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11.0 Relations

Symbols such as <, <, =, |, 1, >, >, €, C, etc. are called relations because they describe
relationships among things.

The goal of this chapter is to give you a good understanding of relations by discussing a general
theory of relations.

Definition. A relation on a set A is a subset R C A x A. The statement (z,y) € R is often
written « Ry, and the statement (z,y) ¢ R is often written = R y.

Note: Take special note of the fact that a relation is defined on a set.
Example: Let A = {1,2,3,4}. The following sets are relations on A.

(1) B={(1,1),(2,1),(2,2),(3,3),(3,2),(3,1), (4,4),(4,3),(4,2), (4, 1)}
2

(2) §={(11),(1,3),(3,1),(3,3),(2,2),(2,4), (
(3) RNnS={(1,1),(2,2),(3,1),(3,3), (4,2)

—
N
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—

Note that:

1. The set R is a relation on A. Since (2,1) € R, we can write 2 R1. Since (3,4) ¢ R, we
say 3 R 4. What relation does R represent? We see that y < z for all (z,y) € R, and all
such pairs of elements in A are in R, so R represents x > y.

2. The set S contains pairs of numbers having the same parity, and all such pairs of elements
in A are in S, so S is the relation on A for which both numbers have the same parity. So,
2 54 means that 2 has the same parity as 4.

3. Finally, RN .S is a relation because RN S C A x A and so it satisfies the definition of a
relation. What relation does this represent? Relation R N S represents: x > y, where x
and y have the same parity. To write (z,y) € RN .S, we write z (RN S) y.

Relations can be infinite. For example, the set R = {(z,y) e RxR:z #y} CR xR is an
infinite relation, because there are infinitely many real numbers x and y that satisfy it.
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11.1 Properties of Relations

For a relation defined on a set A, there are properties that a relation may have and which are
of particular interest to us.

Definition. Suppose R is a relation on a set A.

1. Relation R is reflexive if x Rx for every x € A.
2. Relation R is symmetric if z Ry implies y Rz for all z,y € A.
3. Relation R is transitive if whenver x Ry and y R z, then also x R z. In other words, R
is transitive if Vo, y,z € A, (z Ry) N(yRz)) = zRz.
Notes:
1. Showing that a relation R on a set A is reflexive requires proving a statement of the form
Ya € A, aRa.

2. Showing that a relation on a set is symmetric requires proving a conditional statement of
the form P = @ for all z,y € A, where P: xRy and Q) : y Rx.

3. Showing that a relation on a set is transitive requires proving a conditional statement of
the form P = @ for all x,y,z € A, where P: (x Ry) AN (yRz) and Q : x R 2.

Notes:

1. To show that a relation is not reflexive, we need to show that ~ (Va € A, a Ra), or
Jdae A a R a.

2. To show that a relation is not symmetric or is not transitive means that we need to prove
~ (P = (@), or P\ ~ @, where P and @ are as given above.

We will look at the examples of R, S, and RN .S defined previously.

1. Relation R is reflexive: for each a € A, a Ra. Relation R is not symmetric (2 R 1, but
1 R 2), but it is transitive. Why? Let a,b,c € A. If a Rb and b R ¢, we have that a > b
and b > ¢, which implies a > ¢, or a Rc.

2. Relation S is reflexive, symmetric, and transitive. For each a € A, a S a, so S is reflexive.
Relation S is symmetric because: if a,b € A and a S b, then a and b have the same parity,
so it follows that bS a. Finally, let a,b,c € A. If a. Sb and b S ¢, then we have that a and
b have the same parity, and b and ¢ has the same parity, so since a has the same parity
as b, which is the same parity as ¢, a has the same parity as ¢, or a S c.



3. Relation RNS is reflexive and transitive, but not symmetric. Why? It is reflexive because
for all a € A, we have a (RN S) a. It is transitive because of the following. Let a,b, c € A.
Ifa(RNS)band b(RNS)c, then a > b and b > ¢ and both a and b and b and ¢ have
the same parity. It therefore follows that a > ¢ and a and ¢ have the same parity, so
a(RNS)c. Relation RN S is not symmetric because although 3 (RN S) 1, it is not true
that 1(RNS) 3.

Examples: Let S = {a,b,c}. Determine which of these properties (if any) are possessed by
the following sets.

(1) By ={(a,b), (b,a),(c,a)}

(2) Rz ={(a,b),(b,b), (b, c), (c,b), (c,c)}
(3) Rs = {(a,a),(a,c), (b,0),(c,a),(¢,0)}
(4) Ri={(a,a),(a,b),(b,b),(b,c), (a,c)}
(5) Rs = {(a,a),(a,b)}

(6) Rs = {(a,b),(a,c)}

(1) Relation R; possesses none of these properties. It is not reflexive since (a,a) ¢ R;. It is
not symmetric since (¢,a) € Ry but (a,c¢) ¢ Ry. It is not transitive because (a,b) € Ry and
(b,a) € Ry, but (a,a) ¢ R;.

(2) Relation R, also possesses none of these properties. It is not reflexive since (a,a) ¢ Rs.
It is not symmetric since (a,b) € Ry but (b,a) ¢ Re. And it is not transitive because
(a,b), (b,c) € Ry, but (a,c) ¢ Rs.

(3) Relation Ry is reflexive, symmetric, and transitive.
4) Relation R, is transitive.
(

(5) Relation Rj is transitive. Why? To be transitive, Vz,y,z € S, we must have (z R5y) A
(y Rsz) = x Rsz. Since the only two pairs in Rs are (a,a) and (a,b), (xz,y) € Ry —>
x=aandy =aorz=aandy =0 If (z,y) = (a,a), then either (y,z) = (a,a) or
(y,2) = (a,b). In the first case, we have a Rsa and a Rsa, and (z,2) = (a,a) € Rs. In
the second case, a Rsa and a R5b, and (z,2) = (a,b) € R5. If (z,y) = (a,b), there is no
ordered pair in (y, z) € Rs such that y = b. For Rj, there are only two possibilities for two
ordered pairs of the type (z,y) and (y, 2z), and in each case (x,z) € Rs. Therefore, R5 is
transitive.

(6) Relation Rg does not contain any ordered pairs of the form (z,y) and (y, z). Therefore, Ry
Is transitive.



As another example, consider the infinite set R = {(a,b) € Z x Z : a # b}. We see that R is
not reflexive since x R z for any x € Z. We do have that R is symmetric. Why? Finally, R is
not transitive. Why? Let t =1,y =2, and 2 = 1. Then z Ry and y Rz, but = R z.

Example (from text): Prove the following proposition.

Proposition 1. Let n € N. The relation = (mod n) is reflexive, symmetric, and transitive
onz.

Proof. First, we show that = (mod n) is reflexive. Let € Z. Then, since n | 0, n | (x — z).
Therefore, we have x = = (mod n), and since this is true for every x € Z, = (mod n) is
reflexive.

Next, we will show that = (mod n) is symmetric. Let x,y € Z. Then if x = y (mod n), we
have that n | (x — y) and thus, z — y = nr for some integer r. Multiplying both sides by —1
gives y —x = —nr = n(—r). Since —r € Z, n | (y — ), or y = & mod n. Since this is true for
all z,y € Z, = (mod n) is symmetric.

Finally, we show that = (mod n) is transitive. Let x,y,z € Z be integers such that x = y
(mod n) and y = z (mod n). Then n | (x —y) and n | (y — z). Therefore, z —y = nr and
y — z = ns for some integers r and s. Adding these equations together gives

r—z=nr+ns=n(r+s).

Since r +s €Z,n | (x — z),or £ =z (mod n). Therefore, = (mod n) is transitive. O

Exercise: Determine if the relation R = {(z,y) € R x R:x —y € Z} is reflexive, symmetric,
and /or transitive on R.

Solution: Relation R is reflexive, sincex —x =0€ Z, x Rx.

Relation R is symmetric. Suppose x Ry. Then z — y = r for some integer r. So, y — x = —r,
and —r is an integer. Therefore, y R x.

Relation R is transitive, as well. Suppose x Ry and y Rz. Then x —y =r and y — 2z = s for
some integers r and s. Then

r—z=xr—Yy+y—=z
=r+s.
Since r+s € Z, x R z.

11.2 Equivalence Relations

The relation = on any set A is reflexive, symmetric, and transitive. There are many other
relations that are also reflexive, symmetric, and transitive. Such relations appear frequently in
mathemaitcs and often play important roles, a notable example being =.
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Definition. A relation R on a set A is an equivalence relation if it is reflexive, symmetric,
and transitive.

Example: Consider the set A = {1,2,3,4,5,6} and the relation

R={(1,1),(2,2).(3,3),(4,4),(5,5),(6,6),(1,3),(1,6),(6,1),(6,3),(3,1),(3,6), (2,4), (4,2)}
(1)
defined on A. We may verify that this relation is reflexive, symmetric, and transitive and is,
therefore, an equivalence relation.

Suppose that R is an equivalence relation on some set A. If a € A, then a is related to a since
R is reflexive. Other elements of A may also be related to a. The set of elements that are all
related to a given element of A is importnat (as will later be seen), and it is given a special
name.

Definition. Suppose that R is an equivalence relation on a set A. Given any element a € A,
the equivalence class containing a is the subset {x € A: x Ra} of A consisting of all of the
elements of A that relate to a. This set is denoted [a]. In other words, the equivalence class
containing a is the set

l[a] ={z € A:xRa}.

Example: Consider the relation R on the set A = {1,2,3,4,5,6} defined in (1). The equiva-

lence classes are

[1]=1{1,3,6} [2] ={2,4} [3]={1,3,6}

41 =124}  [I={5 [6]={1,3,6}.
Note that [1] = [3] = [6] and [2] = [4]. Therefore, there are three distinct equivalence classes
for R.

Example: Consider the equivalence relation defined on Z by a Rb if a = b and determine the
distinct equivalence classes for this relation.

Solution: For a € Z,
laj={r€Z:2Ra}={r € Z:2=a} ={a}.
Therefore, every integer is in an equivalence class by itself.

Example: Define a relation R on the set L of straight lines in a plane by [y R[5 if either [; = [,
(i.e., the lines coincide) or if [; is parallel to [5. Prove that R is an equivalence relation and
determine the equivalence classes of R.

Solution: First, we need to show that R is an equivalence relation. Relation R is an equivalence
relation if it is reflexive, symmetric, and transitive.

e Show R is reflexive. Every line is coincident to itself, so R is reflexive.



e Show R is symmetric. If a line [; is parallel to a line [, then [, is also parallel to [;. This
is also true if they coincide. Therefore, R is symmetric.

e Show R is transitive. Suppose that [, is parallel to (or coincides with) Iy and that Iy is
parallel to (or coincides with) l3. Then [; and I3 are parallel or they coincide, so R is
transitive.

Next, we determine the equivalence classes of R. Let [ € L. Then the equivalence class
(| ={z€L:z2Rl}={x € L:x=1orz is parallel to [}.

In other words, the equivalence class [I] consists of [ and all lines in the plane parallel to [.
There is an equivalence class for each line [ € L.

Eample: Define the relation R on Z by x Ry if x + 3y is even. Prove that R is an equivalence
relation and determine the equivalence classes of R.

Solution: First, we show that R is an equivalence relation. Relation R is an equivalence
relation if it is reflexive, symmetric, and transitive.

e Show R is reflexive. Let a € Z. Then a+3a = 4a = 2(2a) is even since 2a € Z. Therefore,
R is reflexive.

e Show R is symmetric. Let a,b € Z such that a Rb. Then a + 3b is even, so a + 3b = 2k
for some integer k. Therefore, a = 2k — 3b and

b+ 3a =10+ 3(2k —3b) = b+ 6k — 9b = 6k — 8b = 2(3k — 4b).
Since 3k — 4b € Z, we have b Ra. Therefore, R is symmetric.

e Show R is transitive. Let a,b,c¢ € Z such that a Rb and b Rc. Then a + 3b is even, so
a + 3b = 2k for some integer k, and b + 3c is even, so b+ 3¢ = 2l for some integer [.
Adding the two equations gives (a + 3b) + (b + 3¢) = 2k + 21, or a + 4b + 3¢ = 2k + 2I.
So, we have

a+3c=2k+20 —4b=2(k + 1 — 2b).

Since k+ 1 — 2b € Z, a + 3c is even. Therefore, a R ¢ and so R is transitive.

Since R is an equivalence relation, there are equivalence classes for each a € Z. For example,
if a =0, then

O={r€Z:2R0}={xr€Z :x+3-0iseven} ={r € Z:zis even} = {0,£2,£4,... }.

In other words, [0] is the set of even integers. Suppose a € Z is even, so a = 2k, where k € Z.
Then

la) ={x €Z:2xRa} ={r€Z:x+3 -aiseven} ={x € Z: x4+ 6k is even}.
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But, this is just the set of even integers. Now, let’s determine [1].
M={r€Z:2R1} ={x€Z:x+3-1iseven} = {xr € Z:x+3iseven} = {+1,£3,+5,...}.

In other words, [1] is the set of odd integers. In fact, if b is an odd integer, then b = 2[ + 1 for
some integer [. We therefore see that

b ={r€Z:2Rb}={r€Z:x+3bis even} = {z € Z : x+3(2[+1) is even} = {z € Z : x+6[+3 is even}.
But this is just the set of odd integers.

We see that if m and n are two even integers, then [m| = [n], and if m and n are both odd
integers, then [m] = [n]. Therefore, there are only two distinct equivalence classes, [0] and [1].

11.3 Equivalence Classes and Partitions

In this section, we will discuss some properties of equivalence classes.

Theorem 1. Suppose R is an equivalence relation on a set A. Suppose also that a,b € A.
Then [a] = [b] if and only if a Rb.

Proof. Suppose that [a] = [b]. Since R is reflexive, a € {x € A: x Ra} =[a]| =[b) ={z € A:
x Rb}. Since a € {x € A: x Rb}, we have that a Rb.

Conversely, suppose that a Rb. We need to show that [a] = [b]. We will do this by showing
[a] C [b] and [b] C [a]. Suppose ¢ € [a] = {z € A:xRa}. Then cRa. Since R is transitive
and we have that ¢ Ra and a Rb, it follows that ¢ Rb, so ¢ € {x € A: x Rb} = [b]. Therefore,
[a] C [b]. Now suppose ¢ € [b] = {x € A: 2 Rb}. Then, cRb. Since a Rb and R is symmetric,
we have that b Ra. By the transitivity of R, we have cRa, so ¢ € {v € A: zRa} = [a].
Therefore, [b] C [a]. Since [a] C [b] and [b] C [a], [a] = [b]. O

Note that the last example we did for Section 11.2 actually illustrates this theorem.
Note: The theorem also tells us that if a R b, then [a] # [b].

Definition. A partition of a set A is a set of non-empty subsets of A such that the union of
all of the subsets equals A and the intersection of any two different subsets is &.

Example: Consider theset A = {1,2,3,4,5,6}. Then one partition of Ais {{1,2},{3,4},{5,6}}.
There are other partitions of A. Three other partitions of A are {{1, 3,5}, {2,4,6}}, {{1,2,3,5},{4,6}},
and {{1}, {2}, {3}, {4}, {5}, {6}}.

Theorem 2. Suppose R is an equivalence relation on a set A. Then the set {[a] : a € A} of
equivalence classes of R forms a partition of A.



Proof. First, note that each equivalence class is nonempty, since a € [a] and so each element
of A belongs to at least one equivalence class. We must show that every element of A belongs
to exactly one equivalence class. Assume that some element = € A belongs to two equivalence
classes, say [a] and [b]. Since z € [a] and z € [b], it follows that x Ra and = Rb. Because R is
symmetric, t Ra = a Rx, so a Rx. Thus, a Rx and x Rb. Since R is transitive, a Rb. Since
a Rb, by Theorem 1, [a] = [b]. So, any two equivalence classes to which = belongs are equal, so
x belongs to a unique equivalence class. O

It turns out that the coverse is also true, although the proof of the converse is more complicated.

Theorem 3. Let P = {A, : a € I} be a partition of a non-empty set A. Then there exists an
equivalence relation R on A such that P = {[a] : a € A}.

Proof. Define a relation R on A by z Ry if x and y belong to the same subset in P; i.e., x Ry
if x,y € A, for some a € I. We will show that R so defined is an equivalence relation. First,
let a € A. Since P is a partition of A, a € Ag for some 8 € I. Then a Ra and R is reflexive.

Next, let a,b € A and assume that a Rb. Then a,b € A, for some v € I. Therefore, b and a
are elements of A,, and b Ra and R is symmetric.

Finally, let a,b,c € A and suppose that a Rb and bRc. So, a,b € Ag and b,c € A, for some
B,v € I. Since P is a partition of A, b can only belong to one set in P. Therefore, Ag = A,
and so a,c € Ag, or a Rc. and R is transitive.

We now consider the equivalence classes resulting from R. Let a € A. Then a € A, for some
a € I. The equivalence class [a] consists of all elements of A related to a. From our definition
of R, the only elements related to a are those that belong to the same subset of P to which a
belongs; i.e., [a] = A,. Therefore,

{la] :a € A} ={A,:a €} =P
]
Example: Consider the partition P = {{...,—4,-2,0,2,4,...},{...,—=5,3,—-1,1,3,5,... }}

of Z. Let R be the equivalence relation whose equivalence classes are the two elements of P.
What equivalence relation is R?

Solution: Ifz € {...,—4,-2,0,2,4,...}, then z is an even number. Ify € {...,—5,3,—1,1,3,5,...},
then y is an odd number. So, x = 2k and y = 2] + 1 for some integers k£ and [. This suggests
that [z] = [0] and [y] = [1], so R is the relation = (mod 2) (or same parity).

11.4 The Integers Modulo n

Let’s first consider the following theorem, which we have proved previously. We repeat the
proof here.



Theorem 4. Let n € Z, where n > 2. Then congruence modulo n (i.e., the relation R defined
onZ by aRbif a=b (mod n)) is an equivalence relation on Z.

Proof. We need to show that R is reflexive, symmetric, and transitive.

Let a € Z. Since n | 0, it follows that n | (a — a) and so a = a (mod n). Therefore, a Ra and
R is reflexive.

Next, suppose that a Rb, where a,b € Z. Then a = b (mod n), son | (a —b). Then a —b = kn
for some integer k. Multiplying both sides of this equation by —1 gives b — a = (—k)n. Since
—k € Z, n|(b—a) and so b = a (mod n). Therefore, b Ra and R is symmetric.

Finally, suppose that a Rb and b R ¢ for some a,b,c € Z. Then n | (a — b) and n | (b — ¢), and
so a — b= kn and b — ¢ = In for some integers k and [. Adding these two equations gives

(a—b)+(b—c)=kn+In, ora—c=(k+1)n.

Since k+1 € Z, n | (a — ¢). Therefore, a = ¢ (mod n), or a Rc, and so R is transitive. O
Definition. Let n € N. The equivalence classes of the equivalence relation = (mod n) are
0], [1], [2], ..., [n — 1]. The integers modulo n is the set Z, = {[0], [1], [2], ..., [» — 1]}.

Elements of Z,, can be added by the rule [a]+[b] = [a+b] and multiplied by the rule [a]-[b] = [ab].

Let us consider, for example, Zg. Then Zg = {[0], [1], [2], [3], [4], [5]}. From the definitions of
addition and multiplication given in the definition, we have

[1]+[3] = [1+3] = [4] and [1] - [3] = [1 - 3] = [3].

However, consider the following:

e [2] + [4] = [6]. But, what equivalence class is [6] equivalent to? We know that 6 = 0
(mod 6), so [6] = [0], and we have [2] + [4] = [0].

e [2] - [4] = [8]. Again, we need to determine to what equivalence class [8] corresponds.
Since 8 =2 (mod 6), we have [8] = [2], so [2] - [4] = [2].

Using these definitions, we can write addition and multiplication tables for Zg.

Addition and multiplication tables for Zg.

+ (0] [ 2] B8] @4 B - [0 O] [2] [3] [4] [9]
o | (o ] 21 [3] [4 [5]  [o]| [0} [0] [o] f[o] f[o] [O]
R B o R B (0 A U Y R B = A A ]
212 B [ Boop 1) 2Iop 2] 4] [0 [21 [4]
B |8 M B o [ 2 B op 8 [0 [B] [0 [3]
[4] | 4] 5] [of [ 2] B [0 [4 2] [0 [4 [2]
I T ) N 2 1 3R Y (0 B T R CA R R P R Y



It turns out that the sum (or product) of equivalence classes is well-defined (meaning that each
sum (or product) is uniquely defined). Why? Let [a],[b],[c], [d] € Z,, where [a] = [b] and
[c] = [d]. We want to show that [a] - [¢] = [b] - [d]. Since [a] = [b], it follows by Theorem 1 that
a Rb and that ¢ Rd. Therefore, a = b (mod n) and ¢ = d (mod n), and so n | (a — b) and
n| (¢ —d). So there exist integers k and [ such that

a—b=nkand c —d =nl.
Adding the equations gives
(a—0b)+ (c—d)=nk+nl=n(k+1).

In other words, (a+c¢)—(b+d) = n(k+1). Since k+1l € Z,n | ((a+c¢)—(b+d)),or a+c=b+d
(mod n), or (a+ c¢) R(b+ d). Therefore, we conclude that [a + ¢] = [b+ d].

Addition and multiplicaiton on Z, follow many of the expected properties. For all a,b,c € Z,
we have the following.

e Commutative properties

e Associative properties

e Distributive property
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