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1 Introduction

Systems of differential equations may be used to model real-world problems in which in-
teractions occur. Such problems arise in economics, biology, physics, engineering, etc. For
example, the interaction of multiple species in an ecosystem may be modeled with a sys-
tem of two or more first order differential equations. In addition, electrical networks with
multiple loops can be modeled by a system of first or second order differential equations.

In some cases, these systems of equations are linear. In this case, they may be solved
analytically. However, it is often the case that these systems of differential equations are
nonlinear. In that case, they may be analyzed qualitatively through the use of phase portraits
and linearization techniques or they may be solved numerically.

2 Examples of Models with Systems of First Order Dif-

ferential Equations

2.1 Mechanical Vibrations

For example, assume that we have the following situation: mass m1 is connected to a spring
with spring constant k1, which is connected to a wall on the left; now, assume that mass m1

has another spring with spring constant k2 connected to its right side; and attached to the
second spring is another mass, mass m2; and finally, mass m2 is also connected to a third
spring with spring constant k3 which connects m2 with the right wall. Determine the motion
of the masses.

Step 1: Identify the Problem.

Determine the motion of the masses in the mass-spring system consisting of two masses
connected to the wall and to each other by three springs.

Step 2: Identify Relevant Facts about the Problem

Note that:
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• the spring with spring constant k2 connects to both m1 and m2;

• mass m1 is connected to the spring with spring constant k1 on the left and the spring
with spring constant k2 on the right; and

• mass m2 is connected to the spring with spring constant k2 on the left and the spring
with spring constant k3 on the right.

Step 3: Choose the Type of Modeling Method

We will use Hooke’s law to model the action of the springs on the masses.

Step 4: Make Simplifying Assumptions.

Assumptions:

– Displacements to the right of equilibrium are positive, and displacements to the
left of equilibrium are negative.

– All forces acting to the right are positive forces, and all forces acting to the left
are negative forces.

– The spring constants k1, k2, and k3 are all positive and may or may not be the
same value.

– The surface is frictionless (so there is no damping).

Variables:

– m1,m2 = the masses attached to the springs

– x1 = the displacement of mass m1 from its equilibrium position

– x2 = the displacement of mass m2 from its equilibrium position

– k1, k2, k3 = spring constant for springs 1, 2, and 3

Step 5: Construct the Model.

The end springs (springs 1 and 3) will behave as in any mass-spring system. The middle
spring, however, is not as straightforward. The displacement of the middle spring is given
by x2 − x1. How will it act?

1. If both masses move the same amount in the same direction, then the middle spring
will not have changed length, so its displacement x2 − x1 = 0.

2. If both masses move in the positive direction then the sign of x2 − x1 will tell us
which has moved more. If m1 moves more than m2 then the middle spring is being
compressed, and x2 − x1 < 0. Or, if m2 moves more than m1, then the spring is being
stretched and x2 − x1 > 0.
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3. If both masses move in the negative direction, the behavior will be opposite of the
behavior in 2. In other words, if m1 moves more than m2, then the spring is being
stretched and x2 − x1 > 0; and if m2 moves more than m1, then the spring is being
compressed and x2 − x1 < 0.

4. If m1 moves in the positive direction and m2 moves in the negative direction, then the
spring is compressed and x2 − x1 < 0.

5. If m2 moves in the positive direction and m1 moves in the negative direction, then the
spring is stretched and x2 − x1 > 0.

A free body diagram on each of the masses will gives us the system of differential equations:

m1
d2x1
dt2

= −k1x1 + k2(x2 − x1)

m2
d2x2
dt2

= −k2(x2 − x1)− k3x2,

or

m1
d2x1
dt2

= −(k1 + k2)x1 + k2x2

m2
d2x2
dt2

= k2x1 − (k2 + k3)x2.

We will skip Step 6: Solve and Interpret the Model at this time.

2.2 Population Models

The simplest model for the interaction between two populations is given by a system of
differential equations. The simplest such model describing a two-species, predator-prey re-
lationship is the Lotka-Volterra model. The key to this model is the use of the mass action
principle to model the interaction of the two species (i.e., the degree of interaction is pro-
portional to the product of the populations of the two species). The model is given by

dx

dt
= rx− axy (1)

dy

dt
= −my + bxy, (2)

where x represents the prey and y represents the predator. In addition to describing predator-
prey systems, the system given by (1), (2) describes a host-parasite interaction. In general,
a system of the form

dx

dt
= ax+ bxy

dy

dt
= cy + dxy
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can be used to model any two-species ecosystem. Changing the signs on the terms (and/or
eliminating interaction terms) will yield models for other types of biological interactions,
e.g., mutualism (both species benefit), commensalism (one species benefits, the other is
unaffected), competition, etc. For example, a commensal system would look like:

dx

dt
= rx

dy

dt
= by + cxy,

where x is the unaffected species (thus, the lack of an interaction term) and y is the benefited
species.

2.3 Diffusion through a Membrane

The diffusion of a substance (such as glucose, potassium, or salt) in a medium (such as blood
or water) can be modeled by a system of first-order linear ordinary differential equations.

2.3.1 Single-walled membrane

Suppose there are two solutions of a substance separated by a membrane of permeability P .
Assume that the amount of substance that passes through the membrane at any given time
is proportional to the difference in the concentrations of the substance. Let x1 and x2 be the
concentration of the solution on the left and right sides of the membrane, respectively, and
V1 and V2 be the volume of solution on the left and right sides of the membrane, respectively.
Then the rate of change in concentration on each side of the membrane is given by the system
of equations

dx1
dt

=
P

V1
(x2 − x1)

dx2
dt

=
P

V2
(x1 − x2) ,

where the initial amounts of x1 and x2 are given.

2.3.2 Double-walled membrane

Now, consider diffusion through a double-walled membrane, with inner wall of permeability
P1 and outer wall with permeability P2, where 0 < P1 < P2. Let x be the concentration of
the solution inside the inner wall and y be the concentration of solution between the two
walls. Let V1 be the volume of solution inside the inner wall and V2 be the volume of solution
between the two walls. Finally, let C be the (constant) concentration of the solution outside
the outer wall. Then the rate of change in concentrations of solution x and y is given by the

4



system of equations

dx

dt
=
P1

V1
(y − x)

dy

dt
=

1

V2
(P2(C − y) + P1(x− y)).

3 The Eigenvalue Method for Determining Stability

First, we will define what we mean by equilibrium solution and stability. The point xe =
(xe, ye) is an equilibrium solution of the autonomous system of equations

dx

dt
= f(x, y)

dy

dt
= g(x, y)

if f(xe, ye) = 0 and g(xe, ye) = 0. This definition generalizes to systems of more equations
in more unknowns.

Definition

• xe is stable if for all ε > 0 there exists δ > 0 such that if |x(0) − xe| < δ, then
|x(t)− xe| < ε for all t. In other words, xe is stable if every solutions that starts near
the equlibrium solution stays near the equilibrium solution.

• xe is asymptotically stable if it is stable and there exists δ > 0 such that if
|x(0) − xe| < δ, then x(t) → xe as t → ∞. In other words, the equilibrium solu-
tion is asymptotically stable if every solution that starts near the equilbrium solution
converges to the equilibrium solution as t→∞.

• If xe is not stable, it is called unstable.

3.1 Linear Systems

Suppose we have the system of differential equations given by

dx

dt
= ax+ by (3)

dy

dt
= cx+ dy. (4)

It is easy to verify that the only equilibrium solution to (3), (4) is (0, 0).

Now, rewrite the system given in (3), (4) in matrix form:

d

dx

(
x
y

)
=

(
a b
c d

)(
x
y

)
.
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We will first find the eigenvalues of the coefficient matrix,

A =

(
a b
c d

)
.

0 = det(A− λI)

=

∣∣∣∣a− λ b
c d− λ

∣∣∣∣
= (a− λ)(d− λ)− bc
= λ2 − (a+ d)λ− bc.

Therefore,

λ1,2 =
(a+ d)±

√
(a+ d)2 + 4bc

2
.

Analysis of the solution gives us the following result.

• (0, 0) is asymptotically stable if Re λ1 < 0 and Re λ2 < 0.

• (0, 0) is stable if Re λ1 = Re λ2 = 0 (i.e., λ1 and λ2 are purely imaginary).

• (0, 0) is unstable if Re λ1 > 0 or Re λ2 > 0.

3.2 Nonlinear Systems

In this case, stability is determined by linearization. Given the autonomous system of
equations

dx

dt
= f(x, y) (5)

dy

dt
= g(x, y), (6)

first start by determining the Taylor series expansion of f(x, y) and g(x, y) about the equi-
librium solution xe = (xe, ye). This gives

f(x, y) = f(xe, ye) +
∂f

∂x
(x− xe) +

∂f

∂y
(y − ye) +

1

2

∂2f

∂x2
(x− xe)2 +

1

2

∂2f

∂y2
(y − ye)2

+
∂2f

∂x∂y
(x− xe)(y − ye) + . . .

g(x, y) = g(xe, ye) +
∂g

∂x
(x− xe) +

∂g

∂y
(y − ye) +

1

2

∂2g

∂x2
(x− xe)2 +

1

2

∂2g

∂y2
(y − ye)2

+
∂2g

∂x∂y
(x− xe)(y − ye) + . . . .
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If f(x, y) and g(x, y) are sufficiently “nice,” then we can neglect all higher order terms,
writing

f(x, y) ≈ f(xe, ye) +
∂f

∂x
(x− xe) +

∂f

∂y
(y − ye) =

∂f

∂x
(x− xe) +

∂f

∂y
(y − ye)

g(x, y) ≈ g(xe, ye) +
∂g

∂x
(x− xe) +

∂g

∂y
(y − ye) =

∂g

∂x
(x− xe) +

∂g

∂y
(y − ye).

We can rewrite this in matrix form as(
f(x, y)
g(x, y)

)
=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)(
(x− xe)
(y − ye)

)
.

If we define

z =

(
x− xe
y − ye

)
,

then the system of equations in (5), (6) may be approximated by the linear system

dz

dt
=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
z.

Note:

1. The coefficient matrix is the Jacobian of the function F(x, y) =

(
f(x, y)
g(x, y)

)
, J , evaluated

at the equilibrium solution (xe, ye).

2. Since the system is linear, the stability of its equilibrium solution, (0, 0), may be
determined using eigenvalue theory.

What information does the nature of the eigenvalues of the linearized system give about the
nonlinear system?

Theorem 1. If z′ = J(xe, ye)z represents the linearization of the system (5), (6) with
equilibrium solution (xe, ye) then the following hold.

• If (0, 0) is asymptotically stable, then (xe, ye) is asymptotically stable.

• If (0, 0) is unstable, then the equilibrium solution of (xe, ye) is unstable.

• If (0, 0) is stable, but not asymptotically stable, then no information is given about the
stability of (xe, ye).

Why do we have no information about the stability of (xe, ye) if the linearized system has
an equilibrium solution that is stable, but not asymptotically stable? The reason is that a
perturbation might result in eigenvalues for which one has a positive real part.
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3.3 Example: Hardwood and Softwood Trees

In an unmanaged tract of forest, hardwood and softwood trees compete for available land and
water. Hardwood trees grow more slowly, but are more durable and produce more valuable
timber than softwood trees. Softwood trees grow quickly and consume the available water
and nutrients. Hardwood trees grow taller than softwood trees, shading new seedlings, and
are more resistant to disease. Assume that in isolation, the hardwood trees have a growth
rate of 10% and the softwood trees have a growth rate of 25%. Also assume that an acre
of forest land can support approximately 10,000 tons of hardwood trees or 6,000 tons of
softwood trees. The extent of competition has not be numerically determined. Can these
two types of trees coexist on the one tract indefinitely?

Step 1: Identify the Problem.

Determine under what conditions the hardwood and softwood trees can coexist.

Step 2: Idenfity Relevant Facts about the Problem.

Note that:

• hardwood trees grow more slowly than softwood trees;

• hardwood trees are more durable than softwood trees;

• hardwood trees grow taller than softwood trees;

• hardwood trees are more resistant to disease than softwood trees.

Step 3: Choose the Type of Modeling Method.

We will use a deterministic competition model, assuming logistic growth if the species grows
in isolation.

Step 4: Make Assumptions.

• Variables

– H = population of hardwood trees (tons/acre)

– S = population of softood trees (tons/acre)

– gH , gs = growth rate for hardwoods, softwoods (tons/acre/year)

– cH , cS = loss due to competition (tons/acre/year)

– b1, b2 = interaction coefficients for hardwoods, softwoods (per ton per acre per
year)

– rH , rS = intrinsic growth rate for hardwoods, softwoods (tons/acre/year)

– KH , KS = carrying capacity of hardwoods, softwoods (tons/acre)

• Assumptions
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– rH = 0.10, rS = 0.25

– KH = 10000, KS = 60000

– gH = rHH

(
1− H

KH

)
– gS = rSS

(
1− S

KS

)
– cH = b1SH, cS = b2SH

– b1, b2 > 0

Step 5: Construct the Model.

The net rates of change in the populations of the hardwood and softwood trees are given by

dH

dt
= gH − cH and

dS

dt
= gS − cS.

This leads to the system of equations

dH

dt
= 0.10H

(
1− H

10000

)
− b1SH (7)

dS

dt
= 0.25S

(
1− S

6000

)
− b2SH (8)

The goal is to determine the nonzero equilibrium solution(s) and the conditions for the
stability of the equilibrium solution(s).

Step 6: Solve and Interpret the Model.

Using Maple, we determine that there is only one equilibrium solution for which both pop-
ulations are nonzero. The equilibrium solutions are

He =
10000− 6 · 108b1
1− 2.4 · 109b1b2

and Se =
6000− 2.4 · 108b2
1− 2.4 · 109b1b2

. (9)

For these solutions to be positive, we require that

−10000 + 6 · 108b1 > 0

−6000 + 2.4 · 108b2 > 0.

1− 2.4 · 109b1b2 > 0

The first equation is true if b1 <
1

60000
and the second equation is true if b2 <

1

40000
. Since

1−2.4 ·109 1

60000
0.000025 = 0, the third equation is also true if b1 <

1

60000
and b2 <

1

40000
.

To analyze the stability of the equilibrium solution in (9), first find the Jacobian of

(
F (x, y)
G(x, y)

)
,

where F (x, y) = 0.10H

(
1− H

10000

)
− b1SH and G(x, y) = 0.25S

(
1− S

6000

)
− b2SH.
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From Maple, the Jacobian is given by

A =

(
6000b1−0.1

1−2.4·109b1b2
6·108b21−10000b1
1−2.4·109b1b2

2.4·108b22−6000
1−2.4·109b1b2

10000b2−0.25
1−2.4·109b1b2

)
.

Analyzing the eigenvalues of this matrix using Maple gives a further restriction on b1 and
b2 in order for the equilibrium to be asymptotically stable. The additional condition is
b2 < −0.6b1 + 0.000035.

Step 7: Validate the Model.

To validate the model, we will assume that b1 =
t

60000
and b2 =

t

40000
, where 0 < t < 1.

From Maple, we see that these values for b1 and b2 satisfy all conditions for stability. We
will verify this by again determining the equilibrium solutions and verifying the stability of
the nonzero solution.

We see from the work in Maple that, assuming t < 1, the equilibrium solution

He =
10000

t+ 1
and Se =

6000

t+ 1

is asymptotically stable.

4 Phase Portraits

Given an autonomous system of equations, x′ = F(x), where x = (x1, x2, . . . , xn) and F has
continuous first partial derivitves, a solution to x′ = F(x) is a set of parametric equations

x1 = x1(t)

x2 = x2(t)

...

xn = xn(t)

The solution curve whose coordinates are (xi(t), xj(t)), i 6= j is called a trajectory of the
system. The xixj−plane is called the phase plane. A graph of trajectories in the phase
plane is called a phase portrait.

The following give some properties of phase portraits.

1. There is at most one trajectory through any point in the phase plane (due to unique-
ness).

2. A trajectory that starts at a point other than a rest point cannot reach a rest point in
a finite amount of time. (In the case of a system of two equations, a rest point is an
equilibrium point).
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3. No trajctory can cross itself unless it is a closed curve. If it is a closed curve, it is a
periodic solution.

There are two ways to do a phase portrait in Maple. One is using the DEplot command,
and the other is to use the phaseportrait command. Since we have been using DEplot in this
class to this point, we will continue to do so.

Example: Commensalism

Given the following system of first-order differential equations modeling a commensal re-
lationship between two species, we wish to determine the equilibrium solutions and their
stability using phase portraits.

dh

dt
= 0.5h

(
1− h

100

)
ds

dt
= 0.01s

(
1− s

25

)
+ 0.002sh.

Note: h is the population size of the “host” species, and s is the popoulation size of the
secondary species.

The equilibrium solutions for this system are found by setting the derivatives equal to zero
and solving the resulting system of equations:

0 = 0.5h

(
1− h

100

)
0 = 0.01s

(
1− s

25

)
+ 0.002sh.

which gives: (he, se) = (0, 0), (0, 25), (100, 0), (100, 525) as equilibrium solutions. Look at the
phase portrait and analyze the stability of these equilibrium solutions. Based on the phase
portrait, (he, se) = (100, 525) is asymptotically stable and all other equilibrium solutions are
unstable. This means that both species are expected to coexist indefinitely, which is to be
expected due to the nature of the commensal relationship.
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