Examples: Modeling Using Linear Systems of Equations

CURM Background Material, Fall 2014

Models Involving Systems with a Unique Solution

Example 1: Electrical Networks

We will solve the system of equations in two ways, first using solve and second, by writing the system in augmented matrix form and reducing it to reduced row echelon form.

Direct Solution Using Maple's solve Function

solve $(\{8 \cdot I 1-3 \cdot I 3=10,6 \cdot I 2+3 \cdot I 3=15, I 1-I 2+I 3=0\},\{I I, I 2, I 3\})$

$$
\begin{equation*}
\left\{I 1=\frac{3}{2}, I 2=\frac{13}{6}, I 3=\frac{2}{3}\right\} \tag{1.1.1.1}
\end{equation*}
$$

Matrix Solution

$$
A:=\left[\begin{array}{cccc}
8 & 0 & -3 & 10 \\
0 & 6 & 3 & 15 \tag{1.1.2.1}\\
1 & -1 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{rrrr}
8 & 0 & -3 & 10 \\
0 & 6 & 3 & 15 \\
1 & -1 & 1 & 0
\end{array}\right]
$$

with(LinearAlgebra) :
AA :=ReducedRowEchelonForm (A);

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & \frac{3}{2} \tag{1.1.2.2}\\
0 & 1 & 0 & \frac{13}{6} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right]
$$

As you can see, the solution obtained is $I I=\frac{3}{2}, I 2=\frac{13}{6}, I 3=\frac{2}{3}$, the same answer as above.

Example 2: Fitting a Power Curve -- Height vs. Weight (see also regression.mw)

restart

$$
\begin{align*}
E:=(a, b, c, d) \rightarrow(y- & \left.\left(a \cdot x^{3}+\mathrm{b} \cdot x^{2}+c \cdot x+d\right)\right)^{2} \\
& (a, b, c, d) \rightarrow\left(y-a x^{3}-b x^{2}-c x-d\right)^{2} \tag{1.2.1}
\end{align*}
$$

$\operatorname{diff}(E(a, b, c, d), a)$

$$
\begin{equation*}
-2\left(-a x^{3}-b x^{2}-c x-d+y\right) x^{3} \tag{1.2.2}
\end{equation*}
$$

$\operatorname{diff}(E(a, b, c, d), b)$

$$
-2\left(-a x^{3}-b x^{2}-c x-d+y\right) x^{2}
$$

$\operatorname{diff}(E(a, b, c, d), c)$

$$
-2\left(-a x^{3}-b x^{2}-c x-d+y\right) x
$$

$\operatorname{diff}(E(a, b, c, d), d)$

$$
2 a x^{3}+2 b x^{2}+2 c x+2 d-2 y
$$

$h t:=[62,63,64,65,66,67,68,69,70,71,72,73,74]$
$[62,63,64,65,66,67,68,69,70,71,72,73,74]$
$w t:=[128,131,135,139,142,146,150,154,158,162,167,172,177]$
$[128,131,135,139,142,146,150,154,158,162,167,172,177]$
$x:=\sum_{i=1}^{13} h t[i]$
884
$x 2:=\sum_{i=1}^{13}(h t[i])^{2}$
60294
$x 3:=\sum_{i=1}^{13}(h t[i])^{3}$
4124744
$x 4:=\sum_{i=1}^{13}(h t[i])^{4}$
283011846
(1.2.10)
$x 5:=\sum_{i=1}^{13}(h t[i])^{5}$

$$
\begin{array}{ll}
x 6 & :=\sum_{i=1}^{13}(h t[i])^{6} \\
y:=\sum_{i=1}^{13} w t[i] \\
y x:=\sum_{i=1}^{13} w t[i] \cdot h t[i] \\
y x 2:=\sum_{i=1}^{13} w t[i] \cdot(h t[i])^{2} & 1343964152934 \\
y x 3:=\sum_{i=1}^{13} w t[i] \cdot(h t[i])^{3} & 9195356
\end{array}
$$

(1.2.13)
(1.2.17)

Solution Using Maple's solve Function

solve $(\{a \cdot x 6+b \cdot x 5+c \cdot x 4+d \cdot x 3=y x 3, a \cdot x 5+b \cdot x 4+c \cdot x 3+d \cdot x 2=y x 2, a \cdot x 4+b \cdot x 3+c$ $\cdot x 2+d \cdot x=y x, a \cdot x 3+b \cdot x 2+c \cdot x+d \cdot 13=y\},\{a, b, c, d\})$

$$
\begin{equation*}
\left\{a=\frac{19}{3432}, b=-\frac{163}{154}, c=\frac{1707059}{24024}, d=-\frac{3060027}{2002}\right\} \tag{1.2.1.1}
\end{equation*}
$$

with(plots) :
Data $:=\operatorname{pointplot}(\{\operatorname{seq}([h t[i], w t[i]], i=1 . .13)\}$, symbol $=$ solidcircle $):$
Poly $:=t \rightarrow \frac{19}{3432} \cdot t^{3}-\frac{163}{154} \cdot t^{2}+\frac{1707059}{24024} \cdot t-\frac{3060027}{2002}$

$$
\begin{equation*}
t \rightarrow \frac{19}{3432} t^{3}-\frac{163}{154} t^{2}+\frac{1707059}{24024} t-\frac{3060027}{2002} \tag{1.2.1.2}
\end{equation*}
$$

Polyfit $:=\operatorname{plot}(\operatorname{Poly}(t), t=62$..74) :
display ($\{$ Data, Polyfit $\}$)

Matrix Solution

$A:=\left[\begin{array}{ccccc}x 6 & x 5 & x 4 & x 3 & y x 3 \\ x 5 & x 4 & x 3 & x 2 & y x 2 \\ x 4 & x 3 & x 2 & x & y x \\ x 3 & x 2 & x & 13 & y\end{array}\right]$
$\left[\begin{array}{rrrrr}1343964152934 & 19474949624 & 283011846 & 4124744 & 632459042 \\ 19474949624 & 283011846 & 4124744 & 60294 & 9195356 \\ 283011846 & 4124744 & 60294 & 884 & 134084 \\ 4124744 & 60294 & 884 & 13 & 1961\end{array}\right]$
with(LinearAlgebra) :
ReducedRowEchelonForm (A)

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{19}{3432} \tag{1.2.2.2}\\
0 & 1 & 0 & 0 & -\frac{163}{154} \\
0 & 0 & 1 & 0 & \frac{1707059}{24024} \\
0 & 0 & 0 & 1 & -\frac{3060027}{2002}
\end{array}\right]
$$

As you can see, the values obtained for the variables are the same:
$a=\frac{19}{3432}, b=-\frac{163}{154}, c=\frac{1707059}{24024}, d=-\frac{3060027}{2002}$.

Models Involving Systems with Infinite Solutions

Example 1: Leontief's "Exchange Model"

Solution Using Maple's solve Function

solve $(\{p C=0.1 \cdot p C+0.4 \cdot p E+0.6 \cdot p S, p E=0.5 \cdot p C+0.1 \cdot p E+0.2 \cdot p S, p S=0.4 \cdot p C+0.5$ $\cdot p E+0.2 \cdot p S\},\{p C, p E, p S\})$

$$
\begin{equation*}
\{p C=1.016393443 p S, p E=0.7868852459 p S, p S=p S\} \tag{2.1.1.1}
\end{equation*}
$$

Matrix Solution

Note that the above is a homogeneous system of equations, so we may solve by writing the coefficient matrix.

$$
A:=\left[\begin{array}{ccc}
0.9 & -0.4 & -0.6 \\
-0.5 & 0.9 & -0.2 \\
-0.4 & -0.5 & 0.8
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
0.9 & -0.4 & -0.6 \tag{2.1.2.1}\\
-0.5 & 0.9 & -0.2 \\
-0.4 & -0.5 & 0.8
\end{array}\right]
$$

with(LinearAlgebra) :
ReducedRowEchelonForm (A)

$$
\left[\begin{array}{lll}
1 . & 0 . & 0 . \\
0 . & 1 . & 0 . \tag{2.1.2.2}\\
0 . & 0 . & 1 .
\end{array}\right]
$$

This is incorrect, since the determinant of A is 0 . Therefore, you want to be careful using this function in Maple.

Determinant (A)
0.
(2.1.2.3)

Let's see what happens if we use the GaussianElimination function.
A1 $:=$ GaussianElimination (A)
$\left[\begin{array}{ccc}0.900000000000000 & -0.400000000000000 & -0.600000000000000 \\ 0 . & 0.677777777777778 & -0.533333333333333 \\ 0 . & 0 . & 1.1102230246251610^{-16}\end{array}\right]$

You can see that the entry in the third row and third column is essentially 0 . It is not exactly 0 due to roundoff error.

Example 2: Balancing Chemical Equations

Solution Using Maple's solve Function

restart
solve $(\{x 1-6 \cdot x 4=0,2 \cdot x 1+x 2-2 \cdot x 3-6 \cdot x 4=0,2 \cdot x 2-12 \cdot x 4=0\},\{x 1, x 2, x 3, x 4\})$

$$
\begin{equation*}
\{x 1=6 x 4, x 2=6 x 4, x 3=6 x 4, x 4=x 4\} \tag{2.2.1.1}
\end{equation*}
$$

Matrix Solution
$A:=\left[\begin{array}{cccc}1 & 0 & 0 & -6 \\ 2 & 1 & -2 & -6 \\ 0 & 2 & 0 & -12\end{array}\right]$

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & -6 \tag{2.2.2.1}\\
2 & 1 & -2 & -6 \\
0 & 2 & 0 & -12
\end{array}\right]
$$

with(LinearAlgebra) :
ReducedRowEchelonForm (A)

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -6 \tag{2.2.2.2}\\
0 & 1 & 0 & -6 \\
0 & 0 & 1 & -6
\end{array}\right]
$$

