## Quality Control Testing of Diodes

# An Example of Discrete Probability Modeling 

## CURM Background Materially, Fall 2014

Advisor: Dr. Doreen De Leon

## Numerically Determining Minimum Average Cost of Testing Diodes

restart
$A:=x \rightarrow \frac{4}{x}+6-5 \cdot(0.997)^{x}$;

$$
\begin{equation*}
x \rightarrow \frac{4}{x}+6-50.997^{x} \tag{1.1}
\end{equation*}
$$

$d A:=$ unapply $(\operatorname{diff}(A(x), x), x)$

$$
\begin{equation*}
x \rightarrow-\frac{4}{x^{2}}+0.015022545100 .997^{x} \tag{1.2}
\end{equation*}
$$

$d d A:=$ unapply $(\operatorname{diff}(d A(x), x), x)$

$$
\begin{equation*}
x \rightarrow \frac{8}{x^{3}}-0.000045135372260 .997^{x} \tag{1.3}
\end{equation*}
$$

Note that for $x>0, A^{\prime \prime}(x)>0$, so our result will be a minimum. We will now solve using Newton's method, which you first saw in Calculus.
epsilon $:=10^{-5}$; delta $:=10^{-5}$;

$$
\begin{gather*}
\frac{1}{100000} \\
\frac{1}{100000} \tag{1.4}
\end{gather*}
$$

$x 0:=1 ;$
1
while $\operatorname{abs}(d A(x 0)) \geq$ delta do
$x I:=x 0-\frac{d A(x 0)}{d d A(x 0)}$ :
err $:=x 1-x 0$ :
if $\operatorname{abs}(e r r)<$ epsilon then
break;
end if:
$x 0:=x 1$ : end do:
16.73232549
(1.6)
x0
16.73232549
$A(17)$

$$
\begin{equation*}
1.484264962 \tag{1.8}
\end{equation*}
$$

Note: What happens if we try to solve this exactly?
solve $(A(x)=0)$
Warning, solutions may have been lost

$$
-4.276513460
$$

