbb{N} \subseteq X$, so $X=\mathbb{N} \cup\{\mathbb{N}\}$ is one such set.
6. Suppose $a, b \in \mathbb{N}$. Then $a=\operatorname{lcm}(a, b)$ if and only if $b \mid a$.

Solution:

Proof.
$\Longrightarrow \mid$ Let a and b be two natural numbers such that $a=\operatorname{lcm}(a, b)$. Then there exist integers m and n such that $a m=a$ and $b n=a$. Therefore, $a \mid a$ (obvious) and $b \mid a$.
$\Longleftarrow($ direct) Suppose that $b \mid a$. Then $a=b k$ for some integer k. So,

$$
\operatorname{lcm}(a, b)=\operatorname{lcm}(b k, b)=b k=a .
$$

The converse (If $b \mid a$, then $a=\operatorname{lcm}(a, b)$ could also be proven by contradiction, as follows.

Proof. (contradiction) Suppose to the contrary that $b \mid a$ and $a \neq \operatorname{lcm}(a, b)$. Since $a \neq \operatorname{lcm}(a, b)$ and $a \mid a$, it must be true that $b \nmid a$. This contradicts our assumption that $b \mid a$.
7. For every real number x, there exist integers a and b such that $a \leq x \leq b$ and $b-a=1$.

Solution: Let $x \in \mathbb{R}$. There are two possibilities: x is an integer or x is not an integer. If x is an integer, then let $a=x$ and $b=x+1$. Then $a \leq x \leq b$ and $b-a=1$. If x is not an integer, then we can find an integer a such that $a<x<a+1$. So, let $b=a+1$. Then $a \leq x \leq b$ and $b-a=1$.

