- 1. The domain of the function $f(x) = \frac{3x}{\sqrt{x+2}}$ is
 - (a) \mathbb{R}

(b)
$$x \ge -2$$

(c) $x > -2$
(d) $x \ne 2$

x+2 must be greater than or equal to 0 because it is under a square root. But x+2cannot be 0 because that would force division by 0. Therefore x + 2 > 0, or x > -2.

2.
$$\lim_{t \to 2} \frac{t}{|t-2|} =$$
(a) 2
(b) $\boxed{\infty}$
(c) $-\infty$
(d) does not exist.

As t approaches 2 from both the right and the left, $\frac{t}{|t-2|}$ becomes more and more positive (the numerator and denominator are both positive, and the denominator gets closer and closer to 0). Therefore the limit is ∞ .

- 3. The graph of the function $f(x) = \frac{x+3}{x+3}$
 - (a) is identical to the graph of f(x) = 1
 - (b) has a vertical asymptote at x = -3
 - (c) has a hole at x = -3
 - (d) has a vertical tangent at x = -3

 $\frac{x+3}{x+3} = 1$ whenever $x \neq -3$. So the graphs are identical except at x = -3, where $\frac{x+3}{x+3}$ is undefined.

- 4. If the velocity of a bicycle at time t = 30 is $\lim_{h \to 0} \frac{(30+h)^2 \sqrt{30+h} (30^2 \sqrt{30})}{h}$ feet per second, then the distance traveled by the bicycle after t seconds could be
 - (a) $t^2 \sqrt{t}$ (b) $2t - \frac{1}{2}t^{-1/2}$ (c) $t^2 - \sqrt{30}$
 - (d) $t^2 + \sqrt{t}$

Velocity is the derivative of distance. Therefore, if the velocity of the bicycle at t = 30 is equal to the above limit, then the distance traveled after t seconds is a function whose derivative is equal to that limit, or $s(t) = t^2 - \sqrt{t}$.

- 5. For the graph of f(x) shown at right,*
 - (a) f(x) is continuous and differentiable at x = 2
 - (b) f(x) is continuous but not differentiable at x = 2
 - (c) f(x) is differentiable but not continuous at x = 2
 - (d) f(x) is neither differentiable nor continuous at x = 2

* Please see me for the picture of the graph.

The graph of f(x) shows a cusp (corner) at x = 2, so it is continuous but not differentiable there.

6. If f(-3) = 1, f(2) = 1, g(2) = -3, and g(1) = -1, then $(g \circ f)(2) = -1$

- (a) 1
- (b) 2
- (c) -3
- (d) | −1

 $(g \circ f)(2) = g(f(2)) = g(1) = -1.$

- 7. The height in feet at time t (in seconds) of a ball thrown upward is $s(t) = 50t 16t^2$. The average velocity of the ball during the first 2 seconds is
 - (a) 36 ft./s
 - (b) 18 ft./s
 - (c) -14 ft./s
 - (d) -7 ft./s

Average velocity is distance traveled divided by time elapsed, or

$$\frac{s(2) - s(0)}{2 - 0} = \frac{[50 \cdot 2 - 16 \cdot 2^2] - [50 \cdot 0 - 16 \cdot 0^2]}{2}$$
$$= \frac{100 - 64}{2} = 18.$$

8. $\lim_{x \to 1} \frac{x-1}{x^2+x-2} =$ (a) $\boxed{\frac{1}{3}}$ (b) $-\frac{1}{3}$ (c) 0
(d) does not exist.

 $\frac{x-1}{x^2+x-2} = \frac{x-1}{(x-1)(x+2)}$, which is equal to $\frac{1}{x+2}$ whenever $x \neq 1$. Since the value of the limit does not depend on what happens at x = 1, only near x = 1, the value of the limit, using the limit laws, is $\lim_{x \to 1} \frac{1}{x+2} = \frac{1}{3}$.

9. For the graph of f(x) shown at right^{*}, which of the following could be a graph of f'(x)?

* Please see me for an explanation of this question.

BONUS. (5 points) If
$$f(x) = \begin{cases} 5 & x > 3 \\ |2x - 1| & x \le 3 \end{cases}$$
 then the domain of $f'(x)$ is
(a) \mathbb{R}
(b) $x \neq \frac{1}{2}$
(c) $x \neq 3$
(d) $x \neq \frac{1}{2}, x \neq 3$
(e) none of these.

The graph of f(x) consists of three straight lines as shown below. The derivative f'(x) is not defined at $x = \frac{1}{2}$ and x = 3. Therefore the domain of f'(x) is all real numbers except $\frac{1}{2}$ and 3.

