Phys 4C Practice Final Exam
(1)

$$
\begin{aligned}
& \lambda=410 \mathrm{~nm}=4.10 \times 10^{-7} \mathrm{~m} \\
& d=0.093 \mathrm{~mm}=9.3 \times 10^{-5} \mathrm{~m} \\
& \text { Find - } \Delta y \\
& \text { for two-slit diffraction. } \\
& L=2.8 \mathrm{~m} \\
& \begin{array}{l}
d \sin \theta=m \lambda \\
\frac{d y}{L} \simeq m \lambda
\end{array} \\
& y \simeq \frac{m \lambda L}{d} \\
& \int \Delta y=y_{4}-y_{1} \simeq(4-1) \frac{\lambda L}{d}=\frac{3 \lambda L}{d} \\
& \begin{array}{l}
=\frac{3\left(4.10 \times 10^{-7} \mathrm{~m}\right)(2.8 \mathrm{~m})}{\left(9.3 \times 10^{-5} \mathrm{~m}\right)} \\
\approx 0.037 \mathrm{~m} \mid \Rightarrow \text { choice }(d)
\end{array}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& K=q V=1000 e V=\frac{1}{2} m_{e} v^{2} \quad \quad \text { Find }-\lambda=\frac{h}{p} \cdot \\
& 2 \mathrm{Km} m_{e} \\
& \sqrt{2 \mathrm{Km} m_{e}}=\left(m_{e} v\right)^{2} \\
& \lambda=\frac{h}{\sqrt{2 K m_{e}}}=\frac{6.626 \times 10^{-34} \mathrm{~J} .5}{\sqrt{(2)(1000 \mathrm{eV})\left(\frac{1.609 \times 10^{-19} \mathrm{~J}}{1 \mathrm{eV}}\right)\left(9.11 \times 10^{-3 / \mathrm{hg})}\right.}} \\
& \lambda=3.9 \times 10^{-11} \mathrm{~m} \Rightarrow \text { choice }(\mathrm{e}), \text { hone of the above }
\end{aligned}
$$

(3)

$I_{1} / I_{0}=0-5$ since I_{0} is unpolarized light.
Malls's law is $I_{2} / I_{1}=\cos ^{2}\left(\theta_{2}-\theta_{1}\right)$,
so: $I_{2} / I_{1}=\cos ^{2}\left(25-7^{\circ}\right)$

$$
\begin{aligned}
\Rightarrow I_{3} / I_{2} & =\cos ^{2}\left(90^{\circ}-25.7^{\circ}\right) \\
I_{3} / I_{0} & =0.5 \cos ^{2}\left(25.7^{\circ}\right) \cos ^{2}\left(90^{\circ}-25.7^{\circ}\right) \\
I_{3} / I_{0} & =0.076=7.6 \% \Rightarrow \text { choice }(a)
\end{aligned}
$$

(4)

$$
\begin{aligned}
& a \sin \theta=m \lambda, m= \pm 1, \pm 2, \pm 3 \ldots \\
& a_{1} \sin \theta_{1}=a_{2} \sin \theta_{2} \\
& \operatorname{since} \sin \theta \simeq \theta \text { for small } \theta_{1} \text {, in radians, } \\
& a_{1} \theta_{1} \simeq a_{2} \theta_{2}
\end{aligned}
$$

\rightarrow Doubling a will cause the separation of the minima to decrease by $1 / 2$ \Rightarrow Choice (d)
for Serway's text
Find - p
(5) A concave mirror has $f>0$ and $R>0$. Here, $f=+35.0 \mathrm{~cm}$.
The image is upright, so $M>0$.
The image is 5 times the size of the object, so $M=+5=-\frac{q}{p}$ and so $q=-5 p$.

$$
\begin{aligned}
& \frac{1}{p}+\frac{1}{8}=\frac{1}{f} \Rightarrow \frac{1}{p}=\frac{1}{5 p}=\frac{1}{35.0 \mathrm{~cm}} \\
& \frac{5-1}{5 p}=\frac{4}{5 p}=\frac{1}{35.0 \mathrm{~cm}} \therefore \frac{p=+28.0 \mathrm{~cm}}{\Rightarrow \text { choice (c) }}
\end{aligned}
$$

(6)
$\left\{\begin{array}{l}m_{1}=3.0 \times 10^{-28} \mathrm{~kg} \\ v_{1}=0.793 \mathrm{c}\end{array} \rightarrow\right.$ For this, we need relativistic momentum, $p \equiv \gamma m v$.
(For classical physics at speeds $v \ll \in, p=m v$ is of, put it isn't here.)

By conservation of relativistic momentum,

$$
\begin{aligned}
& \gamma_{1} m_{1} v_{1}=\gamma_{2} m_{2} v_{2} \\
& \frac{m_{1} v_{1}}{\sqrt{1-\left(v_{1} / c\right)^{2}}}=\frac{m_{2} v_{2}}{\sqrt{1-\left(v_{2} / c\right)^{2}}} \\
& \frac{m_{1}^{2} v_{1}^{2}}{1-\left(v_{1} / c\right)^{2}}=\frac{m_{2}^{2} v_{2}^{2}}{1-\left(v_{2} / c\right)^{2}}
\end{aligned} \quad\left[\begin{array}{l}
\left(\frac{m_{1}}{m_{2}}\right)^{2}\left[\frac{1}{\left(c / v_{1}\right)^{2}-1}\right]=\left[\frac{1}{\left(c / v_{2}\right)^{2}-1}\right] \\
\Rightarrow v_{2}=0.228 \mathrm{c} \\
\Rightarrow \text { choice (a)}
\end{array}\right.
$$

(7)

$$
\begin{aligned}
& \text { Find }-\Delta P_{x} \\
& \Delta x=0.5 \times 10^{-9} \mathrm{~m} . \quad \text { Check units }-1 \frac{1}{1}=1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& \text { since } \Delta x \Delta P_{x} \geqslant \hbar / 2 / \mathrm{kg} \mathrm{~m} / \mathrm{s} \\
& \Delta P_{x} \geqslant \frac{\hbar}{2(\Delta x)}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} .5\right)}{(2)(2 \pi)\left(0.5 \times 10^{-9} \mathrm{~m}\right)}=1.1 \times 10^{-25} \frac{\mathrm{~J} . \mathrm{s}}{\mathrm{~m}} \\
& \Rightarrow \text { choice (a) }
\end{aligned}
$$

for Serway's text
(8) Both forbidden transitions and selection rules exist because $\Delta l= \pm 1$ for electrons making transitions in atoms, which radiate (or absorb) photons. During a transition, the electron changes its angular momentum, since $\Delta l= \pm 1$. It also radiates (or absorbs) a photon during the transition. Since angular momentum is conserved, this implies that a photon must have angular momentum. \Rightarrow choice (c)
(9)

$$
N=N_{0} c^{-\lambda t} \text { and } R=d N / d t \text {, }
$$

$$
\begin{array}{rlrl}
\tau_{1 / 2}=8.04 d & \text { so: } R_{0} & =R e^{\lambda t} \\
t=3 d & & =R e^{(\ln 2) t / \tau_{1 / 2}} \\
R=0.5 \mu C_{i} & & =\left(0.5 \mu C_{i}\right) \exp \left[\frac{(0.693)(3 d)}{(8.04 d)}\right] \\
R & & & \left.R_{0}=0.65 \mu C_{i}\right) \Rightarrow \text { choice }(d)
\end{array}
$$

(10)
check units: $\left(\frac{T m}{A}\right)\left(\frac{m}{s}\right)\left(\frac{w}{m^{2}}\right)=\frac{T w}{A s}=\left(\frac{V}{m^{2}}\right)\left(\frac{8}{C}\right)\left(\frac{1}{8}\right)=\frac{V^{2}}{m^{2}} \sqrt{ }$

$$
\begin{aligned}
& I=S_{a v}=1340 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}=\frac{E_{\max } B_{\max }}{2 \mu_{0}}=\frac{E_{\text {ix }}^{2}}{2 \mu_{0} C}, \text { since } \frac{E_{\max }}{B_{\text {max }}}=\frac{E}{B}=C . \\
& \Rightarrow E_{\max }=\sqrt{2 \mu_{0} \grave{ } I} \\
& =\left[(2)\left(4 \pi \times 10^{-7} \frac{T \mathrm{~m}}{\mathrm{~A}}\right)\left(3-0 \times 10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(1340 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right)\right]^{1 / 2} \\
& E_{\text {max }}=1000 \frac{\mathrm{~V}}{\mathrm{~m}} \Rightarrow \text { choice (b) }
\end{aligned}
$$

(A)

$$
L\left(\text { as seen by } s^{\prime}\right)=0.6 \mathrm{~m}
$$

(i) As seen by s^{\prime},

$$
\begin{aligned}
& L=\frac{L_{p}}{\gamma}=0.6 \mathrm{~m}=\frac{1.0 \mathrm{~m}}{\left(1 / \sqrt{1-\left(u_{x}^{\prime} / c\right)^{2}}\right)}=1.0 \mathrm{~m} \sqrt{1-\left(u_{x}^{\prime} / \mathrm{c}\right)^{2}} \\
& \left(\frac{0.6}{1.0}\right)^{2}=1-\left(\frac{u_{x}^{\prime}}{c}\right)^{2} \\
& \left(u_{x}^{\prime} / c\right)=\sqrt{1-(0.6)^{2}} \quad \therefore u_{x}^{\prime}=-0.8 \mathrm{c} \\
& \text { as seen by } 5 \% \\
& \text { This is negative since } \\
& \text { this stick is going left, } \\
& \text { whereas trade } s^{\prime} \text { is going right. }
\end{aligned}
$$

(ii) As seen by 5 ,

$$
\begin{array}{r}
u_{x}=\frac{u_{x}^{\prime}+v^{\prime}}{1+\frac{u_{x} v}{c^{2}}}=\frac{-0.8 c+0.75 c}{1+\frac{(-0.8 c)(0.75 c)}{c^{2}}} \\
=\frac{-0.05 c}{1-[(0.8)(0.75)]}=\frac{-0.05 c}{0.4} \\
\therefore u_{x}=-0.125 c
\end{array}
$$

(iii) As seen by 5 ,

$$
\begin{aligned}
& L=\frac{L_{p}}{\gamma}=(1.0 \mathrm{~m}) \sqrt{1-\left(u_{x} / c\right)^{2}} \\
&=(1.0 \mathrm{~m}) \sqrt{1-(-0.125)^{2}} \\
& L=0.992 \mathrm{~m}
\end{aligned}
$$

(i) For $n=3, \ell$ con have the values $l=0,1,2, \ldots, n-1$,
(B) $50, l=0,1$, or 2 .
m_{l} can have the values $m_{l}=0, \pm 1, \pm 2, \ldots, \pm l$, so $m_{0}=-2,-1,0,1$, or 2 .
(ii) $l=0 \quad l=1 \quad l=z \quad \begin{aligned} & \text { Because the atom emits a } \\ & \text { photon during an electron }\end{aligned}$ $n=3 — 35 \square 3 p$ photon during an electron $n=2$ Us $2 p$ transition, $\Delta l= \pm 1$. This means $n=1 \quad$ is that when an elect tron jumps from $n=3$ to $n=1$, the only way it can do so is to go from $l=1$ to $l=0$, as shown at le H.
Also, for $n=1, l=0$ only, so $m_{0}=0$ only when $n=1$.
since $\Delta m_{2}=0$ or +1 or -1 only, the only permitted transitions for an electron going from $n=3$ to $n=1$ have:

$$
\begin{aligned}
& l=1 \text { and } m_{l}=0 \\
& l=1 \text { and } m_{l}=+1 \\
& l=1 \text { and } m_{l}=-1
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& l=1 \text { and } m_{l}=-1 \\
& p=\int p(x) d x=\int|\psi(x)|^{2} d x=\int_{x=0}^{x=L / 3}\left(\frac{2}{L}\right) \sin ^{2}\left(\frac{\pi x}{L}\right) d x \\
& =\left(\frac{2}{L}\right) \int_{0}^{L / 3} \sin ^{2} a x d x \text {, where } a=\pi / L
\end{aligned}
$$

Since $\int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{\sin (2 a x)}{4 a}$,

$$
\begin{aligned}
& \text { Since } \int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{\sin (2 a x)}{4 a}, \\
& P=\left(\frac{2}{L}\right)\left(\frac{x}{2}-\left.\frac{\sin (2 a x)}{4 a}\right|_{x=0} ^{x=L / 3}=\frac{2}{L}\left(\frac{x}{2}-\left.\frac{L \sin \left(\frac{2 \pi x}{L}\right)}{4 \pi}\right|_{x=0} ^{x=L / 3}\right.\right. \\
& \therefore \quad P=0.1955
\end{aligned}
$$

(iv) $\int_{x=-\infty}^{+\infty}|\psi(x)|^{2} d x=1=\int_{x=-L}^{x=+L}|A|^{2} d x$, so $\left.A^{2} x\right|_{-L} ^{+L}=1$,
and: $L-(-L)=Z L=1 / A^{2}$, so $A=\frac{1}{\sqrt{2 L}}$
(C)

$$
+x
$$

$$
\begin{aligned}
& \lambda=3.50 \mathrm{~cm}=3.5 \times 10^{-2} \mathrm{~m} \\
& E_{0}=275 \mathrm{~V} / \mathrm{m} \\
& B=B_{0} \sin (\mathrm{k} x-\omega t)
\end{aligned}
$$

(i)

$$
\frac{E_{0}}{B_{0}}=c \Rightarrow B_{0}=\frac{E_{0}}{c}=\frac{275 \mathrm{v} / \mathrm{m}}{3-0 \times 10^{8} \mathrm{~m} / \mathrm{s}}
$$

$$
B_{0}=9.2 \times 10^{-7} \mathrm{~T}
$$

Cheek units:
The \vec{B} fold is along the $+y$ direction g

$$
\frac{V}{m}=\frac{T m}{s}
$$

$$
\text { Since } \vec{B}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \text {. }
$$

$$
\begin{aligned}
& k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{3.5 \times 10^{-2} \mathrm{~m}}=k=180 \mathrm{~m}-1 . \\
& w=2 \pi f=\frac{2 \pi \mathrm{c}}{\lambda}=k c=w=5.39 \times 10^{10} \mathrm{~s}^{-1}
\end{aligned}
$$

(ii)

Averaged over one cycle, this is:

$$
I=S_{a v}=\frac{E_{0} B_{0}}{2 \mu_{0}}=100 \frac{\mathrm{w}}{\mathrm{~m}^{2}}, \text { in the }+z \text { direction }
$$

(iii) For complete reflection,

$$
P=\frac{2 I}{C}=P=6.67 \times 10^{-7} \mathrm{~N} / \mathrm{m} 2
$$

(iv) $\frac{\text { Neon }(z=10)}{\text { configuration of: } \quad 1 s^{2} 2 s^{2} 2 p^{6} \text {. }}$.

$$
\begin{aligned}
& \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}=\frac{1}{\mu_{0}}\left[E_{0} \sin (k x-\omega t) \hat{x}\right] \times\left[B_{0} \sin (k x-\omega t) \hat{y}\right] \\
& =\left(\frac{E_{0} B_{0}}{\mu_{0}}\right)\left[\sin ^{2}(k x-\omega t)\right] \hat{x} \times \hat{y} \\
& =\left(\frac{\left(275 \frac{v}{m}\right)\left(9.2 \times 10^{-7} T\right)}{4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}}\right) \sin ^{2}(k x-\omega t) \hat{z} \\
& \vec{s}=\left(200 \frac{\mathrm{w}}{\mathrm{~m}^{2}}\right)\left[\sin ^{2}(k x-\omega t)\right] \hat{z} \\
& \text { Check nits: } \\
& \begin{array}{l}
w=R \\
J=N m
\end{array} \\
& w=\frac{N m}{s} \\
& \frac{b}{m} \frac{A}{m}=\frac{N^{s}}{c^{\frac{s}{c}} \frac{c}{5 m}}=\frac{w}{m^{2}} J \\
& \frac{\mathrm{~m}}{\mathrm{~m}^{2}} \frac{s}{m}=\frac{w s}{\mathrm{~m}^{m}}=\frac{\mathrm{m}}{\mathrm{~m}^{2}}
\end{aligned}
$$

