Euler-Cauchy Using Undetermined Coefficients

Doreen De Leon

Department of Mathematics
California State University, Fresno
doreendl@csufresno.edu

Joint Mathematics Meetings
January 14, 2010

Outline

(9) Introduction
(2) Review
(3) Second Order Euler-Cauchy with Monomial Right-Hand Side

- Case 1: α is not a root of the characteristic equation
- Case 2: α is a root of multiplicity one
- Case 3: α is a double root

4) More Complicated Cases
(5) Conclusions

Introduction

- In most differential equations courses, the homogeneous second order Euler-Cauchy equation,

$$
\begin{equation*}
t^{2} y^{\prime \prime}+a t y^{\prime}+b y=0, t \neq 0 \tag{1}
\end{equation*}
$$

is one of the first higher order differential equations (DEs) with variable coefficients students see.

- Some students (to my surprise) applied undetermined coefficients to directly solve certain exam problems involving nonhomogeneous Euler-Cauchy equations.
- Questions:
(1) Can we find a particular solution to this equation using substitution similar to standard undetermined coefficients?
(2) If so, when?

Review: Euler-Cauchy Equation

- The form of (1) leads us to seek solutions of the form $y(t)=t^{\lambda}$, where λ is a constant to be determined.
- Plugging this into (1), gives the characteristic equation: $\lambda^{2}+(a-1) \lambda+b=0$, to be solved for λ.
- Result:
- If $(a-1)^{2}>4 b, y(t)=c_{1}|t|^{\lambda_{1}}+c_{2}|t|^{\lambda_{2}}$.
- If $(a-1)^{2}=4 b, y(t)=c_{1}|t|^{\lambda}+c_{2}|t|^{\lambda} \ln |t|$.
- If $(a-1)^{2}<4 b$, let $\lambda_{1,2}=\alpha \pm i \beta$; then $y(t)=|t|^{\alpha}\left(c_{1} \cos (\beta \ln |t|)+c_{2} \sin (\beta \ln |t|)\right)$.

Review: Undetermined Coefficients

- Always applicable only to constant-coefficient DEs with certain right-hand side functions.
- Idea: guess the form of the particular solution y_{p} based on the type of right-hand side function. For example:
- for an exponential, ae ${ }^{k t}$, guess $y_{p}=A e^{k t}$;
- for a polynomial (or monomial) of degree n, guess $y_{p}=C_{0}+C_{1} t+\ldots+C_{n} t^{n}$ (a polynomial of the same degree).
- Multiply y_{p} by t until it contains no part of the complementary solution.
- Plug y_{p} into the DE and solve for the constant(s).

Euler-Cauchy and Constant-Coefficient Equations

- Assume that our Euler-Cauchy equation is given as

$$
t^{2} y^{\prime \prime}+a t y^{\prime}+b y=f(t), t>0
$$

- Change of variables: define $t=e^{z}$.
- Result:

$$
\frac{d^{2} y}{d z^{2}}+(a-1) \frac{d y}{d z}+b y=f\left(e^{z}\right)
$$

a constant-coefficient DE.

- Thus, if $f\left(e^{z}\right)$ is one of the "special" right-hand side functions, can apply undetermined coefficients to the transformed DE.
- Leads to a method of undetermined coefficients for the original equation.

Second Order Euler-Cauchy with Monomial Right-Hand Side

- Consider the second order Euler-Cauchy equation with a monomial right-hand side function:

$$
\begin{equation*}
t^{2} y^{\prime \prime}+a t y^{\prime}+b y=A t^{\alpha}, t>0 \tag{2}
\end{equation*}
$$

where α is a real number.

- Three possibilities:
- Case 1: α is not a root of the characteristic equation,
- Case 2: α is a root of multiplicity one, or
- Case 3: α is a double root.

Case 1: α is not a root of the characteristic equation

- Try as our particular solution a monomial of degree α, $y_{p}(t)=C t^{\alpha}$.
- y_{p} contains no solution of the complementary equation, so keep going.
- Plug y_{p} into (2):

$$
(\alpha(\alpha-1)+a \alpha+b) C t^{\alpha}=A t^{\alpha} .
$$

- Since α is not a root of the characteristic equation and $t \neq 0$, obtain a unique solution for C.

Case 2: α is a root of multiplicity one

- Recall: the Euler-Cauchy equation can be transformed into a constant-coefficient equation by the change of variables $t=e^{z}$.
- First guess for the particular solution of the transformed equation would be $y_{p}(z)=C e^{\alpha z}$.
- Since α is a root of the characteristic equation, we need to multiply by z.
- Translates into multiplication by $\ln (t)$ in the particular solution for (2), so $y_{p}(t)=C t^{\alpha}(\ln (t))$.

Case 3: α is a double root

- Similar to Case 2: look at the constant-coefficient equation.
- First guess for the particular solution of the transformed equation would be $y_{p}(z)=C e^{\alpha z}$.
- Since α is a double root of the characteristic equation, we need to multiply by z^{2}.
- Translates into multiplication by $(\ln (t))^{2}$ in the particular solution for (2), so $y_{p}(t)=C t^{\alpha}(\ln (t))^{2}$.

Summary

Theorem

For the second order Euler-Cauchy problem,

$$
t^{2} y^{\prime \prime}+a t y^{\prime}+b y=A t^{\alpha}, t>0
$$

where $\alpha \in \mathbb{R}$, a particular solution is of the form
(i) $y_{p}(t)=C t^{\alpha}$, provided that α is not equal to any root of the characteristic equation, or
(ii) $y_{p}(t)=C t^{\alpha}(\ln (t))^{i}$, if α is equal to a root of the characteristic equation, where i is the multiplicity of the root.

Example: Find a general solution of $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{3}-2 t, t>0$.

- Complementary solution: $y_{c}=c_{1} t+c_{2} t^{4}$.
- Particular solution: Solve $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{3}-2 t$.
- Use superposition to apply Theorem 1 to each part of right-hand side.
- Guess for $y_{p}: y_{p}=A t^{3}+B t \ln (t)$.
- Plug in and collect terms: $-2 A t^{3}-3 B t=4 t^{3}-2 t$.
- Result: $y_{p}=-2 t^{3}+\frac{2}{3} t \ln (t)$.
- General solution: $y=y_{c}+y_{p}$, so

Example: Find a general solution of $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{3}-2 t, t>0$.

- Complementary solution: $y_{c}=c_{1} t+c_{2} t^{4}$.
- Particular solution: Solve $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{3}-2 t$.
- Use superposition to apply Theorem 1 to each part of right-hand side.
- Guess for $y_{p}: y_{p}=A t^{3}+B t \ln (t)$.
- Plug in and collect terms: $-2 A t^{3}-3 B t=4 t^{3}-2 t$.
- Result: $y_{p}=-2 t^{3}+\frac{2}{3} t \ln (t)$.

Example: Find a general solution of $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{3}-2 t, t>0$.

- Complementary solution: $y_{c}=c_{1} t+c_{2} t^{4}$.
- Particular solution: Solve $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{3}-2 t$.
- Use superposition to apply Theorem 1 to each part of right-hand side.
- Guess for $y_{p}: y_{p}=A t^{3}+B t \ln (t)$.
- Plug in and collect terms: $-2 A t^{3}-3 B t=4 t^{3}-2 t$.
- Result: $y_{p}=-2 t^{3}+\frac{2}{3} t \ln (t)$.
- General solution: $y=y_{c}+y_{p}$, so

$$
y(t)=c_{1} t+c_{2} t^{4}-2 t^{3}+\frac{2}{3} t \ln (t)
$$

Right-Hand Side a Product of a Monomial and a Positive Integer Power of $\ln (t)$

- Can apply above approach to Euler-Cauchy problems with right-hand side function of the form $A t^{\alpha}(\ln (t))^{n}, n \in \mathbb{Z}^{+}$.
- $f\left(e^{z}\right)$ in the transformed equation is then $A z^{n} e^{\alpha z}$.
- Guess for the particular solution is of the form $y_{p}(z)=\left(C_{0}+C_{1} z+\ldots+C_{n} z^{n}\right) e^{\alpha z}$.
- Substitute $z=\ln (t)$ to obtain $y_{p}(t)$.

Result - Right-Hand Side a Product of a Monomial and a Positive Integer Power of $\ln (t)$

Theorem

For the second order Euler-Cauchy problem,

$$
t^{2} y^{\prime \prime}+a t y^{\prime}+b y=A t^{\alpha}(\ln (t))^{n}, t>0
$$

where $\alpha \in \mathbb{R}$ and $n \in \mathbb{Z}^{+}$, a particular solution is of the form

$$
y_{p}(t)=\left(C_{0}+C_{1} \ln (t)+\ldots+C_{n}(\ln (t))^{n}\right) t^{\alpha} .
$$

Example: Find a general solution of $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{2}(\ln (t))^{2}-t, t>0$.

- Complementary solution: $y_{c}=c_{1} t+c_{2} t^{4}$.
- Particular solution: Solve $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{2}(\ln (t))^{2}-t$.
- Form: $y_{p}=y_{p_{1}}+y_{p_{2}}$, where

to get $y_{p}=\left(-3+2 \ln (t)-2(\ln (t))^{2}\right) t^{2}+\frac{1}{3} t \ln (t)$
- General solution: $y=y_{c}+y_{p}$, so

Example: Find a general solution of $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{2}(\ln (t))^{2}-t, t>0$.

- Complementary solution: $y_{c}=c_{1} t+c_{2} t^{4}$.
- Particular solution: Solve $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{2}(\ln (t))^{2}-t$.
- Form: $y_{p}=y_{p_{1}}+y_{p_{2}}$, where

$$
y_{p_{1}}=\left(A+B(\ln (t))+C(\ln (t))^{2}\right) t^{2}(\text { by Theorem } 2)
$$

- Plug y_{p} into the DE, collect terms, and equate coefficients
to get $y_{p}=\left(-3+2 \ln (t)-2(\ln (t))^{2}\right) t^{2}+\frac{1}{3} t \ln (t)$
- General solution: $y=y_{c}+y_{p}$, so

Example: Find a general solution of $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{2}(\ln (t))^{2}-t, t>0$.

- Complementary solution: $y_{c}=c_{1} t+c_{2} t^{4}$.
- Particular solution: Solve $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{2}(\ln (t))^{2}-t$.
- Form: $y_{p}=y_{p_{1}}+y_{p_{2}}$, where

$$
\begin{aligned}
& y_{p_{1}}=\left(A+B(\ln (t))+C(\ln (t))^{2}\right) t^{2}(\text { by Theorem } 2), \\
& y_{p_{2}}=D t \ln (t)(\text { by Theorem 1). }
\end{aligned}
$$

- Plug y_{p} into the DE, collect terms, and equate coefficients
to get $y_{p}=\left(-3+2 \ln (t)-2(\ln (t))^{2}\right) t^{2}+\frac{1}{3} t \ln (t)$
- General solution: $y=y_{c}+y_{p}$, so

Example: Find a general solution of $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{2}(\ln (t))^{2}-t, t>0$.

- Complementary solution: $y_{c}=c_{1} t+c_{2} t^{4}$.
- Particular solution: Solve $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{2}(\ln (t))^{2}-t$.
- Form: $y_{p}=y_{p_{1}}+y_{p_{2}}$, where

$$
\begin{aligned}
& y_{p_{1}}=\left(A+B(\ln (t))+C(\ln (t))^{2}\right) t^{2}(\text { by Theorem } 2), \\
& y_{p_{2}}=D t \ln (t)(\text { by Theorem 1). }
\end{aligned}
$$

- Plug y_{p} into the DE, collect terms, and equate coefficients

$$
\text { to get } y_{p}=\left(-3+2 \ln (t)-2(\ln (t))^{2}\right) t^{2}+\frac{1}{3} t \ln (t)
$$

- General solution: $y=y_{c}+y_{p}$, so

Example: Find a general solution of $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{2}(\ln (t))^{2}-t, t>0$.

- Complementary solution: $y_{c}=c_{1} t+c_{2} t^{4}$.
- Particular solution: Solve $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=4 t^{2}(\ln (t))^{2}-t$.
- Form: $y_{p}=y_{p_{1}}+y_{p_{2}}$, where

$$
\begin{aligned}
& y_{p_{1}}=\left(A+B(\ln (t))+C(\ln (t))^{2}\right) t^{2}(\text { by Theorem } 2), \\
& y_{p_{2}}=D t \ln (t)(\text { by Theorem 1). }
\end{aligned}
$$

- Plug y_{p} into the DE, collect terms, and equate coefficients

$$
\text { to get } y_{p}=\left(-3+2 \ln (t)-2(\ln (t))^{2}\right) t^{2}+\frac{1}{3} t \ln (t) \text {. }
$$

- General solution: $y=y_{c}+y_{p}$, so

$$
y(t)=c_{1} t+c_{2} t^{4}+\left(-3+2 \ln (t)-2(\ln (t))^{2}\right) t^{2}+\frac{1}{3} t \ln (t)
$$

Other Right-Hand Side Functions

Easily verified that the above approach also leads to a method of undetermined coeffficients for Euler-Cauchy equations with the following right-hand side functions:
(1) $A \cos (k \ln t)$ or $A \sin (k \ln t)$,
(2) $A t^{\alpha} \cos (k \ln t)$ or $A t^{\alpha} \sin (k \ln t)$, and
(3) $A t^{\alpha}(\ln (t))^{n} \cos (k \ln t)$ or $A t^{\alpha}(\ln (t))^{n} \sin (k \ln t)$.

Conclusions

- Straightforward to generalize this approach to higher order Euler-Cauchy equations.
- This "new" approach makes a good addition to the discussion of Euler-Cauchy problems in a differential equations course.

