1. The domain of the function $f(x)=\frac{3 x}{\sqrt{x+2}}$ is
(a) \mathbb{R}
(b) $x \neq 2$
(c) $x \geq-2$
(d) $x>-2$
$x+2$ must be greater than or equal to 0 because it is under a square root. But $x+2$ cannot be 0 because that would force division by 0 . Therefore $x+2>0$, or $x>-2$.
2. $\lim _{t \rightarrow 2} \frac{t}{|t-2|}=$
(a) ∞
(b) $-\infty$
(c) 2
(d) does not exist.

As t approaches 2 from both the right and the left, $\frac{t}{|t-2|}$ becomes more and more positive (the numerator and denominator are both positive, and the denominator gets closer and closer to 0). Therefore the limit is ∞.
3. The graph of the function $f(x)=\frac{x+3}{x+3}$
(a) is identical to the graph of $f(x)=1$
(b) has a vertical asymptote at $x=-3$
(c) has a vertical tangent at $x=-3$
(d) has a hole at $x=-3$
$\frac{x+3}{x+3}=1$ whenever $x \neq-3$. So the graphs are identical except at $x=-3$, where $\frac{x+3}{x+3}$ is undefined.
4. If the velocity of a bicycle at time $t=30$ is $\lim _{h \rightarrow 0} \frac{(30+h)^{2}-\sqrt{30+h}-\left(30^{2}-\sqrt{30}\right)}{h}$ feet per second, then the distance traveled by the bicycle after t seconds could be
(a) $2 t-\frac{1}{2} t^{-1 / 2}$
(b) $t^{2}-\sqrt{t}$
(c) $t^{2}-\sqrt{30}$
(d) $t^{2}+\sqrt{t}$

Velocity is the derivative of distance. Therefore, if the velocity of the bicycle at $t=30$ is equal to the above limit, then the distance traveled after t seconds is a function whose derivative is equal to that limit, or $s(t)=t^{2}-\sqrt{t}$.
5. For the graph of $f(x)$ shown at right, ${ }^{*}$
(a) $f(x)$ is continuous and differentiable at $x=2$
(b) $f(x)$ is differentiable but not continuous at $x=2$
(c) $f(x)$ is continuous but not differentiable at $x=2$
(d) $f(x)$ is neither differentiable nor continuous at $x=2$

* Please see me for the picture of the graph.

The graph of $f(x)$ shows a cusp (corner) at $x=2$, so it is continuous but not differentiable there.
6. If $f(-3)=1, f(2)=1, g(2)=-3$, and $g(1)=-1$, then $(g \circ f)(2)=$
(a) 2
(b) 1
(c) -1
(d) -3
$(g \circ f)(2)=g(f(2))=g(1)=-1$.
7. The height in feet at time t (in seconds) of a ball thrown upward is $s(t)=50 t-16 t^{2}$. The average velocity of the ball during the first 2 seconds is
(a) $-14 \mathrm{ft} . / \mathrm{s}$
(b) $-7 \mathrm{ft} . / \mathrm{s}$
(c) $36 \mathrm{ft} . / \mathrm{s}$
(d) $18 \mathrm{ft} . / \mathrm{s}$

Average velocity is distance traveled divided by time elapsed, or

$$
\begin{aligned}
\frac{s(2)-s(0)}{2-0} & =\frac{\left[50 \cdot 2-16 \cdot 2^{2}\right]-\left[50 \cdot 0-16 \cdot 0^{2}\right]}{2} \\
& =\frac{100-64}{2}=18
\end{aligned}
$$

8. $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}+x-2}=$
(a) 0
(b) $\frac{1}{3}$
(c) $-\frac{1}{3}$
(d) does not exist.
$\frac{x-1}{x^{2}+x-2}=\frac{x-1}{(x-1)(x+2)}$, which is equal to $\frac{1}{x+2}$ whenever $x \neq 1$. Since the value of the limit does not depend on what happens at $x=1$, only near $x=1$, the value of the limit, using the limit laws, is $\lim _{x \rightarrow 1} \frac{1}{x+2}=\frac{1}{3}$.
9. For the graph of $f(x)$ shown at right*, which of the following could be a graph of $f^{\prime}(x)$?

* Please see me for an explanation of this question.

BONUS. (5 points) If $f(x)=\left\{\begin{array}{ll}5 & x>3 \\ |2 x-1| & x \leq 3\end{array}\right.$ then the domain of $f^{\prime}(x)$ is
(a) $x \neq \frac{1}{2}$
(b) $x \neq 3$
(c) $x \neq \frac{1}{2}, x \neq 3$
(d) \mathbb{R}
(e) none of these.

The graph of $f(x)$ consists of three straight lines as shown below. The derivative $f^{\prime}(x)$ is not defined at $x=\frac{1}{2}$ and $x=3$. Therefore the domain of $f^{\prime}(x)$ is all real numbers except $\frac{1}{2}$ and 3 .

