
Homework # 9 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

Determine whether or not each of the statements is true or false. Prove your assertion.

1. Suppose A,B, and C are sets. If A ⊆ B, then A− C ⊆ B − C.

Solution: This statement is true.

Proof. It is straightforward to show that if any of A, B, or C is the empty set, then
the statement is true. So, let A,B, and C be nonempty sets such that A ⊆ B. Then
x ∈ A − C means that x ∈ A and x /∈ C. Since A ⊆ B, if x ∈ A, then x ∈ B. So,
x ∈ B and x /∈ C, or x ∈ B − C. Therefore, A− C ⊆ B − C.

2. If A,B, and C are sets, then A× (B ∪ C) = (A×B) ∪ (A× C).

Solution: This statement is true.

Proof. It is straightforward to show that if any of A, B, or C is the empty set, then
the statement is true. Suppose, then, that A,B, and C are nonempty sets. Then
z ∈ A× (B ∪C) means that z = (x, y), where x ∈ A and y ∈ B ∪C. Since y ∈ B ∪C,
it follows that y ∈ B or y ∈ C. So, we have that x ∈ A and y ∈ B or x ∈ A and y ∈ B.
Therefore, z ∈ A×B or z ∈ A×C, from which it follows that z ∈ (A×B)∪(A×C). So,
A×(B∪C) ⊆ (A×B)∪(A×C). Conversely, if we assume that w ∈ (A×B)∪(A×C), we
have that w ∈ A×B or w ∈ A×C. It follows that w = (x, y), where x ∈ A and y ∈ B
or x ∈ A and y ∈ B. This means that x ∈ A and y ∈ B or y ∈ C. So, w ∈ A×(B∪C),
and (A×B)∪(A×C) ⊆ A×(B∪C). Therefore, A×(B∪C) = (A×B)∪(A×C).

As another proof, we can use the definitions given in Chapter 8.

Proof.

A× (B ∪ C) = {(x, y) : (x ∈ A) ∧ (y ∈ B ∪ C)} (definition of Cartesian product)

= {(x, y) : (x ∈ A) ∧ ((y ∈ B) ∨ (y ∈ C))} (definition of union)

= {(x, y) : ((x ∈ A) ∧ (y ∈ B)) ∨ ((x ∈ A) ∧ (y ∈ C))} (distributive law)

= {(x, y) : (x ∈ A) ∧ (y ∈ B)} ∪ {(x, y) : (x ∈ A) ∧ (y ∈ C)} (definition of union)

= (A×B) ∪ (A× C) (definition of Cartesian product)
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3. Suppose that A and B are sets. Then A ⊆ B if and only if A ∩B = A.

Solution: This statement is true.

Proof. It is straightforward to prove that the statement is true if A or B (or both) is
the empty set. So, we will assum that both are nonempty.

=⇒ Suppose that A and B are nonempty sets and A ⊆ B. Since A ⊆ B, if x ∈ A
then we also have x ∈ B. Therefore, x ∈ A and x ∈ B, or x ∈ A ∩ B. Since this
is true for every x ∈ A, we have A ⊆ A ∩ B. Similarly, if x ∈ A ∩ B, then x ∈ A
and x ∈ B, so A ∩B ⊆ A. Therefore, A ∩B = A.

⇐= Suppose that A and B are nonempty sets such that A ∩ B = A. If A ∩ B = A,
then A ⊆ A ∩ B, so if x ∈ A, then x ∈ A and x ∈ B. So, we have that if x ∈ A,
then x ∈ B, or A ⊆ B.

4. For every rational number
a

b
, where a, b ∈ N, there exists a rational number

c

d
, where

c and d are positive odd integers, such that 0 <
c

d
<

a

b
.

Solution: This statement is true. Here are two possible proofs of this statement.

Proof. Let x =
a

b
, where a, b ∈ N. Without loss of generality, assume that gcd(a, b) = 1

(i.e., the fraction is in reduced form). Then, let c = 1 and d = 2b+ 1. Clearly, c and d

are both positive odd integers. It remains for us to show that
c

d
<

a

b
. There are two

cases to consider: a = 1 and a > 1. If a = 1, then c = a. Since d = 2b + 1 > b, it

follows that
c

d
<

a

b
. If a > 1, then c < a and d > b; therefore,

c

d
<

a

b
. Therefore, for

every rational number
a

b
, where a, b ∈ N, there exists a rational number

c

d
, where c

and d are positive odd integers such that 0 <
c

d
<

a

b
.

Proof. Let x =
a

b
, where a, b ∈ N. Without loss of generality, assume that gcd(a, b) = 1

(i.e., the fraction is in reduced form). Then, we have two cases: b is even and b is odd.

Case 1: The denominator b is even.

In this case, we know that a is odd (since gcd(a, b) = 1), so define c = a and

d = b + 1. Then 0 <
c

d
<

a

b
.

Case 2: The denominator b is odd.

In this case, if a is odd, then we simply define c = 1 and d = b + 2. If a is
even, then let c = a − 1 and let d = b + 2. We know that a − 1 > 0, since

a ≥ 2 if a is even. In both cases, we have 0 <
a

b
<

c

d
.
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Therefore, for every rational number
a

b
, where a, b ∈ N, there exists a rational number

c

d
, where c and d are positive odd integers, such that 0 <

c

d
<

a

b
.

5. If A and B are sets and A ∩B = ∅, then P(A)− P(B) ⊆ P(A−B).

Solution: This statement is true.

Proof. Let X ∈ P(A) − P(B). Then X ∈ P(A) and X /∈ P(B). Since A ∩ B = ∅,
it follows that A − B = A (since A − B = {x : (x ∈ A) ∧ (x /∈ B)} and A ∩ B = ∅
means that if x ∈ A, x /∈ B). Therefore, P(A − B) = P(A). Since X ∈ P(A) and
P(A) = P(A− B), it follows that X ∈ P(A− B. Therefore, since X ∈ P(A)− P(B)
means that X ∈ P(A) which implies X ∈ P(A−B), P(A)− P(B) ⊆ P(A−B).

6. For all positive real numbers x, 2x ≥ x + 1.

Solution: This statement is false.

Counterexample. Let x =
1

2
. Then 2x =

√
2 ≈ 1.414 and x + 1 =

1

2
+ 1 =

3

2
> 2

1
2 . So,

we have found a value of x for which 2x < x + 1.

7. Suppose a, b ∈ Z. If a | b and b | a, then a = b.

Solution: This statement is false.

Counterexample. Let a = −2 and b = 2. Then a | b since −2 = (−1)2 and b | a since
2 = (−1)(−2), but a 6= b.

8. The sum of two distinct irrational numbers is irrational.

Solution: This statement is false.

Counterexample. Consider the irrational numbers
√

2 and −
√

2. We have that
√

2 +
(−
√

2) = 0, an integer.

9. If x and y are real numbers such that |x + y| = |x|+ |y|, then either x = 0 or y = 0.

Solution: This statement is false.

Counterexample. Let x = 2 and y = 3. Then |x + y| = |2 + 3| = |5| = 5 and
|x|+ |y| = |2|+ |3| = 2 + 3 = 5, so |x + y| = |x|+ |y|, but x 6= 0 and y 6= 0.
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