Proof of Second Proposition from Class on October 20, 2014

Dr. Doreen De Leon
Math 111, Fall 2014

Proposition. Let $x, y \in \mathbb{Z}$. Then $4 \mid\left(x^{2}-y^{2}\right)$ if and only if x and y are of the same parity.

Proof.

\Longrightarrow We will do a proof by contrapositive. Assume that x and y have opposite parity. Without loss of generality, assume that x is even and y is odd. Then $x=2 k$ and $y=2 l+1$ for some integers k and l. Then, we have

$$
\begin{aligned}
x^{2}-y^{2} & =(2 k)^{2}-(2 l+1)^{2} \\
& =4 k^{2}-\left(4 l^{2}+4 l+1\right) \\
& =4 k^{2}-4 l^{2}-4 l-1 \\
& =4 k^{2}-4 l^{2}-4 l-4+3 \\
& =4\left(k^{2}-l^{2}-l-1\right)+3 .
\end{aligned}
$$

Since $k^{2}-l^{2}-l-1$ is an integer, it follows that there is a remainder of 3 when $x^{2}-y^{2}$ is divided by 4 . Therefore, $4 \nmid\left(x^{2}-y^{2}\right)$.
\Longleftarrow Assume that x and y have the same parity. We want to show that $4 \mid\left(x^{2}-y^{2}\right)$. There are two cases.

Case 1: Both x and y are even. Then $x=2 a$ and $y=2 b$ for some integers a and b. Then,

$$
x^{2}-y^{2}=(2 a)^{2}-(2 b)^{2}=4 a^{2}-4 b^{2}=4\left(a^{2}-b^{2}\right) .
$$

Since $a^{2}-b^{2}$ is an integer, $4 \mid\left(x^{2}-y^{2}\right)$.
Case 2: Both x and y are odd. Then, $x=2 m+1$ and $y=2 n+1$ for some integers m and n. So,

$$
\begin{aligned}
x^{2}-y^{2} & =(2 m+1)^{2}-(2 n+1)^{2} \\
& =\left(4 m^{2}+4 m+1\right)-\left(4 n^{2}+4 n+1\right) \\
& =4 m^{2}+4 m-4 n^{2}-4 n \\
& =4\left(m^{2}+m-n^{2}-n\right) .
\end{aligned}
$$

Since $m^{2}+m-n^{2}-n$ is an integer, $4 \mid\left(x^{2}-y^{2}\right)$.

