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1 Introduction – Discrete Population Models

Consider the population of one species in a specified region, e.g., the number of people in
the world, the number of pine trees in a forest, or the number of bacteria in an experiment.
We will ignore any difference in the individuals that make up the group (i.e.., gender, age,
etc.).

In many situations involving a large number of members of a species, it is reasonable to
approximate the population size N(t) as a continuous function of time, perhaps by fitting a
smooth curve through the data, since most populations are measured periodically (e.g., the
census in the U.S.).

In modeling the population growth of a species, we must consider what factors affect that
population. For example, the population of sharks in the Adriatic Sea will depend on the
number of fish available for the sharks to consume (if there are none, the sharks could become
extinct). In addition, the presence of a harmful bacteria will negatively impact the shark
population. There are other factors that may also be significant, e.g., water temperature
and salinity.

For simplicity, we first study a simple species, one that is not affected by any others. Such
a species might be part of a lab experiment.

2 A Simple Discrete One-Species Model

Here, we will discuss one of the simplest models of population growth of a species. Suppose
measurements have been taken over an interval of time 4t. The rate of change of the
population as measured over the time interval 4t is

4N

4t
=

N(t +4t)−N(t)

4t
.

This number indicates the absolute rate of increase of the population. The growth rate
per unit time of the population, R(t), as measured over the time interval 4t is

R(t) =
N(t +4t)−N(t)

4tN(t)
.

∗Much of the material in this handout is taken directly from Mathematical Models by Richard Haberman
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If the growth rate and initial population were known, then the population at later times
could be calcluated as

N(t +4t) = N(t) +4tR(t)N(t).

Assuming that the population of the species only changes due to births and deaths (i.e.,
ignoring the possibility of migration into and out of the area), we see that

N(t +4t) = N(t) + (# of births)− (# of deaths).

We may define the reproductive beirth rate b and the death rate d as

b =
# of births

4tN(t)
and d =

# of deaths

4tN(t)
.

Then, the population at a time t +4t is

N(t +4t) = N(t) +4t(b− d)N(t),

so the growth rate R = b− d.

Since we are considering the total population in a region, the birth and death rates are
averages, averaged over the entire population (i.e., not considering age as a factor). The
model we are now developing may be modified to account for an age distribution.

As a first step in our model, we assume that the number of births and number of deaths are
proportional to the total population, so the growth rate is constant, and we have

N(t +4t)−N(t) = R4tN(t),

or
N(t +4t) = (1 +4tR)N(t).

Given an initial population size N(t0) = N0, we may determine the population at future
times:

N(t0 +4t) = (1 + R4t)N0

N(t0 + 24t) = (1 + R4t)N(t0 +4t) = (1 + R4t)2N0

...

N(t0 + n4t) = (1 + R4t)nN0.

Since n =
t− t0
4t

, we can also write

N(t) = N(t0 +4t) = (1 + R4t)
t−t0
4t .

3 Other Discrete Models

There are other occasions in which a discrete model might be appropriate. An example
follows.

Example: Drug Dosage (Maple worksheet drugdosage.mw)

2



A doctor prescribes a patient take a pill containing 250 mg of a certain drug every 4 hours.
Assume the drug is immediately ingested into the bloodstream once taken. Also, assume
that every 4 hours, the patient’s body eliminates 30% of hte drug in his/her bloodstream.
Suppose the patient had 0 mg of the drug in his bloodstream prior to taking the first pill.
How much of the drug will be in his bloodstream after 72 hours?

Step 1: Identify the Problem

Determine the relationship between the amount of drug in the bloodstream and time.

Step 2: Identify Relevant Facts about the Problem

• The drug is administered every 4 hours.

• The patient had no drug in his system prioer to taking the initial pill.

Step 3: Choose the Type of Modeling Method

We will use a deterministic discrete model.

Step 4: Make Simplifying Assumptions

The model assumes the following.

• The patient is of normal size and health.

• There are no other drugs being taken that will affect the prescribed drug.

• There are no internal or external factors that will affect the drug absorption rate.

• The patient always takes the prescribed dosage at the correct time.

The relevant variables are as follows.

• a(n) - amount of drug in the bloodstream after period n, where n = 0, 1, 2, ... 4-hour
period (mg)

• n - number of 4-hour time periods

Step 5: Construct the Model

So, we have

• a(n + 1) = amount of drug in the bloodstream in the future (mg)

• a(n) = amount of drug currently in the bloodstream (mg)
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Define change as follows

Change = dose − loss in the system

Change = 250− 0.3a(n)

So,

Future = Present − Change

a(n + 1) = a(n)− 0.30a(n) + 250

=⇒ a(n + 1) = 0.70a(n) + 250

Step 6: Solve and Interpret the Model

We can solve this difference equation analytically to obtain

a(n) =
2500

3
− 2500

3
(0.7)n.

Alternately, in Maple we can do: rsolve(a(n+1) = 0.7a(n)+250, a(0) = 0).

We want to find the value after 72 hours, so

n =
72

4
= 18, and a(18) ≈ 831.98 mg.

We can plot the results, as well (see the Maple worksheet), and find the limit as n→∞:

lim
n→∞

a(n) =
2500

3
≈ 833.33 mg.

If this is a safe and effective dosage level, then the dosage schedule is acceptable.

4 Equilibrium Values and Long-term Behavior

Definition The number ae is called an equilibrium value or fixed point for a discrete
model a(k) = f(a(k)) if a(k) = ae for all values of k when the initial value is set to ae; i.e.,
a(k) = ae is a constant solution to the recurrence relation for the dynamical system. (So, ae
is an equilibriym value for a(n+1) = f(a(n), a(n−1), ..., n) if and only if ae = f(ae, ae, ..., ae).

Notes

1. Not all such discrete models have equilibrium values.

2. Many such discrete models have equilibrium values the system may never achieve.

Example: Drug Dosage Revisited

Recall: The model was governed by the difference equation a(n + 1) = 0.7a(n) + 250. To
determine the equilibrium value(s), let a(n) = a(n + 1) = ae. Then,

ae = 0.7ae + 250

=⇒ ae =
250

0.3
=

2500

3
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4.1 Graphically Analyzing Equilibrium Values

Analyze models of the form a(n + 1) = ra(n) + b, where r and b are constants. (Maple
worksheet: graphicalequilib.mw).

Example: a(n + 1) = ra(n) + 50

Equilibrium value: ae =
50

1− r
. Therefore, there are three cases.

Case 1: r > 1 In this case, ae < 0. Assuming a physical system, this can never be attained.
Example: r = 2. See the Maple worksheet.

Case 2: 0 < r < 1 In this case, ae > 0. Example: r = 0.25. See the Maple worksheet.

Case 3: r < 0 In this case, ae > 0. Example: r = −1.01. See the Maple worksheet.

Suppose b = 0. Then, the difference equation is a(n + 1) = ra(n), and the only equilibrium
value is ae = 0.

4.2 Stability and Long-tem Behavior

Given a discrete dynamical system, if the values of a(n) converge to ae for an initial condition
close to ae, then ae is called a stable equilibrium value, or an attracting fixed point
(i.e., if lim

n→∞
a(n) = ae).

Example: (Maple worksheet stability drug.mw)

We revise our drug dosage problem to have the dosage of medicine be 240 mg (for ease of
analysis). In the worksheet, we try two different initial conditions, and analyze the solution.
The result is an apparent convergence to the equilibrium value of 800. To verify, solve the
difference equation and take the limit as n→∞.

5 A Discrete One-Species Model with an Age Distri-

bution

When modeling a species with age distribution, it is necessary to take into account the
different birth and death rates for the different age groups. As an example, we consider a
model using discrete population changes as measured every year (so, 4t = 1). Note that for
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some species, this time interval is actually too long. So, let

N0(t) = number of individuals less than one year old,

N1(t) = number of individulas one year old,

N2(t) = number of individulas two years old,

...

Nm(t) = number of individuals m years old, where m terminates at M ,

the oldest age at which there is a significant population.

If we let bn and dn represent the birth and death rate, respectively, of the population n years
old, then the difference equations describing the population are

N0(t +4t) = b0N0(t) + b1N1(t) + · · ·+ bMNm(t),

N1(t +4t) = (1− d0)N0(t),

N2(t +4t) = (1− d1)N1(t),

...

Nm(t +4t) = (1− dm−1)Nm−1(t),

...

NM(t +4t) = (1− dM−1)NM−1(t).

If M is large, then we would necessarily solve the problem computationally. We can write
the above equation in in vector-matrix form as follows. First, define

N(t) =


N0(t)
N1(t)

...
NM(t)

 .

Then, the system of difference equations describing the population may be written as

N(t +4t) = AN(t),

where A is the M ×M matrix defined by

A =



b0 b1 b2 · · · 0 bM
1− d0 0 0 · · · 0 0

0 1− d1 0 · · · 0 0
0 0 1− d2 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 1− dM−1 0


.

A simplified model with age distribution is more frequently desired. In this case, the popula-
tion will be separated into larger groups. As a very simplified example, consider the human
population divided into three age groups: group 1 – ages 0 to 14; group 2 – ages 15 - 39; and
group 3 – ages 40 and older. The number of individulas in group 1 consists of the number
born and surviving one year plus the number who survived from group 1 but did not advance
into group 2 (i.e., those 13 years of age and younger). Since there are 15 years in group 1 (0
to 14), an individual who was 14 at time t will be 15 at time t+4t, where 4t = 1, and will
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have left group 1 and joined group 2. So, 14
15

of the individuals in group 1 at time t will still
be in gorup 1 at time t +4t. And a similar analysis goes for group 2. Note that once an
individual has entered group 3, s/he stays there until dying. If we know the average birth
and death rates for each group, this simplified model might look like

N1(t +4t) = b1N1(t) + b2N2(t) + b3N3(t) +
14

15
(1− d1)N1(t),

N2(t +4t) =
1

15
(1− d1)N1(t) +

24

25
(1− d2)N2(t),

N3(t +4t) =
1

25
(1− d2)N2(t) + (1− d3)N3(t).

Note that b1 and b3 are much less than b2, so the model may be further simplified by
approximating b1 and b3 by 0.

Both of the above models are linear discrete systems.

These kinds of models may be used to compare the growths of two similar populations which
differ only in their age distribution. We can also calculate how much faster a population
consisting mostly of individuals of child-bearing age will double in size.

6 Nonlinear Discrete Models

A nonlinear discrete model cannot be written in the form

a(n + 1) = b0a(n) + b1a(n− 1) + ... + bn,

where bi may be functions of n.

7 Modeling with Discrete Nonlinear Syystems

Example: Discrete SIR Model of Epidemics

Consider a disease that is spreading throughout the United States, such as the new flu. The
Centers for Disease Control and Prevention is interested in knowing and experimenting with
a model for this new disease before it actually becomse a real epidemic. Let us consider the
population being divided into three categories: susceptible, infected, and removed.

Step 1: Identify the Problem

Determine the spread of the new flu.

Step 2: Identify Relevant Facts about the Problem

• The average length of the disease is two weeks, over which time the person is infectious
and can spread the disease.

• Once someone gets the flu, they cannot get it again this year.
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Step 3: Choose the Type of Modeling Method

We will use a deterministic model, the discrete SIR model.

Step 4: Make Simplifying Assumptions

This model assumes the following.

• The population can be considered as divided into three categories: susceptible, infected,
and removed.

• No one enters or leaves the community, and there is no contact outside the community.

• Each person is susceptible (able to catch this new flu), infected (currently has the
illness and can spread it), or removed (already had the flu and will not get it again,
which includes having died from it).

• Initially every person in the community is either susceptible or infected.

• Once someone gets the illness, they cannot get it again (e.g., chicken pox).

• Our time period for the model will be one week.

• The average length of the disease is three weeks, over which time the person is deemed
infected and can spread the disease.

• The spread of disease is proportional to both the number of susceptible individuals
and the number of infected individuals.

• Initially, assume that the transmission coefficient is constant (actually, it is probabilis-
tic).

The relevant variables are as follows.

S(n) = the number of people susceptible after time period n.

I(n) = the number of people infected after time period n.

R(n) = the number of people removed after time period n.

n = the number of one-week periods.

a = the rate at which the disease is spread (the transmission coefficient) (per week).

Step 5: Construct the Model

Since we have assumed that a person is sick for three weeks, one third of the infected people
will be removed each week. Therefore,

R(n + 1) = R(n) +
1

3
I(n).

The value
1

3
is the removal rate per week, and representes the proportion of infected persons

removed from the infected population each week. The population of infected people, I(n),
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will have terms that both increase and decrease its amount over time (from susceptible
individuals becoming infected and from infected individuals becoming removed). So,

I(n + 1) = I(n) + aS(n)I(n)− 1

3
I(n).

Finally, the susceptible population decreases as a result of individuals becoming infected.
Therefore,

S(n + 1) = S(n)− aS(n)I(n).

Step 6: Solve and Interpret the Model

See the Maple worksheet discrsir.mw on the References for Undergraduate Research in
Epidemiology web page.
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