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11.0 Relations

Symbols such as <, ≤, =, |, -, >, ≥, ∈, ⊆, etc. are called relations because they describe
relationships among things.

The goal of this chapter is to give you a good understanding of relations by discussing a general
theory of relations.

Definition. A relation on a set A is a subset R ⊆ A× A. The statement (x, y) ∈ R is often
written xR y, and the statement (x, y) /∈ R is often written x 6R y.

Note: Take special note of the fact that a relation is defined on a set.

Example: Let A = {1, 2, 3, 4}. The following sets are relations on A.

(1) R = {(1, 1), (2, 1), (2, 2), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2), (4, 1)}

(2) S = {(1, 1), (1, 3), (3, 1), (3, 3), (2, 2), (2, 4), (4, 2), (4, 4)}

(3) R ∩ S = {(1, 1), (2, 2), (3, 1), (3, 3), (4, 2), (4, 4)}

Note that:

1. The set R is a relation on A. Since (2, 1) ∈ R, we can write 2R 1. Since (3, 4) /∈ R, we
say 3 6R 4. What relation does R represent? We see that y ≤ x for all (x, y) ∈ R, and all
such pairs of elements in A are in R, so R represents x ≥ y.

2. The set S contains pairs of numbers having the same parity, and all such pairs of elements
in A are in S, so S is the relation on A for which both numbers have the same parity. So,
2S 4 means that 2 has the same parity as 4.

3. Finally, R ∩ S is a relation because R ∩ S ⊆ A× A and so it satisfies the definition of a
relation. What relation does this represent? Relation R ∩ S represents: x ≥ y, where x
and y have the same parity. To write (x, y) ∈ R ∩ S, we write x (R ∩ S) y.

Relations can be infinite. For example, the set R = {(x, y) ∈ R × R : x 6= y} ⊆ R × R is an
infinite relation, because there are infinitely many real numbers x and y that satisfy it.
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11.1 Properties of Relations

For a relation defined on a set A, there are properties that a relation may have and which are
of particular interest to us.

Definition. Suppose R is a relation on a set A.

1. Relation R is reflexive if xRx for every x ∈ A.

2. Relation R is symmetric if xR y implies y Rx for all x, y ∈ A.

3. Relation R is transitive if whenver xR y and y R z, then also xR z. In other words, R
is transitive if ∀x, y, z ∈ A, ((xR y) ∧ (y R z)) =⇒ xR z.

Notes:

1. Showing that a relation R on a set A is reflexive requires proving a statement of the form
∀a ∈ A, aR a.

2. Showing that a relation on a set is symmetric requires proving a conditional statement of
the form P =⇒ Q for all x, y ∈ A, where P : xR y and Q : y Rx.

3. Showing that a relation on a set is transitive requires proving a conditional statement of
the form P =⇒ Q for all x, y, z ∈ A, where P : (xR y) ∧ (y R z) and Q : xR z.

Notes:

1. To show that a relation is not reflexive, we need to show that ∼ (∀a ∈ A, aR a), or
∃a ∈ A, a 6R a.

2. To show that a relation is not symmetric or is not transitive means that we need to prove
∼ (P =⇒ Q), or P∧ ∼ Q, where P and Q are as given above.

We will look at the examples of R, S, and R ∩ S defined previously.

1. Relation R is reflexive: for each a ∈ A, aR a. Relation R is not symmetric (2R 1, but
1 6R 2), but it is transitive. Why? Let a, b, c ∈ A. If aR b and bR c, we have that a ≥ b
and b ≥ c, which implies a ≥ c, or aR c.

2. Relation S is reflexive, symmetric, and transitive. For each a ∈ A, aS a, so S is reflexive.
Relation S is symmetric because: if a, b ∈ A and aS b, then a and b have the same parity,
so it follows that b S a. Finally, let a, b, c ∈ A. If aS b and b S c, then we have that a and
b have the same parity, and b and c has the same parity, so since a has the same parity
as b, which is the same parity as c, a has the same parity as c, or aS c.
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3. Relation R∩S is reflexive and transitive, but not symmetric. Why? It is reflexive because
for all a ∈ A, we have a (R∩S) a. It is transitive because of the following. Let a, b, c ∈ A.
If a (R ∩ S) b and b (R ∩ S) c, then a ≥ b and b ≥ c and both a and b and b and c have
the same parity. It therefore follows that a ≥ c and a and c have the same parity, so
a (R ∩ S) c. Relation R ∩ S is not symmetric because although 3 (R ∩ S) 1, it is not true
that 1 (R ∩ S) 3.

Examples: Let S = {a, b, c}. Determine which of these properties (if any) are possessed by
the following sets.

(1) R1 = {(a, b), (b, a), (c, a)}

(2) R2 = {(a, b), (b, b), (b, c), (c, b), (c, c)}

(3) R3 = {(a, a), (a, c), (b, b), (c, a), (c, c)}

(4) R4 = {(a, a), (a, b), (b, b), (b, c), (a, c)}

(5) R5 = {(a, a), (a, b)}

(6) R6 = {(a, b), (a, c)}

Solution:

(1) Relation R1 possesses none of these properties. It is not reflexive since (a, a) /∈ R1. It is
not symmetric since (c, a) ∈ R1 but (a, c) /∈ R1. It is not transitive because (a, b) ∈ R1 and
(b, a) ∈ R1, but (a, a) /∈ R1.

(2) Relation R2 also possesses none of these properties. It is not reflexive since (a, a) /∈ R2.
It is not symmetric since (a, b) ∈ R2 but (b, a) /∈ R2. And it is not transitive because
(a, b), (b, c) ∈ R2, but (a, c) /∈ R2.

(3) Relation R3 is reflexive, symmetric, and transitive.

(4) Relation R4 is transitive.

(5) Relation R5 is transitive. Why? To be transitive, ∀x, y, z ∈ S, we must have (xR5 y) ∧
(y R5 z) =⇒ xR5 z. Since the only two pairs in R5 are (a, a) and (a, b), (x, y) ∈ R5 =⇒
x = a and y = a or x = a and y = b. If (x, y) = (a, a), then either (y, z) = (a, a) or
(y, z) = (a, b). In the first case, we have aR5 a and aR5 a, and (x, z) = (a, a) ∈ R5. In
the second case, aR5 a and aR5 b, and (x, z) = (a, b) ∈ R5. If (x, y) = (a, b), there is no
ordered pair in (y, z) ∈ R5 such that y = b. For R5, there are only two possibilities for two
ordered pairs of the type (x, y) and (y, z), and in each case (x, z) ∈ R5. Therefore, R5 is
transitive.

(6) Relation R6 does not contain any ordered pairs of the form (x, y) and (y, z). Therefore, R6

is transitive.
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As another example, consider the infinite set R = {(a, b) ∈ Z × Z : a 6= b}. We see that R is
not reflexive since x 6R x for any x ∈ Z. We do have that R is symmetric. Why? Finally, R is
not transitive. Why? Let x = 1, y = 2, and z = 1. Then xR y and y R z, but x 6R z.

Example (from text): Prove the following proposition.

Proposition 1. Let n ∈ N. The relation ≡ (mod n) is reflexive, symmetric, and transitive
on Z .

Proof. First, we show that ≡ (mod n) is reflexive. Let x ∈ Z. Then, since n | 0, n | (x − x).
Therefore, we have x ≡ x (mod n), and since this is true for every x ∈ Z, ≡ (mod n) is
reflexive.

Next, we will show that ≡ (mod n) is symmetric. Let x, y ∈ Z. Then if x ≡ y (mod n), we
have that n | (x − y) and thus, x − y = nr for some integer r. Multiplying both sides by −1
gives y − x = −nr = n(−r). Since −r ∈ Z, n | (y − x), or y ≡ x mod n. Since this is true for
all x, y ∈ Z, ≡ (mod n) is symmetric.

Finally, we show that ≡ (mod n) is transitive. Let x, y, z ∈ Z be integers such that x ≡ y
(mod n) and y ≡ z (mod n). Then n | (x − y) and n | (y − z). Therefore, x − y = nr and
y − z = ns for some integers r and s. Adding these equations together gives

x− z = nr + ns = n(r + s).

Since r + s ∈ Z, n | (x− z), or x ≡ z (mod n). Therefore, ≡ (mod n) is transitive.

Exercise: Determine if the relation R = {(x, y) ∈ R× R : x− y ∈ Z} is reflexive, symmetric,
and/or transitive on R.

Solution: Relation R is reflexive, since x− x = 0 ∈ Z, xRx.

Relation R is symmetric. Suppose xR y. Then x− y = r for some integer r. So, y − x = −r,
and −r is an integer. Therefore, y Rx.

Relation R is transitive, as well. Suppose xR y and y R z. Then x − y = r and y − z = s for
some integers r and s. Then

x− z = x− y + y − z

= r + s.

Since r + s ∈ Z, xR z.

11.2 Equivalence Relations

The relation = on any set A is reflexive, symmetric, and transitive. There are many other
relations that are also reflexive, symmetric, and transitive. Such relations appear frequently in
mathemaitcs and often play important roles, a notable example being =.
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Definition. A relation R on a set A is an equivalence relation if it is reflexive, symmetric,
and transitive.

Example: Consider the set A = {1, 2, 3, 4, 5, 6} and the relation

R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 3), (1, 6), (6, 1), (6, 3), (3, 1), (3, 6), (2, 4), (4, 2)}
(1)
defined on A. We may verify that this relation is reflexive, symmetric, and transitive and is,
therefore, an equivalence relation.

Suppose that R is an equivalence relation on some set A. If a ∈ A, then a is related to a since
R is reflexive. Other elements of A may also be related to a. The set of elements that are all
related to a given element of A is importnat (as will later be seen), and it is given a special
name.

Definition. Suppose that R is an equivalence relation on a set A. Given any element a ∈ A,
the equivalence class containing a is the subset {x ∈ A : xR a} of A consisting of all of the
elements of A that relate to a. This set is denoted [a]. In other words, the equivalence class
containing a is the set

[a] = {x ∈ A : xR a}.

Example: Consider the relation R on the set A = {1, 2, 3, 4, 5, 6} defined in (1). The equiva-
lence classes are

[1] = {1, 3, 6} [2] = {2, 4} [3] = {1, 3, 6}
[4] = {2, 4} [5] = {5} [6] = {1, 3, 6}.

Note that [1] = [3] = [6] and [2] = [4]. Therefore, there are three distinct equivalence classes
for R.

Example: Consider the equivalence relation defined on Z by aR b if a = b and determine the
distinct equivalence classes for this relation.

Solution: For a ∈ Z,

[a] = {x ∈ Z : xR a} = {x ∈ Z : x = a} = {a}.

Therefore, every integer is in an equivalence class by itself.

Example: Define a relation R on the set L of straight lines in a plane by l1R l2 if either l1 = l2
(i.e., the lines coincide) or if l1 is parallel to l2. Prove that R is an equivalence relation and
determine the equivalence classes of R.

Solution: First, we need to show that R is an equivalence relation. Relation R is an equivalence
relation if it is reflexive, symmetric, and transitive.

• Show R is reflexive. Every line is coincident to itself, so R is reflexive.
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• Show R is symmetric. If a line l1 is parallel to a line l2, then l2 is also parallel to l1. This
is also true if they coincide. Therefore, R is symmetric.

• Show R is transitive. Suppose that l1 is parallel to (or coincides with) l2 and that l2 is
parallel to (or coincides with) l3. Then l1 and l3 are parallel or they coincide, so R is
transitive.

Next, we determine the equivalence classes of R. Let l ∈ L. Then the equivalence class

[l] = {x ∈ L : xR l} = {x ∈ L : x = l or x is parallel to l}.

In other words, the equivalence class [l] consists of l and all lines in the plane parallel to l.
There is an equivalence class for each line l ∈ L.

Eample: Define the relation R on Z by xR y if x+3y is even. Prove that R is an equivalence
relation and determine the equivalence classes of R.

Solution: First, we show that R is an equivalence relation. Relation R is an equivalence
relation if it is reflexive, symmetric, and transitive.

• Show R is reflexive. Let a ∈ Z. Then a+3a = 4a = 2(2a) is even since 2a ∈ Z. Therefore,
R is reflexive.

• Show R is symmetric. Let a, b ∈ Z such that aR b. Then a + 3b is even, so a + 3b = 2k
for some integer k. Therefore, a = 2k − 3b and

b+ 3a = b+ 3(2k − 3b) = b+ 6k − 9b = 6k − 8b = 2(3k − 4b).

Since 3k − 4b ∈ Z, we have bR a. Therefore, R is symmetric.

• Show R is transitive. Let a, b, c ∈ Z such that aR b and bR c. Then a + 3b is even, so
a + 3b = 2k for some integer k, and b + 3c is even, so b + 3c = 2l for some integer l.
Adding the two equations gives (a + 3b) + (b + 3c) = 2k + 2l, or a + 4b + 3c = 2k + 2l.
So, we have

a+ 3c = 2k + 2l − 4b = 2(k + l − 2b).

Since k + l − 2b ∈ Z, a+ 3c is even. Therefore, aR c and so R is transitive.

Since R is an equivalence relation, there are equivalence classes for each a ∈ Z. For example,
if a = 0, then

[0] = {x ∈ Z : xR 0} = {x ∈ Z : x+ 3 · 0 is even} = {x ∈ Z : x is even} = {0,±2,±4, . . . }.

In other words, [0] is the set of even integers. Suppose a ∈ Z is even, so a = 2k, where k ∈ Z.
Then

[a] = {x ∈ Z : xR a} = {x ∈ Z : x+ 3 · a is even} = {x ∈ Z : x+ 6k is even}.
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But, this is just the set of even integers. Now, let’s determine [1].

[1] = {x ∈ Z : xR 1} = {x ∈ Z : x+3 ·1 is even} = {x ∈ Z : x+3 is even} = {±1,±3,±5, . . . }.

In other words, [1] is the set of odd integers. In fact, if b is an odd integer, then b = 2l + 1 for
some integer l. We therefore see that

[b] = {x ∈ Z : xR b} = {x ∈ Z : x+3b is even} = {x ∈ Z : x+3(2l+1) is even} = {x ∈ Z : x+6l+3 is even}.

But this is just the set of odd integers.

We see that if m and n are two even integers, then [m] = [n], and if m and n are both odd
integers, then [m] = [n]. Therefore, there are only two distinct equivalence classes, [0] and [1].

11.3 Equivalence Classes and Partitions

In this section, we will discuss some properties of equivalence classes.

Theorem 1. Suppose R is an equivalence relation on a set A. Suppose also that a, b ∈ A.
Then [a] = [b] if and only if aR b.

Proof. Suppose that [a] = [b]. Since R is reflexive, a ∈ {x ∈ A : xR a} = [a] = [b] = {x ∈ A :
xR b}. Since a ∈ {x ∈ A : xR b}, we have that aR b.

Conversely, suppose that aR b. We need to show that [a] = [b]. We will do this by showing
[a] ⊆ [b] and [b] ⊆ [a]. Suppose c ∈ [a] = {x ∈ A : xR a}. Then cR a. Since R is transitive
and we have that cR a and aR b, it follows that cR b, so c ∈ {x ∈ A : xR b} = [b]. Therefore,
[a] ⊆ [b]. Now suppose c ∈ [b] = {x ∈ A : xR b}. Then, cR b. Since aR b and R is symmetric,
we have that bR a. By the transitivity of R , we have cR a, so c ∈ {x ∈ A : xR a} = [a].
Therefore, [b] ⊆ [a]. Since [a] ⊆ [b] and [b] ⊆ [a], [a] = [b].

Note that the last example we did for Section 11.2 actually illustrates this theorem.

Note: The theorem also tells us that if a 6R b, then [a] 6= [b].

Definition. A partition of a set A is a set of non-empty subsets of A such that the union of
all of the subsets equals A and the intersection of any two different subsets is ∅.

Example: Consider the setA = {1, 2, 3, 4, 5, 6}. Then one partition ofA is {{1, 2}, {3, 4}, {5, 6}}.
There are other partitions ofA. Three other partitions ofA are {{1, 3, 5}, {2, 4, 6}}, {{1, 2, 3, 5}, {4, 6}},
and {{1}, {2}, {3}, {4}, {5}, {6}}.

Theorem 2. Suppose R is an equivalence relation on a set A. Then the set {[a] : a ∈ A} of
equivalence classes of R forms a partition of A.
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Proof. First, note that each equivalence class is nonempty, since a ∈ [a] and so each element
of A belongs to at least one equivalence class. We must show that every element of A belongs
to exactly one equivalence class. Assume that some element x ∈ A belongs to two equivalence
classes, say [a] and [b]. Since x ∈ [a] and x ∈ [b], it follows that xR a and xR b. Because R is
symmetric, xR a = aRx, so aRx. Thus, aRx and xR b. Since R is transitive, aR b. Since
aR b, by Theorem 1, [a] = [b]. So, any two equivalence classes to which x belongs are equal, so
x belongs to a unique equivalence class.

It turns out that the coverse is also true, although the proof of the converse is more complicated.

Theorem 3. Let P = {Aα : α ∈ I} be a partition of a non-empty set A. Then there exists an
equivalence relation R on A such that P = {[a] : a ∈ A}.

Proof. Define a relation R on A by xR y if x and y belong to the same subset in P ; i.e., xR y
if x, y ∈ Aα for some α ∈ I. We will show that R so defined is an equivalence relation. First,
let a ∈ A. Since P is a partition of A, a ∈ Aβ for some β ∈ I. Then aR a and R is reflexive.

Next, let a, b ∈ A and assume that aR b. Then a, b ∈ Aγ for some γ ∈ I. Therefore, b and a
are elements of Aγ, and bR a and R is symmetric.

Finally, let a, b, c ∈ A and suppose that aR b and bR c. So, a, b ∈ Aβ and b, c ∈ Aγ for some
β, γ ∈ I. Since P is a partition of A, b can only belong to one set in P . Therefore, Aβ = Aγ

and so a, c ∈ Aβ, or aR c. and R is transitive.

We now consider the equivalence classes resulting from R. Let a ∈ A. Then a ∈ Aα for some
α ∈ I. The equivalence class [a] consists of all elements of A related to a. From our definition
of R, the only elements related to a are those that belong to the same subset of P to which a
belongs; i.e., [a] = Aα. Therefore,

{[a] : a ∈ A} = {Aα : α ∈ I} = P.

Example: Consider the partition P = {{. . . ,−4,−2, 0, 2, 4, . . . }, {. . . ,−5, 3,−1, 1, 3, 5, . . . }}
of Z. Let R be the equivalence relation whose equivalence classes are the two elements of P .
What equivalence relation is R?

Solution: If x ∈ {. . . ,−4,−2, 0, 2, 4, . . . }, then x is an even number. If y ∈ {. . . ,−5, 3,−1, 1, 3, 5, . . . },
then y is an odd number. So, x = 2k and y = 2l + 1 for some integers k and l. This suggests
that [x] = [0] and [y] = [1], so R is the relation ≡ (mod 2) (or same parity).

11.4 The Integers Modulo n

Let’s first consider the following theorem, which we have proved previously. We repeat the
proof here.
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Theorem 4. Let n ∈ Z, where n ≥ 2. Then congruence modulo n (i.e., the relation R defined
on Z by aR b if a ≡ b (mod n)) is an equivalence relation on Z.

Proof. We need to show that R is reflexive, symmetric, and transitive.

Let a ∈ Z. Since n | 0, it follows that n | (a− a) and so a ≡ a (mod n). Therefore, aR a and
R is reflexive.

Next, suppose that aR b, where a, b ∈ Z. Then a ≡ b (mod n), so n | (a− b). Then a− b = kn
for some integer k. Multiplying both sides of this equation by −1 gives b − a = (−k)n. Since
−k ∈ Z, n|(b− a) and so b ≡ a (mod n). Therefore, bR a and R is symmetric.

Finally, suppose that aR b and bR c for some a, b, c ∈ Z. Then n | (a− b) and n | (b− c), and
so a− b = kn and b− c = ln for some integers k and l. Adding these two equations gives

(a− b) + (b− c) = kn+ ln, or a− c = (k + l)n.

Since k + l ∈ Z, n | (a− c). Therefore, a ≡ c (mod n), or aR c, and so R is transitive.

Definition. Let n ∈ N. The equivalence classes of the equivalence relation ≡ (mod n) are
[0], [1], [2], . . . , [n − 1]. The integers modulo n is the set Zn = {[0], [1], [2], . . . , [n − 1]}.
Elements of Zn can be added by the rule [a]+[b] = [a+b] and multiplied by the rule [a]·[b] = [ab].

Let us consider, for example, Z6. Then Z6 = {[0], [1], [2], [3], [4], [5]}. From the definitions of
addition and multiplication given in the definition, we have

[1] + [3] = [1 + 3] = [4] and [1] · [3] = [1 · 3] = [3].

However, consider the following:

• [2] + [4] = [6]. But, what equivalence class is [6] equivalent to? We know that 6 ≡ 0
(mod 6), so [6] = [0], and we have [2] + [4] = [0].

• [2] · [4] = [8]. Again, we need to determine to what equivalence class [8] corresponds.
Since 8 ≡ 2 (mod 6), we have [8] = [2], so [2] · [4] = [2].

Using these definitions, we can write addition and multiplication tables for Z6.

Addition and multiplication tables for Z6.

+ [0] [1] [2] [3] [4] [5]
[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

· [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]
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It turns out that the sum (or product) of equivalence classes is well-defined (meaning that each
sum (or product) is uniquely defined). Why? Let [a], [b], [c], [d] ∈ Zn, where [a] = [b] and
[c] = [d]. We want to show that [a] · [c] = [b] · [d]. Since [a] = [b], it follows by Theorem 1 that
aR b and that cR d. Therefore, a ≡ b (mod n) and c ≡ d (mod n), and so n | (a − b) and
n | (c− d). So there exist integers k and l such that

a− b = nk and c− d = nl.

Adding the equations gives

(a− b) + (c− d) = nk + nl = n(k + l).

In other words, (a+c)−(b+d) = n(k+ l). Since k+ l ∈ Z, n | ((a+c)−(b+d)), or a+c ≡ b+d
(mod n), or (a+ c)R (b+ d). Therefore, we conclude that [a+ c] = [b+ d].

Addition and multiplicaiton on Zn follow many of the expected properties. For all a, b, c ∈ Z,
we have the following.

• Commutative properties

[a] + [b] = [b] + [a] and [a] · [b] = [b] · [a].

• Associative properties

([a] + [b]) + [c] = [a] + ([b] + [c]) and

([a] · [b]) · [c] = [a] · ([b] · [c]).

• Distributive property
[a] · ([b] + [c]) = [a] · [b] + [a] · [c].
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