Physics 4C Mid-Term Exam 1, 2019 Fall

Instructions : There are 6 multiple choice questions and 2 longer problems. Read the problems carefully and give the best answer based on the material presented during class and in the text. The multiple choice questions are worth 60% (at 10% each) and the longer problems are worth 40% (at 20% each).
(1) A layer of water $(n=1.333)$ floats on a layer of carbon tetrachloride $(n=1.461)$. If light is traveling from the water into the carbon tetrachloride what is the critical angle at the interface (in degrees)?
(a) 88
(b) 78
(c) $66 \quad$ (d) 58
(e) the critcal angle is not defined
(2) An object is placed 15 cm in front of a concave mirror with a focal length of 30 cm . What is the magnification?
(a) 1
(b) 2
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$
(e) -2
(3) A lens has a convex front surface with a radius of curvature of 20 cm , and a back surface that is flat. It is made of glass, with $\mathrm{n}=1.5$. What is the focal length (in cm) of this lens?
(a) 20
(b) 30
(c) 40
(d) 10
(e) 50
(4) At a distance of 8 km from a radio transmitter, the amplitude of electric field strength is measured to be $0.35 \mathrm{~V} / \mathrm{m}$. What is the total power emitted by the transmitter? [Hint: The area of a sphere is $4 \pi r^{2}$.]
(a) $1.63 \times 10^{-4} \mathrm{~W}$
(b) $1.31 \times 10^{5} \mathrm{~W}$
(c) $4.66 \times 10^{-4} \mathrm{~W}$
(d) $3.74 \times 10^{5} \mathrm{~W}$
(e) 16.38 W
(5) If the light from the Sun comes to Earth as a plane EM wave of intensity $1,340 \mathrm{~W} / \mathrm{m}^{2}$, calculate the peak values of E and B .
(a) $300 \mathrm{~V} / \mathrm{m}, 10^{-4} \mathrm{~T}$
(b) $1000 \mathrm{~V} / \mathrm{m}, 3.35 \times 10^{-6} \mathrm{~T}$
(c) $225 \mathrm{~V} / \mathrm{m}, 1.60 \times 10^{-3} \mathrm{~T}$
(d) $111 \mathrm{~V} / \mathrm{m}, 3.00 \times 10^{-5} \mathrm{~T}$
(e) $711 \mathrm{~V} / \mathrm{m}, 2.37 \times 10^{-6} \mathrm{~T}$
(6) A microscope is made of two lenses. The one in front is called the objective lens, and the one in back is called the eyepiece. The objective lens has $f_{0}=+0.90 \mathrm{~cm}$, and the eyepiece has $f_{e}=+1.1 \mathrm{~cm}$. The two lenses are separated by a distance of 10 cm . If an object is 1.0 cm in front of the objective lens, where (in cm) will the final image from the eyepiece be located?
(a) -30
(b) -15
(c) -23
(d) -11
(e) -9

Box your final answer. No work $=$ No credit on this part. Problems.

(A) (i) The figure on this page shows a ray of light passing through a sphcrical raindrop, with radius R. The raindrop has an index of refraction n, and the raindrop is surrounded by air, with n (air) $=1.00$. The ray has an incident angle into the raindrop θ. Inside the raindrop, the ray undergoes two refractions and a total internal reflection, resulting in an angle ϕ between the incoming and the outgoing rays. Find ϕ as a function of θ and n only. [Hint: You may assume that the angle of the ray leaving the raindrop is θ. You may also use the law of sines, which for any triangle is $(\sin \alpha) / A=(\sin \beta) / B=(\sin \gamma) / C$, where α, β, and γ are the three angles of any triangle, and A , B , and C are the sides of the triangle that are opposite angles α, β, and γ, respectively.]
A

(ii) All convex mirrors have $\int<0$. All convex mirrors form images in back of the mirror, so they have image distances $s^{\prime}<0$, which flat mirrors do too. For all mirrors,

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

where the object distance $s>0$ always, since the object is in front of the mirror. Show that this implies that a convex mirror always shows an image that is upright and diminished.
(B) A ray of light travels from point A to point B in a medium with index of refraction n_{1}, and then from point B to point C in another medium that has index of refraction n_{2}. Fermat's principle states that this ray of light travels from point A to point B, and then from point B to point C, in the minimum possible time. Use the figure on this page and a little geometry, trigonometry, and calculus to show that this implies Snell's law, $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$. [Hint: recall that time $=$ distance/speed, and that $n=c / v$. Recall also that to find the minimum time it takes a ray of light to travel a distance, take the first derivative with respect to distance, and set it equal to zero.]

