# Graphically Analyzing Equilibrium Values 

## CURM Background Material, Fall 2014

In this worksheet, we will graphically analyze the equilibrium values for models of the form $a(n+1)=r \cdot a(n)+b$, where $r$ and $b$ are constant.

For the first portion of our work, let us assume that $b=50$. So we are looking at $a(n+1)=r \cdot a(n)+50$. We will look at three cases, $r>1,0<r<1$, and $r<0$. See the class notes for an explanation of why we look at these two cases.

## Case 1: $r>1$

We choose a particular value for $r, r=2$. So, we have $a(n+1)=2 \cdot a(n)+50$. Let us (1) determine the equilibrium value, and (2) look at this graphically in Maple, assuming various initial conditions.
solve $(a e=2 \cdot a e+50)$

$$
\begin{equation*}
-50 \tag{1}
\end{equation*}
$$

Notice that the equilibrium value is negative. Thus, if we are looking at a model of a physical system, we expect that we will never attain this equilibrium.

$$
\begin{align*}
& \text { sol1 }:=\operatorname{rsolve}(\{a(n+1)=2 \cdot a(n)+50, a(0)=10\}, a(n)) \\
& 602^{n}-50  \tag{2}\\
& \text { s1:=unapply(sol1, } n \text { ) } \\
& n \rightarrow 602^{n}-50  \tag{3}\\
& \text { sol2 }:=r \text { solve }(\{a(n+1)=2 \cdot a(n)+50, a(0)=0\}, a(n)) \\
& -50+502^{n}  \tag{4}\\
& s 2:=\text { unapply }(\operatorname{sol2}, n) \\
& n \rightarrow-50+502^{n}
\end{align*}
$$

with(plots) :
$p 1:=\operatorname{pointplot}(\{\operatorname{seq}([i, s l(i)], i=0 . .20)\}$, symbol=solidcircle $):$
$p 2:=\operatorname{pointplot}(\{\operatorname{seq}([i, s 2(i)], i=0 . .20)\}):$
display (p1, p2)


## Case 2: $0<r<1$

In this case, we choose $r=0.25$. So, we have $a(n+1)=0.25 \cdot a(n)+50$. Let us (1) determine the equilibrium value, and (2) look at this graphically in Maple, assuming various initial conditions.
solve $(a e=0.25 \cdot a e+50)$

$$
66.66666667
$$

Notice that the equilibrium solution is now positive, so there is hope that we may attain this equilibrium value. Look at a solution graphically to see if this appears to happen.
sol3 $:=\operatorname{rsolve}(\{a(n+1)=0.25 \cdot a(n)+50, a(0)=10\}, a(n))$

$$
\begin{equation*}
-\frac{170}{3}\left(\frac{1}{4}\right)^{n}+\frac{200}{3} \tag{7}
\end{equation*}
$$

$s 3:=\operatorname{unapply}(\operatorname{sol} 3, n)$

$$
\begin{equation*}
n \rightarrow-\frac{170}{3}\left(\frac{1}{4}\right)^{n}+\frac{200}{3} \tag{8}
\end{equation*}
$$

$\operatorname{pointplot}(\{\operatorname{seq}([i, s 3(i)], i=0 . .20)\})$


## Case 3: $r<0$

In this case, we choose $r=-1.01$. So, we have $a(n+1)=-1.01 \cdot a(n)+50$. Let us (1) determine the equilibrium value, and (2) look at this graphically in Maple, assuming various initial conditions.
solve $(a e=-1.01 \cdot a e+50)$

$$
24.87562189
$$

Notice that the equilibrium solution is now positive, so there is hope that we may attain this equilibrium value. Look at a solution graphically to see if this appears to happen.

$$
\begin{align*}
\text { sol4 }:=\operatorname{rsolve}(\{a(n+1)=-1.01 & \cdot a(n)+50, a(0)=10\}, a(n)) \\
& -\frac{2990}{201}\left(-\frac{101}{100}\right)^{n}+\frac{5000}{201} \tag{10}
\end{align*}
$$

$s 4:=$ unapply $(\operatorname{sol} 4, n)$

$$
\begin{equation*}
n \rightarrow-\frac{2990}{201}\left(-\frac{101}{100}\right)^{n}+\frac{5000}{201} \tag{11}
\end{equation*}
$$

pointplot $(\{\operatorname{seq}([i, s 4(i)], i=0 . .20)\})$


Notice that the solution oscillates. That this is not unexpected is obvious from the solution, but can also easily be seen by computing the first few iterates.

