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1 Introduction to Systems of Equations

We can easily solve a small system of equations by hand either directly or by forming the
augmented matrix and using Gaussian or Gauss-Jordan elimination. This works well for
systems having two to four (or even five) equations with “nice” coefficients. However, for
larger systems and/or systems with arbitrary real-valued coefficients, it is less convenient to
solve by hand. Maple makes things easier.

There are various ways to solve a system of equations in Maple, including:

(1) use the solve command, or

(2) form the augmented matrix for the system of equations and transform it to reduced row
echelon form using the command ReducedRowEchelonForm, found in the LinearAlgebra
library. (So, we must first include the LinearAlgebra library, using the with command.)
We can then read off the solution.

Unlike some computer algebra systems, when using the solve command, Maple can handle
systems of equations which have infinitely many solutions or no solution, in addition to
problems with a unique solution. Maple will output the solution if there is a unique solution
or if there are infinitely many solutions, Maple will output a solution in terms of any arbitrary
variable(s). In examples to follow, we will look at both approaches.

2 Models with Unique Solutions Using Systems of Equa-

tions

2.1 Example 1: Electrical Networks

The electrical network shown in Figure 1 contains batteries (voltage sources) and resistors
(e.g., light bulbs or heaters) joined together by conductors (wires). A voltage source pro-
vides an electromotive force (emf) E, measured in volts, which moves electrons through the
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network. The rate at which electrons flow along a conductor is the current I, measured in
amperes (amps). The resistors act to retard the flow of electrons, using up the current (in
the form of heat) and lowering the voltage.

Figure 1: An electrical network.

By Ohm’s law, the voltage drop across a resistor is given by E = IR, where I is the current
measured in amps and R is the resistance measured in ohms (Ω).

Network analysis is based on Kirchhoff’s laws, which are the following:

Conservation of Energy: Around a closed voltage loop in the network, the algebraic
sum of potential differences is zero (voltage drops must balance).

Conservation of Charge: At each node, the total inflow of current equals the total out-
flow of current.

For our example, the nodes are labeled A and B in Figure 1. Our goal is to determine
the values for the currents in each branch of the network. Denote as I1 the current flowing
through R1, I2 the current flowing through R2, and I3 the current flowing through R3.
Applying Kirchhoff’s laws gives the following system of equations:

8I1 − 3I3 = 10
6I2 + 3I3 = 15

I1 − I2 + I3 = 0
. (1)

Solving (1) using Maple gives I1 = 3
2

amps, I2 = 13
6

amps, and I3 = 2
3

amps.

2.2 Example 2: Fitting a Power Curve – Height vs. Weight

This is a re-do of an example done in the Model Fitting segment of our work. The following
table shows the ideal weights for medium built males. The data is copied from An Introduc-
tion to the Mathematics of Biology, with Computer Algebra Models by Yeargers, Shonkwiler,
and Herod.

Height (in) 62 63 64 65 66 67 68 69 70 71 72 73 74
Weight (lb) 128 131 135 139 142 146 150 154 158 162 167 172 177

2



We would like to fit to this data a curve of the form y = ax3 + bx2 + cx + d. The method of
least squares tells us that we want to

Minimize E =
∑

(yi − (ax3
i + bx2

i + cxi + d))2.

As discussed in the Model Fitting notes, in order to do this, we take the partial derivative
of E with respect to each of a, b, c, d and set it to 0. So, we obtain the system of equations:
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Plugging in the values for the sums gives the following system:

1343964152934a + 19474949624b + 283011846c + 4124744d = 632459042

632459042a + 283011846b + 4124744c + 60294d = 9195356 (2)

283011846a + 4124744b + 60294c + 884d = 134084

4124744a + 60294b + 884c + 13d = 1961.

The solution to this system is

a =
19

3432
, b = −163

154
, c =

1707059

24024
, d = −3060027

2002
.

Plotting the data and the polynomial fit on the same graph shows that the solution is visually
quite good. (See Figure 2).

3 Models with Infinite Solutions Using Systems of Equa-

tions

Here, we will discuss some examples of models whose systems of equations result in infinitely
many solutions.
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Figure 2: The data and the cubic polynomial fit for the weight vs. height.

3.1 The Leontief Input-Output Model

The following is taken from Linear Algebra and its Applications, 4th edition, by David Lay.
Leontief’s input-output model is based on the following. Suppose that a nation’s economy
is divided into n sectors that produce goods or services, and suppose that x ∈ Rn is a
production vector that lists the output of each sector for one year. Also, suppose that there
is another sector of the economy, the open sector, that does not produce goods or services
but only consumes them, and let d be a final demand vector that lists the values of the goods
and services demanded from the various sectors by the nonproductive sector. The vector d
can represent consumer demand, government consumption, surplus production, exports, or
other external demands.

As the various sectors produce goods to meet consumer demand, the producers themselves
create additional intermediate demand for goods they need as inputs for their products. The
interrelations between the sectors are very complex, and the connection between the final
demand and production is unclear. Leontief asked if there is a production level such that
the amounts produced will exactly balance the total demanded for that production so that

amount produced x = intermediate demand + final demand d (3)

The basic assumption in Leontief’s input-output model is that for each sector, there is a unit
consumption vector in Rn that lists the inputs needed per unit of output of the sector. All
input and output units are measured in millions of dollars, rather than in quantities such as
tons or bushels, and prices of goods and services are held constant.

We will look at a simpler version of this, Leontief’s “exchange” model. Suppose a nation’s
economy is divided into many sectors, such as various manufacturing, communication, enter-
tainment, and service industries. Suppose that for each sector we know its total output for
one year and we know exactly how this output is divided or “exchanged” among the other
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sectors of the economy. Let the total dollar value of a sector’s output be called the price of
that output. Leontief proved that there exist equilibrium prices for the total outputs of the
various sectors that result in the income of each sector balancing its expenses (i.e., with no
loss or gain in income).

For example, suppose that an economy consists of the coal, electric (power), and steel sectors,
and that the output of each sector is distributed among the various sectors as shown in
Table 3.1.

Distribution of Output from:
Coal Electric Steel Purchased by:
0.1 0.4 0.6 Coal
0.5 0.1 0.2 Electric
0.4 0.5 0.2 Steel

Table 1: Simple Economy Model

The first column of this table says that the total output of the Coal sector is divided with
10% going to Coal, 50% going to Electric, and 40% going to Steel. The Coal sector would
treat the 10% it spends as an operating expense. Notice that all columns sum to 1, because
all outputs need to be considered in the table. For this economy, determine the equilibrium
prices that make each sector’s income match its expenditures. Model using the five-step
modeling process.

Step 1: Identify the Problem.

Determine the equilibrium prices for the Coal, Electric, and Steel sectors of the economy so
that each sector’s income balances its expenditures.

Step 2: Identify Relevant Facts about the Problem.

The relevant information is given to us in the problem.

Step 3: Choose the Type of Modeling Method.

We will be using Leontief’s “exchange” model, a deterministic model.

Step 4: Make Simplifying Assumptions.

• Assumptions

– Leontief’s “exchange” model is followed.

– There are no other sectors in this economy.

– There are no other consumers of the products.

• Variables

– pC = output of Coal sector (million $/year)
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– pE = output of Electric sector (million $/year)

– pS = output of Steel sector (million $/year)

Step 5: Construct the Model.

Using the data in the table, we construct the following system of equations.

pC = 0.1pC + 0.4pE + 0.6pS

pE = 0.5pC + 0.1pE + 0.2pS

pS = 0.4pC + 0.5pE + 0.2pS,

or

0.9pC − 0.4pE − 0.6pS = 0

−0.5pC + 0.9pE − 0.2pS = 0

−0.4pC − 0.5pE + 0.8pS = 0

Step 6: Solve and Interpret the Model.

We solve the system of equations using Maple and find that there are infinitely many solu-
tions, with pS being the free variable, so

pC = 1.016pS, pE = 0.787pS.

Any nonnegative value for pS will give a choice of equilibrium prices. For example, choose
pS = 100. Then, pC = 101.6 and pE = 78.7. In other words, the Coal sector’s price is $101.6
million, the Electric sector’s price is $78.7 million, and the Steel sector’s price is $100 million.

Note that for this problem, using the ReducedRowEchelonForm function in Maple does not
give the correct solution due to roundoff error.

We will omit Steps 7-8 for this problem.

3.2 Balancing Chemical Equations

The following is taken from Linear Algebra with Applications, 8th edition, by Steve Leon.
In the process of photosynthesis, plants use radiant energy from sunlight to convert carbon
dioxide (CO2) and water (H2O) into glucose (C6H12O6) and oxygen (O2). The chemical
equation for this reaction has the form

CO2 + H2O→ O2 + C6H12O6.

This equation needs to be balanced. In other words, we must find coefficients x1, x2, x3, x4

of the reactants and products (i.e., rewrite the equation as

x1CO2 + x2H2O→ x3O2 + x4C6H12O6,
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where the numbers of carbon, hydrogen, and oxygen atoms are the same on both sides of
the equaion). Since carbon dioxide contains one carbon atom and glucose contains six, we
require

x1 = 6x4.

Similarly, to balance the oxygen and the hydrogen we need

2x1 + x2 = 2x3 + 6x4 and 2x2 = 12x4.

Moving all of the unknowns to the left-hand sides of the equations gives the homogeneous
system of equations

x1 − 6x4 = 0
2x1 + x2 − 2x3 − 6x4 = 0

2x2 − 12x4 = 0.

From linear algebra, we know that this system will have infinitely many nontrivial solutions
(which is good; otherwise, photosynthesis would be impossible, and we know it is not). From
Maple, we see that x4 is arbitrary, and x1 = x2 = x3 = 6x4. When balancing a chemical
equation, we need to use the lowest positive integer solution possible. So, we let x4 = 1,
giving x1 = x2 = x3 = 6, and the equation takes the form

6CO2 + 6H2O→ 6O2 + C6H12O6.
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