Homework \# 9 Solutions

Math 111, Fall 2014
Instructor: Dr. Doreen De Leon

Determine whether or not each of the statements is true or false. Prove your assertion.

1. Suppose A, B, and C are sets. If $A \subseteq B$, then $A-C \subseteq B-C$.

Solution: This statement is true.
Proof. It is straightforward to show that if any of A, B, or C is the empty set, then the statement is true. So, let A, B, and C be nonempty sets such that $A \subseteq B$. Then $x \in A-C$ means that $x \in A$ and $x \notin C$. Since $A \subseteq B$, if $x \in A$, then $x \in B$. So, $x \in B$ and $x \notin C$, or $x \in B-C$. Therefore, $A-C \subseteq B-C$.
2. If A, B, and C are sets, then $A \times(B \cup C)=(A \times B) \cup(A \times C)$.

Solution: This statement is true.
Proof. It is straightforward to show that if any of A, B, or C is the empty set, then the statement is true. Suppose, then, that A, B, and C are nonempty sets. Then $z \in A \times(B \cup C)$ means that $z=(x, y)$, where $x \in A$ and $y \in B \cup C$. Since $y \in B \cup C$, it follows that $y \in B$ or $y \in C$. So, we have that $x \in A$ and $y \in B$ or $x \in A$ and $y \in B$. Therefore, $z \in A \times B$ or $z \in A \times C$, from which it follows that $z \in(A \times B) \cup(A \times C)$. So, $A \times(B \cup C) \subseteq(A \times B) \cup(A \times C)$. Conversely, if we assume that $w \in(A \times B) \cup(A \times C)$, we have that $w \in A \times B$ or $w \in A \times C$. It follows that $w=(x, y)$, where $x \in A$ and $y \in B$ or $x \in A$ and $y \in B$. This means that $x \in A$ and $y \in B$ or $y \in C$. So, $w \in A \times(B \cup C)$, and $(A \times B) \cup(A \times C) \subseteq A \times(B \cup C)$. Therefore, $A \times(B \cup C)=(A \times B) \cup(A \times C)$.

As another proof, we can use the definitions given in Chapter 8.
Proof.

$$
\begin{aligned}
A \times(B \cup C) & =\{(x, y):(x \in A) \wedge(y \in B \cup C)\} \quad \text { (definition of Cartesian product) } \\
& =\{(x, y):(x \in A) \wedge((y \in B) \vee(y \in C))\} \quad \text { (definition of union) } \\
& =\{(x, y):((x \in A) \wedge(y \in B)) \vee((x \in A) \wedge(y \in C))\} \quad \text { (distributive law) } \\
& =\{(x, y):(x \in A) \wedge(y \in B)\} \cup\{(x, y):(x \in A) \wedge(y \in C)\} \quad \text { (definition of union) } \\
& =(A \times B) \cup(A \times C) \quad \text { (definition of Cartesian product) }
\end{aligned}
$$

3. Suppose that A and B are sets. Then $A \subseteq B$ if and only if $A \cap B=A$.

Solution: This statement is true.
Proof. It is straightforward to prove that the statement is true if A or B (or both) is the empty set. So, we will assum that both are nonempty.
\Longrightarrow Suppose that A and B are nonempty sets and $A \subseteq B$. Since $A \subseteq B$, if $x \in A$ then we also have $x \in B$. Therefore, $x \in A$ and $x \in B$, or $x \in A \cap B$. Since this is true for every $x \in A$, we have $A \subseteq A \cap B$. Similarly, if $x \in A \cap B$, then $x \in A$ and $x \in B$, so $A \cap B \subseteq A$. Therefore, $A \cap B=A$.
\Longleftarrow Suppose that A and B are nonempty sets such that $A \cap B=A$. If $A \cap B=A$, then $A \subseteq A \cap B$, so if $x \in A$, then $x \in A$ and $x \in B$. So, we have that if $x \in A$, then $x \in B$, or $A \subseteq B$.
4. For every rational number $\frac{a}{b}$, where $a, b \in \mathbb{N}$, there exists a rational number $\frac{c}{d}$, where c and d are positive odd integers, such that $0<\frac{c}{d}<\frac{a}{b}$.
Solution: This statement is true. Here are two possible proofs of this statement.
Proof. Let $x=\frac{a}{b}$, where $a, b \in \mathbb{N}$. Without loss of generality, assume that $\operatorname{gcd}(a, b)=1$ (i.e., the fraction is in reduced form). Then, let $c=1$ and $d=2 b+1$. Clearly, c and d are both positive odd integers. It remains for us to show that $\frac{c}{d}<\frac{a}{b}$. There are two cases to consider: $a=1$ and $a>1$. If $a=1$, then $c=a$. Since $d=2 b+1>b$, it follows that $\frac{c}{d}<\frac{a}{b}$. If $a>1$, then $c<a$ and $d>b$; therefore, $\frac{c}{d}<\frac{a}{b}$. Therefore, for every rational number $\frac{a}{b}$, where $a, b \in \mathbb{N}$, there exists a rational number $\frac{c}{d}$, where c and d are positive odd integers such that $0<\frac{c}{d}<\frac{a}{b}$.

Proof. Let $x=\frac{a}{b}$, where $a, b \in \mathbb{N}$. Without loss of generality, assume that $\operatorname{gcd}(a, b)=1$ (i.e., the fraction is in reduced form). Then, we have two cases: b is even and b is odd.

Case 1: The denominator b is even.
In this case, we know that a is odd (since $\operatorname{gcd}(a, b)=1)$, so define $c=a$ and $d=b+1$. Then $0<\frac{c}{d}<\frac{a}{b}$.
Case 2: The denominator b is odd.
In this case, if a is odd, then we simply define $c=1$ and $d=b+2$. If a is even, then let $c=a-1$ and let $d=b+2$. We know that $a-1>0$, since $a \geq 2$ if a is even. In both cases, we have $0<\frac{a}{b}<\frac{c}{d}$.

Therefore, for every rational number $\frac{a}{b}$, where $a, b \in \mathbb{N}$, there exists a rational number $\frac{c}{d}$, where c and d are positive odd integers, such that $0<\frac{c}{d}<\frac{a}{b}$.
5. If A and B are sets and $A \cap B=\varnothing$, then $\mathcal{P}(A)-\mathcal{P}(B) \subseteq \mathcal{P}(A-B)$.

Solution: This statement is true.
Proof. Let $X \in \mathcal{P}(A)-\mathcal{P}(B)$. Then $X \in \mathcal{P}(A)$ and $X \notin \mathcal{P}(B)$. Since $A \cap B=\varnothing$, it follows that $A-B=A$ (since $A-B=\{x:(x \in A) \wedge(x \notin B)\}$ and $A \cap B=\varnothing$ means that if $x \in A, x \notin B)$. Therefore, $\mathcal{P}(A-B)=\mathcal{P}(A)$. Since $X \in \mathcal{P}(A)$ and $\mathcal{P}(A)=\mathcal{P}(A-B)$, it follows that $X \in \mathcal{P}(A-B$. Therefore, since $X \in \mathcal{P}(A)-\mathcal{P}(B)$ means that $X \in \mathcal{P}(A)$ which implies $X \in \mathcal{P}(A-B), \mathcal{P}(A)-\mathcal{P}(B) \subseteq \mathcal{P}(A-B)$.
6. For all positive real numbers $x, 2^{x} \geq x+1$.

Solution: This statement is false.
Counterexample. Let $x=\frac{1}{2}$. Then $2^{x}=\sqrt{2} \approx 1.414$ and $x+1=\frac{1}{2}+1=\frac{3}{2}>2^{\frac{1}{2}}$. So, we have found a value of x for which $2^{x}<x+1$.
7. Suppose $a, b \in \mathbb{Z}$. If $a \mid b$ and $b \mid a$, then $a=b$.

Solution: This statement is false.
Counterexample. Let $a=-2$ and $b=2$. Then $a \mid b$ since $-2=(-1) 2$ and $b \mid a$ since $2=(-1)(-2)$, but $a \neq b$.
8. The sum of two distinct irrational numbers is irrational.

Solution: This statement is false.
Counterexample. Consider the irrational numbers $\sqrt{2}$ and $-\sqrt{2}$. We have that $\sqrt{2}+$ $(-\sqrt{2})=0$, an integer.
9. If x and y are real numbers such that $|x+y|=|x|+|y|$, then either $x=0$ or $y=0$.

Solution: This statement is false.
Counterexample. Let $x=2$ and $y=3$. Then $|x+y|=|2+3|=|5|=5$ and $|x|+|y|=|2|+|3|=2+3=5$, so $|x+y|=|x|+|y|$, but $x \neq 0$ and $y \neq 0$.

