Modeling Predator-Prey Relations: Abstract

Our goal is to model predator-prey relations, assuming that both the predator and the prey populations satisfy logistic growth models.  Here, we assume that the per-capita growth rate is linear.  If this work were new, I might say something about my results here, briefly.

A Population Model

· Assume only two populations:  a predator and a prey

· Assume logistic growth of both predator and prey
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Stationary Points

  Used to analyze the behavior of the population models
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Other Stationary Points

· For completeness

· Somewhat degenerate in nature
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Observations

· The x-coordinate of the first stationary point is positive only if bm > dk

· The point (0,0) is only semistable

· There is always one stationary point calculated with an x-coordinate less than zero (which means it is physically impossible).
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Type of Stationary Points

· We need to find the eigenvalues of the above matrix

· Positive (negative) eigenvalues imply unstable (stable) stationary point

The Eigenvalues

· [image: image5.wmf]2

)

(

4

)

(

)

(

2

2

,

1

bc

ad

y

x

y

d

x

a

y

d

x

a

+

-

+

±

+

-

=

l

We determine the eigenvalues of the matrix L to be:
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Implications of Eigenvalues

Phase Plot
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Stationary Points

Conclusions

· For both plots, (0,2) is a stable node

· In the second plot, we also have a stable focus, (3/7,8/7)
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