Relations – Chapter 11 of Hammack

Dr. Doreen De Leon Math 111, Fall 2014

11.0 Relations

Symbols such as $\langle , \leq , =, |, \rangle, \rangle, \geq , \in , \subseteq$, etc. are called **relations** because they describe relationships among things.

The goal of this chapter is to give you a good understanding of relations by discussing a general theory of relations.

Definition. A relation on a set A is a subset $R \subseteq A \times A$. The statement $(x, y) \in R$ is often written x R y, and the statement $(x, y) \notin R$ is often written $x \not R y$.

Note: Take special note of the fact that a relation is defined on a set.

Example: Let $A = \{1, 2, 3, 4\}$. The following sets are relations on A.

- (1) $R = \{(1,1), (2,1), (2,2), (3,3), (3,2), (3,1), (4,4), (4,3), (4,2), (4,1)\}$
- $(2) S = \{(1,1), (1,3), (3,1), (3,3), (2,2), (2,4), (4,2), (4,4)\}$
- (3) $R \cap S = \{(1,1), (2,2), (3,1), (3,3), (4,2), (4,4)\}$

Note that:

- 1. The set R is a relation on A. Since $(2,1) \in R$, we can write 2R1. Since $(3,4) \notin R$, we say $3 \not R$ 4. What relation does R represent? We see that $y \leq x$ for all $(x,y) \in R$, and all such pairs of elements in A are in R, so R represents $x \geq y$.
- 2. The set S contains pairs of numbers having the same parity, and all such pairs of elements in A are in S, so S is the relation on A for which both numbers have the same parity. So, 2S4 means that 2 has the same parity as 4.
- 3. Finally, $R \cap S$ is a relation because $R \cap S \subseteq A \times A$ and so it satisfies the definition of a relation. What relation does this represent? Relation $R \cap S$ represents: $x \ge y$, where x and y have the same parity. To write $(x, y) \in R \cap S$, we write $x (R \cap S) y$.

Relations can be infinite. For example, the set $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \neq y\} \subseteq \mathbb{R} \times \mathbb{R}$ is an infinite relation, because there are infinitely many real numbers x and y that satisfy it.

11.1 Properties of Relations

For a relation defined on a set A, there are properties that a relation may have and which are of particular interest to us.

Definition. Suppose R is a relation on a set A.

- 1. Relation R is **reflexive** if x R x for every $x \in A$.
- 2. Relation R is symmetric if x R y implies y R x for all $x, y \in A$.
- 3. Relation R is **transitive** if whenver x R y and y R z, then also x R z. In other words, R is transitive if $\forall x, y, z \in A$, $((x R y) \land (y R z)) \implies x R z$.

Notes:

- 1. Showing that a relation R on a set A is reflexive requires proving a statement of the form $\forall a \in A, a R a$.
- 2. Showing that a relation on a set is symmetric requires proving a conditional statement of the form $P \implies Q$ for all $x, y \in A$, where P : x R y and Q : y R x.
- 3. Showing that a relation on a set is transitive requires proving a conditional statement of the form $P \implies Q$ for all $x, y, z \in A$, where $P : (x R y) \land (y R z)$ and Q : x R z.

Notes:

- 1. To show that a relation is not reflexive, we need to show that $\sim (\forall a \in A, a R a)$, or $\exists a \in A, a R a$.
- 2. To show that a relation is not symmetric or is not transitive means that we need to prove $\sim (P \implies Q)$, or $P \land \sim Q$, where P and Q are as given above.

We will look at the examples of R, S, and $R \cap S$ defined previously.

- 1. Relation R is reflexive: for each $a \in A$, a R a. Relation R is not symmetric $(2 R 1, but 1 \not R 2)$, but it is transitive. Why? Let $a, b, c \in A$. If a R b and b R c, we have that $a \ge b$ and $b \ge c$, which implies $a \ge c$, or a R c.
- 2. Relation S is reflexive, symmetric, and transitive. For each $a \in A$, $a \le a$, so S is reflexive. Relation S is symmetric because: if $a, b \in A$ and $a \le b$, then a and b have the same parity, so it follows that $b \le a$. Finally, let $a, b, c \in A$. If $a \le b$ and $b \le c$, then we have that a and b have the same parity, and b and c has the same parity, so since a has the same parity as b, which is the same parity as c, a has the same parity as c, or $a \le c$.

3. Relation $R \cap S$ is reflexive and transitive, but not symmetric. Why? It is reflexive because for all $a \in A$, we have $a(R \cap S) a$. It is transitive because of the following. Let $a, b, c \in A$. If $a(R \cap S) b$ and $b(R \cap S) c$, then $a \ge b$ and $b \ge c$ and both a and b and b and c have the same parity. It therefore follows that $a \ge c$ and a and c have the same parity, so $a(R \cap S) c$. Relation $R \cap S$ is not symmetric because although $3(R \cap S) 1$, it is not true that $1(R \cap S) 3$.

Examples: Let $S = \{a, b, c\}$. Determine which of these properties (if any) are possessed by the following sets.

- (1) $R_1 = \{(a, b), (b, a), (c, a)\}$
- (2) $R_2 = \{(a, b), (b, b), (b, c), (c, b), (c, c)\}$
- (3) $R_3 = \{(a, a), (a, c), (b, b), (c, a), (c, c)\}$
- (4) $R_4 = \{(a, a), (a, b), (b, b), (b, c), (a, c)\}$

(5)
$$R_5 = \{(a, a), (a, b)\}$$

(6)
$$R_6 = \{(a, b), (a, c)\}$$

Solution:

- (1) Relation R_1 possesses none of these properties. It is not reflexive since $(a, a) \notin R_1$. It is not symmetric since $(c, a) \in R_1$ but $(a, c) \notin R_1$. It is not transitive because $(a, b) \in R_1$ and $(b, a) \in R_1$, but $(a, a) \notin R_1$.
- (2) Relation R_2 also possesses none of these properties. It is not reflexive since $(a, a) \notin R_2$. It is not symmetric since $(a, b) \in R_2$ but $(b, a) \notin R_2$. And it is not transitive because $(a, b), (b, c) \in R_2$, but $(a, c) \notin R_2$.
- (3) Relation R_3 is reflexive, symmetric, and transitive.
- (4) Relation R_4 is transitive.
- (5) Relation R_5 is transitive. Why? To be transitive, $\forall x, y, z \in S$, we must have $(x R_5 y) \land (y R_5 z) \implies x R_5 z$. Since the only two pairs in R_5 are (a, a) and (a, b), $(x, y) \in R_5 \implies x = a$ and y = a or x = a and y = b. If (x, y) = (a, a), then either (y, z) = (a, a) or (y, z) = (a, b). In the first case, we have $a R_5 a$ and $a R_5 a$, and $(x, z) = (a, a) \in R_5$. In the second case, $a R_5 a$ and $a R_5 b$, and $(x, z) = (a, b) \in R_5$. If (x, y) = (a, b), there is no ordered pair in $(y, z) \in R_5$ such that y = b. For R_5 , there are only two possibilities for two ordered pairs of the type (x, y) and (y, z), and in each case $(x, z) \in R_5$. Therefore, R_5 is transitive.
- (6) Relation R_6 does not contain any ordered pairs of the form (x, y) and (y, z). Therefore, R_6 is transitive.

As another example, consider the infinite set $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \neq b\}$. We see that R is not reflexive since $x \not R$ if x for any $x \in \mathbb{Z}$. We do have that R is symmetric. Why? Finally, R is not transitive. Why? Let x = 1, y = 2, and z = 1. Then x R y and y R z, but $x \not R z$.

Example (from text): Prove the following proposition.

Proposition 1. Let $n \in \mathbb{N}$. The relation $\equiv \pmod{n}$ is reflexive, symmetric, and transitive on \mathbb{Z} .

Proof. First, we show that $\equiv \pmod{n}$ is reflexive. Let $x \in \mathbb{Z}$. Then, since $n \mid 0, n \mid (x - x)$. Therefore, we have $x \equiv x \pmod{n}$, and since this is true for every $x \in \mathbb{Z}$, $\equiv \pmod{n}$ is reflexive.

Next, we will show that $\equiv \pmod{n}$ is symmetric. Let $x, y \in \mathbb{Z}$. Then if $x \equiv y \pmod{n}$, we have that $n \mid (x - y)$ and thus, x - y = nr for some integer r. Multiplying both sides by -1 gives y - x = -nr = n(-r). Since $-r \in \mathbb{Z}$, $n \mid (y - x)$, or $y \equiv x \mod n$. Since this is true for all $x, y \in \mathbb{Z}$, $\equiv \pmod{n}$ is symmetric.

Finally, we show that $\equiv \pmod{n}$ is transitive. Let $x, y, z \in \mathbb{Z}$ be integers such that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$. Then $n \mid (x - y)$ and $n \mid (y - z)$. Therefore, x - y = nr and y - z = ns for some integers r and s. Adding these equations together gives

$$x - z = nr + ns = n(r + s).$$

Since $r + s \in \mathbb{Z}$, $n \mid (x - z)$, or $x \equiv z \pmod{n}$. Therefore, $\equiv \pmod{n}$ is transitive. \Box

Exercise: Determine if the relation $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x - y \in \mathbb{Z}\}$ is reflexive, symmetric, and/or transitive on \mathbb{R} .

Solution: Relation *R* is reflexive, since $x - x = 0 \in \mathbb{Z}$, x R x.

Relation R is symmetric. Suppose x R y. Then x - y = r for some integer r. So, y - x = -r, and -r is an integer. Therefore, y R x.

Relation R is transitive, as well. Suppose x R y and y R z. Then x - y = r and y - z = s for some integers r and s. Then

$$\begin{aligned} x - z &= x - y + y - z \\ &= r + s. \end{aligned}$$

Since $r + s \in \mathbb{Z}$, x R z.

11.2 Equivalence Relations

The relation = on any set A is reflexive, symmetric, and transitive. There are many other relations that are also reflexive, symmetric, and transitive. Such relations appear frequently in mathematics and often play important roles, a notable example being =.

Definition. A relation R on a set A is an **equivalence relation** if it is reflexive, symmetric, and transitive.

Example: Consider the set $A = \{1, 2, 3, 4, 5, 6\}$ and the relation

 $\begin{array}{l} R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,3),(1,6),(6,1),(6,3),(3,1),(3,6),(2,4),(4,2)\} \\ (1)\end{array}$

defined on A. We may verify that this relation is reflexive, symmetric, and transitive and is, therefore, an equivalence relation.

Suppose that R is an equivalence relation on some set A. If $a \in A$, then a is related to a since R is reflexive. Other elements of A may also be related to a. The set of elements that are all related to a given element of A is important (as will later be seen), and it is given a special name.

Definition. Suppose that R is an equivalence relation on a set A. Given any element $a \in A$, the **equivalence class containing** a is the subset $\{x \in A : x R a\}$ of A consisting of all of the elements of A that relate to a. This set is denoted [a]. In other words, the equivalence class containing a is the set

$$[a] = \{x \in A : x R a\}.$$

Example: Consider the relation R on the set $A = \{1, 2, 3, 4, 5, 6\}$ defined in (1). The equivalence classes are

Note that [1] = [3] = [6] and [2] = [4]. Therefore, there are three distinct equivalence classes for R.

Example: Consider the equivalence relation defined on \mathbb{Z} by a R b if a = b and determine the distinct equivalence classes for this relation.

Solution: For $a \in \mathbb{Z}$,

$$[a] = \{x \in \mathbb{Z} : x R a\} = \{x \in \mathbb{Z} : x = a\} = \{a\}.$$

Therefore, every integer is in an equivalence class by itself.

Example: Define a relation R on the set L of straight lines in a plane by $l_1 R l_2$ if either $l_1 = l_2$ (i.e., the lines coincide) or if l_1 is parallel to l_2 . Prove that R is an equivalence relation and determine the equivalence classes of R.

Solution: First, we need to show that R is an equivalence relation. Relation R is an equivalence relation if it is reflexive, symmetric, and transitive.

• Show R is reflexive. Every line is coincident to itself, so R is reflexive.

- Show R is symmetric. If a line l_1 is parallel to a line l_2 , then l_2 is also parallel to l_1 . This is also true if they coincide. Therefore, R is symmetric.
- Show R is transitive. Suppose that l_1 is parallel to (or coincides with) l_2 and that l_2 is parallel to (or coincides with) l_3 . Then l_1 and l_3 are parallel or they coincide, so R is transitive.

Next, we determine the equivalence classes of R. Let $l \in L$. Then the equivalence class

$$[l] = \{x \in L : x R l\} = \{x \in L : x = l \text{ or } x \text{ is parallel to } l\}.$$

In other words, the equivalence class [l] consists of l and all lines in the plane parallel to l. There is an equivalence class for each line $l \in L$.

Eample: Define the relation R on \mathbb{Z} by x R y if x + 3y is even. Prove that R is an equivalence relation and determine the equivalence classes of R.

Solution: First, we show that R is an equivalence relation. Relation R is an equivalence relation if it is reflexive, symmetric, and transitive.

- Show R is reflexive. Let $a \in \mathbb{Z}$. Then a+3a = 4a = 2(2a) is even since $2a \in \mathbb{Z}$. Therefore, R is reflexive.
- Show R is symmetric. Let $a, b \in \mathbb{Z}$ such that a R b. Then a + 3b is even, so a + 3b = 2k for some integer k. Therefore, a = 2k 3b and

$$b + 3a = b + 3(2k - 3b) = b + 6k - 9b = 6k - 8b = 2(3k - 4b).$$

Since $3k - 4b \in \mathbb{Z}$, we have b R a. Therefore, R is symmetric.

• Show R is transitive. Let $a, b, c \in \mathbb{Z}$ such that a R b and b R c. Then a + 3b is even, so a + 3b = 2k for some integer k, and b + 3c is even, so b + 3c = 2l for some integer l. Adding the two equations gives (a + 3b) + (b + 3c) = 2k + 2l, or a + 4b + 3c = 2k + 2l. So, we have

$$a + 3c = 2k + 2l - 4b = 2(k + l - 2b).$$

Since $k + l - 2b \in \mathbb{Z}$, a + 3c is even. Therefore, a R c and so R is transitive.

Since R is an equivalence relation, there are equivalence classes for each $a \in \mathbb{Z}$. For example, if a = 0, then

$$[0] = \{x \in \mathbb{Z} : x R 0\} = \{x \in \mathbb{Z} : x + 3 \cdot 0 \text{ is even}\} = \{x \in \mathbb{Z} : x \text{ is even}\} = \{0, \pm 2, \pm 4, \dots\}.$$

In other words, [0] is the set of even integers. Suppose $a \in \mathbb{Z}$ is even, so a = 2k, where $k \in \mathbb{Z}$. Then

$$[a] = \{x \in \mathbb{Z} : x R a\} = \{x \in \mathbb{Z} : x + 3 \cdot a \text{ is even}\} = \{x \in \mathbb{Z} : x + 6k \text{ is even}\}.$$

But, this is just the set of even integers. Now, let's determine [1].

$$[1] = \{x \in \mathbb{Z} : x R 1\} = \{x \in \mathbb{Z} : x + 3 \cdot 1 \text{ is even}\} = \{x \in \mathbb{Z} : x + 3 \text{ is even}\} = \{\pm 1, \pm 3, \pm 5, \dots\}.$$

In other words, [1] is the set of odd integers. In fact, if b is an odd integer, then b = 2l + 1 for some integer l. We therefore see that

$$[b] = \{x \in \mathbb{Z} : x R b\} = \{x \in \mathbb{Z} : x + 3b \text{ is even}\} = \{x \in \mathbb{Z} : x + 3(2l + 1) \text{ is even}\} = \{x \in \mathbb{Z} : x + 6l + 3 \text{ is even}\}.$$

But this is just the set of odd integers.

We see that if m and n are two even integers, then [m] = [n], and if m and n are both odd integers, then [m] = [n]. Therefore, there are only two distinct equivalence classes, [0] and [1].

11.3 Equivalence Classes and Partitions

In this section, we will discuss some properties of equivalence classes.

Theorem 1. Suppose R is an equivalence relation on a set A. Suppose also that $a, b \in A$. Then [a] = [b] if and only if a R b.

Proof. Suppose that [a] = [b]. Since R is reflexive, $a \in \{x \in A : x R a\} = [a] = [b] = \{x \in A : x R b\}$. Since $a \in \{x \in A : x R b\}$, we have that a R b.

Conversely, suppose that a R b. We need to show that [a] = [b]. We will do this by showing $[a] \subseteq [b]$ and $[b] \subseteq [a]$. Suppose $c \in [a] = \{x \in A : x R a\}$. Then c R a. Since R is transitive and we have that c R a and a R b, it follows that c R b, so $c \in \{x \in A : x R b\} = [b]$. Therefore, $[a] \subseteq [b]$. Now suppose $c \in [b] = \{x \in A : x R b\}$. Then, c R b. Since a R b and R is symmetric, we have that b R a. By the transitivity of R, we have c R a, so $c \in \{x \in A : x R a\} = [a]$. Therefore, $[b] \subseteq [a]$. Since $[a] \subseteq [b]$ and $[b] \subseteq [a]$, [a] = [b].

Note that the last example we did for Section 11.2 actually illustrates this theorem.

Note: The theorem also tells us that if $a \not \mathbb{R} b$, then $[a] \neq [b]$.

Definition. A **partition** of a set A is a set of non-empty subsets of A such that the union of all of the subsets equals A and the intersection of any two different subsets is \emptyset .

Example: Consider the set $A = \{1, 2, 3, 4, 5, 6\}$. Then one partition of A is $\{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$. There are other partitions of A. Three other partitions of A are $\{\{1, 3, 5\}, \{2, 4, 6\}\}, \{\{1, 2, 3, 5\}, \{4, 6\}\}$, and $\{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}$.

Theorem 2. Suppose R is an equivalence relation on a set A. Then the set $\{[a] : a \in A\}$ of equivalence classes of R forms a partition of A.

Proof. First, note that each equivalence class is nonempty, since $a \in [a]$ and so each element of A belongs to at least one equivalence class. We must show that every element of A belongs to exactly one equivalence class. Assume that some element $x \in A$ belongs to two equivalence classes, say [a] and [b]. Since $x \in [a]$ and $x \in [b]$, it follows that x R a and x R b. Because R is symmetric, x R a = a R x, so a R x. Thus, a R x and x R b. Since R is transitive, a R b. Since a R b, by Theorem 1, [a] = [b]. So, any two equivalence classes to which x belongs are equal, so x belongs to a unique equivalence class.

It turns out that the coverse is also true, although the proof of the converse is more complicated.

Theorem 3. Let $P = \{A_{\alpha} : \alpha \in I\}$ be a partition of a non-empty set A. Then there exists an equivalence relation R on A such that $P = \{[a] : a \in A\}$.

Proof. Define a relation R on A by x R y if x and y belong to the same subset in P; i.e., x R y if $x, y \in A_{\alpha}$ for some $\alpha \in I$. We will show that R so defined is an equivalence relation. First, let $a \in A$. Since P is a partition of $A, a \in A_{\beta}$ for some $\beta \in I$. Then a R a and R is reflexive.

Next, let $a, b \in A$ and assume that a R b. Then $a, b \in A_{\gamma}$ for some $\gamma \in I$. Therefore, b and a are elements of A_{γ} , and b R a and R is symmetric.

Finally, let $a, b, c \in A$ and suppose that a R b and b R c. So, $a, b \in A_{\beta}$ and $b, c \in A_{\gamma}$ for some $\beta, \gamma \in I$. Since P is a partition of A, b can only belong to one set in P. Therefore, $A_{\beta} = A_{\gamma}$ and so $a, c \in A_{\beta}$, or a R c. and R is transitive.

We now consider the equivalence classes resulting from R. Let $a \in A$. Then $a \in A_{\alpha}$ for some $\alpha \in I$. The equivalence class [a] consists of all elements of A related to a. From our definition of R, the only elements related to a are those that belong to the same subset of P to which a belongs; i.e., $[a] = A_{\alpha}$. Therefore,

$$\{[a]: a \in A\} = \{A_{\alpha}: \alpha \in I\} = P.$$

Example: Consider the partition $P = \{\{\ldots, -4, -2, 0, 2, 4, \ldots\}, \{\ldots, -5, 3, -1, 1, 3, 5, \ldots\}\}$ of \mathbb{Z} . Let R be the equivalence relation whose equivalence classes are the two elements of P. What equivalence relation is R?

Solution: If $x \in \{\dots, -4, -2, 0, 2, 4, \dots\}$, then x is an even number. If $y \in \{\dots, -5, 3, -1, 1, 3, 5, \dots\}$, then y is an odd number. So, x = 2k and y = 2l + 1 for some integers k and l. This suggests that [x] = [0] and [y] = [1], so R is the relation $\equiv \pmod{2}$ (or same parity).

11.4 The Integers Modulo *n*

Let's first consider the following theorem, which we have proved previously. We repeat the proof here.

Theorem 4. Let $n \in \mathbb{Z}$, where $n \ge 2$. Then congruence modulo n (i.e., the relation R defined on \mathbb{Z} by a R b if $a \equiv b \pmod{n}$ is an equivalence relation on \mathbb{Z} .

Proof. We need to show that R is reflexive, symmetric, and transitive.

Let $a \in \mathbb{Z}$. Since $n \mid 0$, it follows that $n \mid (a - a)$ and so $a \equiv a \pmod{n}$. Therefore, a R a and R is reflexive.

Next, suppose that a R b, where $a, b \in \mathbb{Z}$. Then $a \equiv b \pmod{n}$, so $n \mid (a - b)$. Then a - b = kn for some integer k. Multiplying both sides of this equation by -1 gives b - a = (-k)n. Since $-k \in \mathbb{Z}$, $n \mid (b - a)$ and so $b \equiv a \pmod{n}$. Therefore, b R a and R is symmetric.

Finally, suppose that a R b and b R c for some $a, b, c \in \mathbb{Z}$. Then $n \mid (a - b)$ and $n \mid (b - c)$, and so a - b = kn and b - c = ln for some integers k and l. Adding these two equations gives

(a-b) + (b-c) = kn + ln, or a - c = (k+l)n.

Since $k + l \in \mathbb{Z}$, $n \mid (a - c)$. Therefore, $a \equiv c \pmod{n}$, or a R c, and so R is transitive. \Box

Definition. Let $n \in \mathbb{N}$. The equivalence classes of the equivalence relation $\equiv \pmod{n}$ are $[0], [1], [2], \ldots, [n-1]$. The **integers modulo** n is the set $\mathbb{Z}_n = \{[0], [1], [2], \ldots, [n-1]\}$. Elements of \mathbb{Z}_n can be added by the rule [a]+[b] = [a+b] and multiplied by the rule $[a] \cdot [b] = [ab]$.

Let us consider, for example, \mathbb{Z}_6 . Then $\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}$. From the definitions of addition and multiplication given in the definition, we have

$$[1] + [3] = [1 + 3] = [4]$$
 and $[1] \cdot [3] = [1 \cdot 3] = [3]$.

However, consider the following:

- [2] + [4] = [6]. But, what equivalence class is [6] equivalent to? We know that $6 \equiv 0 \pmod{6}$, so [6] = [0], and we have [2] + [4] = [0].
- $[2] \cdot [4] = [8]$. Again, we need to determine to what equivalence class [8] corresponds. Since $8 \equiv 2 \pmod{6}$, we have [8] = [2], so $[2] \cdot [4] = [2]$.

Using these definitions, we can write addition and multiplication tables for Z_6 .

Addition and multiplication tables for Z_6 .

+	[0]	[1]	[2]	[3]	[4]	[5]	•	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[4]	[5]	[0]	[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[2]	[3]	[4]	[5]	[0]	[1]	[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[3]	[4]	[5]	[0]	[1]	[2]	[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[4]	[5]	[0]	[1]	[2]	[3]	[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[5]	[0]	[1]	[2]	[3]	[4]	[5]	[0]	[5]	[4]	[3]	[2]	[1]

It turns out that the sum (or product) of equivalence classes is well-defined (meaning that each sum (or product) is uniquely defined). Why? Let $[a], [b], [c], [d] \in \mathbb{Z}_n$, where [a] = [b] and [c] = [d]. We want to show that $[a] \cdot [c] = [b] \cdot [d]$. Since [a] = [b], it follows by Theorem 1 that a R b and that c R d. Therefore, $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, and so $n \mid (a - b)$ and $n \mid (c - d)$. So there exist integers k and l such that

$$a-b=nk$$
 and $c-d=nl$.

Adding the equations gives

$$(a-b) + (c-d) = nk + nl = n(k+l).$$

In other words, (a+c) - (b+d) = n(k+l). Since $k+l \in \mathbb{Z}$, $n \mid ((a+c) - (b+d))$, or $a+c \equiv b+d \pmod{n}$, or (a+c) R (b+d). Therefore, we conclude that [a+c] = [b+d].

Addition and multiplication on \mathbb{Z}_n follow many of the expected properties. For all $a, b, c \in \mathbb{Z}$, we have the following.

• Commutative properties

$$[a] + [b] = [b] + [a] \text{ and } [a] \cdot [b] = [b] \cdot [a].$$

• Associative properties

$$([a] + [b]) + [c] = [a] + ([b] + [c])$$
 and
 $([a] \cdot [b]) \cdot [c] = [a] \cdot ([b] \cdot [c]).$

• Distributive property

$$[a] \cdot ([b] + [c]) = [a] \cdot [b] + [a] \cdot [c].$$