Euler-Cauchy Using Undetermined Coefficients

Doreen De Leon

Department of Mathematics California State University, Fresno doreendl@csufresno.edu

Joint Mathematics Meetings January 14, 2010

Doreen De Leon Euler-Cauchy Using Undetermined Coefficients

イロト イポト イヨト イヨト

Outline

- 2 Review
- Second Order Euler-Cauchy with Monomial Right-Hand Side
 - Case 1: α is not a root of the characteristic equation
 - Case 2: α is a root of multiplicity one
 - Case 3: α is a double root
- 4 More Complicated Cases
- 5 Conclusions

イロト イポト イヨト イヨト

æ

Introduction

• In most differential equations courses, the homogeneous second order Euler-Cauchy equation,

$$t^{2}y'' + aty' + by = 0, t \neq 0,$$
 (1)

is one of the first higher order differential equations (DEs) with variable coefficients students see.

- Some students (to my surprise) applied undetermined coefficients to directly solve certain exam problems involving nonhomogeneous Euler-Cauchy equations.
- Questions:
 - Can we find a particular solution to this equation using substitution similar to standard undetermined coefficients?
 - If so, when?

イロト イポト イヨト イヨト

Review: Euler-Cauchy Equation

- The form of (1) leads us to seek solutions of the form $y(t) = t^{\lambda}$, where λ is a constant to be determined.
- Plugging this into (1), gives the characteristic equation: $\lambda^2 + (a-1)\lambda + b = 0$, to be solved for λ .
- Result:

• If
$$(a-1)^2 > 4b$$
, $y(t) = c_1|t|^{\lambda_1} + c_2|t|^{\lambda_2}$.
• If $(a-1)^2 = 4b$, $y(t) = c_1|t|^{\lambda} + c_2|t|^{\lambda} \ln |t|$.
• If $(a-1)^2 < 4b$, let $\lambda_{1,2} = \alpha \pm i\beta$; then
 $y(t) = |t|^{\alpha} (c_1 \cos(\beta \ln |t|) + c_2 \sin(\beta \ln |t|))$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Review: Undetermined Coefficients

- Always applicable only to constant-coefficient DEs with certain right-hand side functions.
- Idea: guess the form of the particular solution y_p based on the type of right-hand side function. For example:
 - for an exponential, ae^{kt} , guess $y_p = Ae^{kt}$;
 - for a polynomial (or monomial) of degree *n*, guess $y_p = C_0 + C_1 t + ... + C_n t^n$ (a polynomial of the same degree).
- Multiply y_p by t until it contains no part of the complementary solution.
- Plug y_p into the DE and solve for the constant(s).

ヘロト ヘ戸ト ヘヨト ヘヨト

Euler-Cauchy and Constant-Coefficient Equations

Assume that our Euler-Cauchy equation is given as

$$t^{2}y'' + aty' + by = f(t), t > 0.$$

- Change of variables: define $t = e^{z}$.
- Result:

$$\frac{d^2y}{dz^2} + (a-1)\frac{dy}{dz} + by = f(e^z),$$

a constant-coefficient DE.

- Thus, if f(e^z) is one of the "special" right-hand side functions, can apply undetermined coefficients to the transformed DE.
- Leads to a method of undetermined coefficients for the original equation.

Case 1: α is not a root of the characteristic equation Case 2: α is a root of multiplicity one Case 3: α is a double root

Second Order Euler-Cauchy with Monomial Right-Hand Side

• Consider the second order Euler-Cauchy equation with a monomial right-hand side function:

$$t^2y'' + aty' + by = At^{\alpha}, t > 0, \qquad (2)$$

where α is a real number.

- Three possibilities:
 - Case 1: α is not a root of the characteristic equation,
 - Case 2: α is a root of multiplicity one, or
 - Case 3: α is a double root.

Case 1: α is not a root of the characteristic equation Case 2: α is a root of multiplicity one Case 3: α is a double root

Case 1: α is not a root of the characteristic equation

- Try as our particular solution a monomial of degree α,
 y_p(t) = Ct^α.
- y_p contains no solution of the complementary equation, so keep going.
- Plug *y*_p into (2):

$$(\alpha(\alpha-1)+a\alpha+b)Ct^{\alpha}=At^{\alpha}.$$

• Since α is not a root of the characteristic equation and $t \neq 0$, obtain a unique solution for *C*.

ヘロア 人間 アメヨア 人口 ア

Case 1: α is not a root of the characteristic equation Case 2: α is a root of multiplicity one Case 3: α is a double root

Case 2: α is a root of multiplicity one

- Recall: the Euler-Cauchy equation can be transformed into a constant-coefficient equation by the change of variables $t = e^{z}$.
- First guess for the particular solution of the transformed equation would be $y_p(z) = Ce^{\alpha z}$.
- Since α is a root of the characteristic equation, we need to multiply by z.
- Translates into multiplication by ln(t) in the particular solution for (2), so y_p(t) = Ct^α(ln(t)).

ヘロン ヘアン ヘビン ヘビン

Case 1: α is not a root of the characteristic equation Case 2: α is a root of multiplicity one Case 3: α is a double root

Case 3: α is a double root

- Similar to Case 2: look at the constant-coefficient equation.
- First guess for the particular solution of the transformed equation would be $y_p(z) = Ce^{\alpha z}$.
- Since α is a double root of the characteristic equation, we need to multiply by z².
- Translates into multiplication by (ln(t))² in the particular solution for (2), so y_p(t) = Ct^α(ln(t))².

イロト 不得 とくほ とくほとう

Second Order Euler-Cauchy with Monomial Right-Hand Side More Complicated Cases Conclusions

Case 1: α is not a root of the characteristic equation Case 2: α is a root of multiplicity one Case 3: α is a double root

Summary

Theorem

For the second order Euler-Cauchy problem,

$$t^2y'' + aty' + by = At^{\alpha}, t > 0,$$

Outline

where $\alpha \in \mathbb{R}$, a particular solution is of the form

- (i) $y_p(t) = Ct^{\alpha}$, provided that α is not equal to any root of the characteristic equation, or
- (ii) $y_p(t) = Ct^{\alpha}(\ln(t))^i$, if α is equal to a root of the characteristic equation, where *i* is the multiplicity of the root.

イロト 不得 とくほ とくほとう

3

Case 1: α is not a root of the characteristic equation Case 2: α is a root of multiplicity one Case 3: α is a double root

Example: Find a general solution of $t^2y'' - 4ty' + 4y = 4t^3 - 2t, t > 0.$

- Complementary solution: $y_c = c_1 t + c_2 t^4$.
- Particular solution: Solve $t^2y'' 4ty' + 4y = 4t^3 2t$.

Outline Introduction

- Use superposition to apply Theorem 1 to each part of right-hand side.
- Guess for y_p : $y_p = At^3 + Bt \ln(t)$.
- Plug in and collect terms: $-2At^3 3Bt = 4t^3 2t$.
- Result: $y_p = -2t^3 + \frac{2}{3}t \ln(t)$.
- General solution: $y = y_c + y_p$, so

$$y(t) = c_1 t + c_2 t^4 - 2t^3 + \frac{2}{3}t \ln(t)$$

ヘロト ヘワト ヘビト ヘビト

Case 1: α is not a root of the characteristic equation Case 2: α is a root of multiplicity one Case 3: α is a double root

Example: Find a general solution of $t^2y'' - 4ty' + 4y = 4t^3 - 2t, t > 0.$

- Complementary solution: $y_c = c_1 t + c_2 t^4$.
- Particular solution: Solve $t^2y'' 4ty' + 4y = 4t^3 2t$.

Outline Introduction

- Use superposition to apply Theorem 1 to each part of right-hand side.
- Guess for y_p : $y_p = At^3 + Bt \ln(t)$.
- Plug in and collect terms: $-2At^3 3Bt = 4t^3 2t$.
- Result: $y_p = -2t^3 + \frac{2}{3}t \ln(t)$.
- General solution: $y = y_c + y_p$, so

$$y(t) = c_1 t + c_2 t^4 - 2t^3 + \frac{2}{3}t \ln(t)$$

ヘロン ヘアン ヘビン ヘビン

Case 1: α is not a root of the characteristic equation Case 2: α is a root of multiplicity one Case 3: α is a double root

Example: Find a general solution of $t^2y'' - 4ty' + 4y = 4t^3 - 2t, t > 0.$

- Complementary solution: $y_c = c_1 t + c_2 t^4$.
- Particular solution: Solve $t^2y'' 4ty' + 4y = 4t^3 2t$.

Outline Introduction

- Use superposition to apply Theorem 1 to each part of right-hand side.
- Guess for y_p : $y_p = At^3 + Bt \ln(t)$.
- Plug in and collect terms: $-2At^3 3Bt = 4t^3 2t$.
- Result: $y_p = -2t^3 + \frac{2}{3}t \ln(t)$.
- General solution: $y = y_c + y_p$, so

$$y(t) = c_1 t + c_2 t^4 - 2t^3 + \frac{2}{3}t \ln(t)$$

ヘロア 人間 アメヨア 人口 ア

Right-Hand Side a Product of a Monomial and a Positive Integer Power of ln(t)

- Can apply above approach to Euler-Cauchy problems with right-hand side function of the form $At^{\alpha}(\ln(t))^n$, $n \in \mathbb{Z}^+$.
- $f(e^z)$ in the transformed equation is then $Az^n e^{\alpha z}$.
- Guess for the particular solution is of the form $y_p(z) = (C_0 + C_1 z + ... + C_n z^n) e^{\alpha z}$.
- Substitute $z = \ln(t)$ to obtain $y_p(t)$.

ヘロト 人間 ト ヘヨト ヘヨト

Result – Right-Hand Side a Product of a Monomial and a Positive Integer Power of ln(t)

Theorem

For the second order Euler-Cauchy problem,

$$t^2y'' + aty' + by = At^{\alpha}(\ln(t))^n, t > 0,$$

where $\alpha \in \mathbb{R}$ and $n \in \mathbb{Z}^+$, a particular solution is of the form

$$y_{\rho}(t) = (C_0 + C_1 \ln(t) + ... + C_n (\ln(t))^n) t^{\alpha}.$$

イロト イポト イヨト イヨト

Example: Find a general solution of $t^2y'' - 4ty' + 4y = 4t^2(\ln(t))^2 - t, t > 0.$

- Complementary solution: $y_c = c_1 t + c_2 t^4$.
- Particular solution: Solve $t^2y'' 4ty' + 4y = 4t^2(\ln(t))^2 t$.
 - Form: $y_p = y_{p_1} + y_{p_2}$, where $y_{p_1} = (A + B(\ln(t)) + C(\ln(t))^2) t^2$ (by Theorem 2), $y_{p_2} = Dt \ln(t)$ (by Theorem 1).
 - Plug y_p into the DE, collect terms, and equate coefficients

to get
$$y_{\rho} = \left(-3 + 2\ln(t) - 2(\ln(t))^2\right)t^2 + \frac{1}{3}t\ln(t)$$
.

• General solution: $y = y_c + y_p$, so

$$y(t) = c_1 t + c_2 t^4 + \left(-3 + 2\ln(t) - 2(\ln(t))^2\right) t^2 + \frac{1}{3}t\ln(t)$$

・ロット (雪) () () () ()

Example: Find a general solution of $t^2y'' - 4ty' + 4y = 4t^2(\ln(t))^2 - t, t > 0.$

- Complementary solution: $y_c = c_1 t + c_2 t^4$.
- Particular solution: Solve $t^2y'' 4ty' + 4y = 4t^2(\ln(t))^2 t$.
 - Form: $y_p = y_{p_1} + y_{p_2}$, where $y_{p_1} = (A + B(\ln(t)) + C(\ln(t))^2) t^2$ (by Theorem 2), $y_{p_2} = Dt \ln(t)$ (by Theorem 1)
 - Plug y_p into the DE, collect terms, and equate coefficients

to get
$$y_{\rho} = \left(-3 + 2\ln(t) - 2(\ln(t))^2\right)t^2 + \frac{1}{3}t\ln(t)$$
.

• General solution: $y = y_c + y_p$, so

$$y(t) = c_1 t + c_2 t^4 + \left(-3 + 2\ln(t) - 2(\ln(t))^2\right) t^2 + \frac{1}{3}t\ln(t)$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Example: Find a general solution of $t^2y'' - 4ty' + 4y = 4t^2(\ln(t))^2 - t, t > 0.$

- Complementary solution: $y_c = c_1 t + c_2 t^4$.
- Particular solution: Solve $t^2y'' 4ty' + 4y = 4t^2(\ln(t))^2 t$.
 - Form: $y_{\rho} = y_{\rho_1} + y_{\rho_2}$, where $y_{\rho_1} = (A + B(\ln(t)) + C(\ln(t))^2) t^2$ (by Theorem 2), $y_{\rho_2} = Dt \ln(t)$ (by Theorem 1).

Plug y_p into the DE, collect terms, and equate coefficients

to get
$$y_{\rho} = \left(-3 + 2\ln(t) - 2(\ln(t))^2\right)t^2 + \frac{1}{3}t\ln(t)$$
.

• General solution: $y = y_c + y_p$, so

$$y(t) = c_1 t + c_2 t^4 + \left(-3 + 2\ln(t) - 2(\ln(t))^2\right) t^2 + \frac{1}{3}t\ln(t)$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Example: Find a general solution of $t^2y'' - 4ty' + 4y = 4t^2(\ln(t))^2 - t, t > 0.$

- Complementary solution: $y_c = c_1 t + c_2 t^4$.
- Particular solution: Solve $t^2y'' 4ty' + 4y = 4t^2(\ln(t))^2 t$.
 - Form: $y_p = y_{p_1} + y_{p_2}$, where $y_{p_1} = (A + B(\ln(t)) + C(\ln(t))^2) t^2$ (by Theorem 2), $y_{p_2} = Dt \ln(t)$ (by Theorem 1).
 - Plug y_p into the DE, collect terms, and equate coefficients

to get
$$y_{\rho} = \left(-3 + 2\ln(t) - 2(\ln(t))^2\right)t^2 + \frac{1}{3}t\ln(t).$$

• General solution: $y = y_c + y_p$, so

$$y(t) = c_1 t + c_2 t^4 + \left(-3 + 2\ln(t) - 2(\ln(t))^2\right) t^2 + \frac{1}{3}t\ln(t)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Example: Find a general solution of $t^2y'' - 4ty' + 4y = 4t^2(\ln(t))^2 - t, t > 0.$

- Complementary solution: $y_c = c_1 t + c_2 t^4$.
- Particular solution: Solve $t^2y'' 4ty' + 4y = 4t^2(\ln(t))^2 t$.
 - Form: $y_{\rho} = y_{\rho_1} + y_{\rho_2}$, where $y_{\rho_1} = (A + B(\ln(t)) + C(\ln(t))^2) t^2$ (by Theorem 2), $y_{\rho_2} = Dt \ln(t)$ (by Theorem 1).
 - Plug y_p into the DE, collect terms, and equate coefficients

to get
$$y_p = \left(-3 + 2\ln(t) - 2(\ln(t))^2\right)t^2 + \frac{1}{3}t\ln(t).$$

• General solution: $y = y_c + y_p$, so

$$y(t) = c_1 t + c_2 t^4 + \left(-3 + 2 \ln(t) - 2(\ln(t))^2\right) t^2 + \frac{1}{3} t \ln(t)$$

Other Right-Hand Side Functions

Easily verified that the above approach also leads to a method of undetermined coefficients for Euler-Cauchy equations with the following right-hand side functions:

- (1) $A\cos(k \ln t)$ or $A\sin(k \ln t)$,
- (2) $At^{\alpha}\cos(k \ln t)$ or $At^{\alpha}\sin(k \ln t)$, and
- (3) $At^{\alpha}(\ln(t))^n \cos(k \ln t)$ or $At^{\alpha}(\ln(t))^n \sin(k \ln t)$.

ヘロト 人間 ト ヘヨト ヘヨト

- Straightforward to generalize this approach to higher order Euler-Cauchy equations.
- This "new" approach makes a good addition to the discussion of Euler-Cauchy problems in a differential equations course.

ヘロト 人間 ト ヘヨト ヘヨト