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In our previous population models, we consdiered birth and death to be deterministic. Here,
we will formulate a simple model of a stochastic process. To simplify the analysis, we will
assume that deaths have a negligible effect compared to births, and can be neglected. This
is a reasonable approximation for bacteria and other species that grow by mitosis. In other
circumstances, this model will need to be replaced by other stochastic models (which will be
more difficult to analyze).

Suppose that we cannot say with certainty that there will be a population increase of exactly
R4t percent in time 4t. Instead, we assume that the birth process is random and that a
birth associated with an individual may occur randomly at any time with equal probability.
We will assume, for simplicity, that the probability of one birth is proportional to 4t,
say λ4t. The probability of two or more births in a time interval 4t is considered to be
negligible if 4t is small enough. Note that we are assuming that there are no multiple
birghts. Therefore, the probability of an individual not giving birth in time 4t is 1− λ4t,
since there are only two options: either a birth occurs, or it does not, and the sum of the
probabilities must equal one.

In 4t time, if the probability of one birth from one individual is λ4t, then we may “expect”
that if there were a large number of individuals, say N0, then there would be N0λ4t births.
Based on this, we may conclude that the birth rate is

4N
N04t

= λ,

since there are no deaths in this model and so the birth rate equals the growth rate. There-
fore, not only is λ the probability of a birth per unit time, it is also the birth rate (if growth
occurs deterministically). It turns out that λ is the expected growth rate for this stochastic
birth process. If λ is unknown, we may estimate λ4t by dividing the total number of births
in time 4t by the total population (if the time 4t is sufficiently small taht the number of
births is a small percentage of the population).

Example: In a population of 600 hens, if 20 hatchings occur in one hour, then the birth rate

is estimated at
1

30
per hour and also the probability of a birth is estimated as

1

30
per hour;

i.e., λ =
1

30
.

We cannot calculate the exact population size at a given time. We may only discuss proba-
bilities. Let PN(t) be the probability that at time t the population is N . At time t+4t, we

∗The material in this handout is taken directly from Mathematical Models by Richard Haberman
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wish to know the probability of the population being N . First, we must consider how the
population might be N at time t+4t. This can occur in two ways: (1) the population was
N − 1 at the previous time and a birth occurs in time interval 4t, or (2) the population was
N at time t and no births occured during 4t. Here, we are ignoring the possibility that two
or more births occur from different individuals during 4t, but this is a good approximation
if 4t is small enough. Thus,

PN(t+4t) = σN−1PN−1(t) + νNPN(t), (1)

where σN−1 is the probability that exactly one birth occurs among the N − 1 individuals
and νN is the probability that no births occur among the N individuals.

Next, we will calculate these probabilities. If the probability of one individual not giving
birth is 1− λ4t, then the probability of no births among the N independent individuals is
(1− λ4t)N , i.e.,

νN = (1− λ4t)N .

The probability of exactly one birth among m individuals is calculated as follows. Exactly
one birth can occur in m different, equally likely, ways. One way is for an individual, say
individual 1, to have a birth and the other m− 1 individuals not to. The probability of this
is

λ4t(1− λ4t)m−1.

Thus, the probability of exactly one birth among m individuals is

σm = mλ4t(1− λ4t)m−1,

and
σN−1 = (N − 1)λ4t(1− λ4t)N−2.

However, if 4t is extremely small, then, since the probability of at least one birth occuring
among N individuals is

1− νN = 1− (1− λ4t)N ,

and the probability of two or more births is negligible,

σN−1 ≈ 1− (1− λ4t)N−1.

Note that the above expression is only valid for 4t extremely small. But, if 4t is sufficiently
small, then

νN ≈ 1− λN4t,

and
σN−1 ≈ λ(N − 1)4t.

Then, from Equation (1), we have

PN(t+4t) ≈ λ(N − 1)4tPN−1(t) + (1− λN4t)PN(t).

As 4t becomes smaller, this equation becomse more accurate. Using a Taylor expansion of
the left-hand side gives

PN(t) +4tdPN(t)

dt
+ · · · = PN(t) +4t[λ(N − 1)PN−1(t)− λNPN(t)].

2



Simplifying, dividing both sides by 4t, and taking the limit as 4t → 0 gives the following
system of ordinary differential equations:

dPN
dt

= λ(N − 1)PN−1 − λNPN . (2)

To solve this system, initial conditions are needed. The initial conditions are the initial
probabilities. The problem we will solve is one in which the initial population (at t = 0) is
known with certainty to be some value N0. In this case, then, the initial probabilities are

PN(0) =

{
0, if N 6= N0,

1, if N = N0.

With these initial conditions, the system of differential equations can be successively solved.

Re-writing the above equation in the form

dPN
dt

+ λNPN = λ(N − 1)PN−1 (3)

helps us see that we first find PN−1 and then use it to determine PN . For example, the
probability of having N0 individuals is given by

dPN0

dt
+ λN0PN0 = λ(N0 − 1)PN0−1,

and since the population must be greater than or equal to N0, PN0−1 = 0, and we obtain

PN0(t) = PN0(0)e−λN0t,

and the initial condition tells us that PN0(0) = 1, so

PN0(t) = e−λN0t. (4)

The probability of the population being N0 decreases in time. As time goes on, the likelihood
of the population remaining the same decreases, since there are births but not deaths. Since
PN0(t) is a probability function, its value is alway nonnegative and less than or equal to 1.

The probability of the population being N0 + 1 is determined from Equation (??), where
N = N0 + 1 and where PN0(t) is given by Equation (4). We are thus solving

dPN0+1

dt
+ λ(N0 + 1)PN0+1 = λN0e

−λN0t.

This is a nonhomogeneous linear first order differential equation with initial condition PN0+1(0) =
0, which we may solve directly or using Maple, to obtain

PN0+1(t) = N0e
−λN0t(1− e−λt).

The probability of N0 + 1 individuals initially increases from zero, but eventually diminishes
to zero.

Question: When is it most likely that there are N0 + 1 individuals?

Answer: When the probability PN0+1 is maximized, i.e., when

0 =
dPN0+1

dt
= N0e

−λN0t[−λN0(1− e−λt) + λe−λt].
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Solving, we have

e−λt =
λN0

λ(N0 + 1)
=

N0

N0 + 1
, or t =

1

λ
ln

(
N0 + 1

N0

)
.

Next, we will determine PN0+2. The differential equation for PN0+2 is

dPN0+2

dt
+ λ(N0 + 2)PN0+2 = λ(N0 + 1)PN0+1

dPN0+2

dt
+ λ(N0 + 2)PN0+2 = λ(N0 + 1)N0e

−λN0t(1− e−λt).

The initial condition is PN0+2(0) = 0, so we obtain

PN0+2 =
N0(N0 + 1)

2
e−λN0t(1− e−λt)2.

If we were to continue the calculations, we would find that, for any j ≥ 1,

PN0+j(t) =
N0(N0 + 1) · · · (N0 + j − 1)

j!
e−λN0t(1− e−λt)j. (5)

We must now verify that this is, in fact, the solution for all integers j ≥ 1. We will do this
by induction, which means we must do the following.

1. Explicitly prove the statement is true for the first value of j, usually j = 0 or j = 1.

2. Assume that it holds for all j less than or equal to some value j0. (This is the induction
assumption.)

3. Using the assumption, prove that the statement holds for the next value, j0 + 1.

We have done the first step already. Now, let us assume that Equation (5) is valid for all
j ≤ j0. We next need to determine PN0+j0+1 using the differential equation Equation (3) with
N = N0 + j0 + 1. Using the formula for PN0+j0 , which is valid by the induction assumption,
we obtain

dPN0+j0+1

dt
+ λ(N0 + j0 + 1)PN0+j0+1 =

N0(N0 + 1) · · · (N0 + j0)

j0!
e−λN0t(1− e−λt)j0 ,

with initial condition PN0+j0+1(0) = 0, whose solution is

PN0+j0+1 =
N0(N0 + 1) · · · (N0 + j0)

(j0 + 1)!
e−λN0t(1− e−λt)j0+1.

Another way to introduce uncertainty into a mathematical model of populations is to assume
that the growth rate, R, is a random variable, fluctuating in time over different values,
perhaps due to uncontrollable cahnges in the environment.
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