Math 75 - Sample Questions for Midterm II - Solutions

1. If $f(x)=\tan x$, then $f^{\prime \prime}(x)=$
(a) $\frac{2 \sin x}{\cos ^{3} x}$
(b) $\frac{1}{\sin ^{2} x}$
(c) $\sec ^{2} x$
(d) $2 \sec x \tan x$
2. $\frac{d}{d x}\left(\frac{x}{x-1}\right)=$
(a) $-\frac{x}{(x-1)^{2}}$
(b) 1
(c) $-\frac{1}{(x-1)^{2}}$
(d) $\frac{1}{(x-1)^{2}}$
3. If $x^{2}-y^{2}=4$, then $\frac{d y}{d x}=$
(a) $\frac{y}{x}$
(b) $-\frac{y}{x}$
(c) $\frac{x}{y}$
(d) $-\frac{x}{y}$
4. If $f(x)=\sqrt[5]{x^{2}+1}$, then $f^{\prime}(x)=$
(a) $\frac{1}{5}\left(x^{2}+1\right)^{-4 / 5}$
(b) $\frac{2 x}{5\left(x^{2}+1\right)^{4 / 5}}$
(c) $\frac{2 x}{5\left(x^{2}+1\right)^{2 / 5}}$
(d) $\frac{1}{5} x\left(x^{2}+1\right)^{-2 / 5}$
5. $\lim _{x \rightarrow-\infty} \frac{x^{3}-4 x^{2}+1}{-x+5}=$
(a) -1
(b) 0
(c) ∞
(d) $-\infty$
6. A man walks with a speed of $4 \mathrm{ft} . / \mathrm{s}$ along a straight path. A searchlight 15 ft . away from the nearest point on the path stays focused on the man. At what rate is the searchlight rotating when the man is 40 ft . from the searchlight?
(a) $\frac{3}{80}$ radians $/ \mathrm{s}$
(b) $\frac{3}{8}$ radians $/ \mathrm{s}$
(c) $\frac{4}{15}$ radians $/ \mathrm{s}$
(d) $\frac{8}{3}$ radians $/ \mathrm{s}$
7. A mass attached to the end of a spring is pulled and then released. t seconds after release, the distance of the mass from equilibrium is $s(t)=\cos 2 \pi t$ centimeters. The acceleration of the mass after 3 seconds is
(a) $0 \mathrm{~cm} / \mathrm{s}^{2}$
(b) $-4 \pi \mathrm{~cm} / \mathrm{s}^{2}$
(c) $-4 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$
(d) $-2 \pi \mathrm{~cm} / \mathrm{s}^{2}$
8. $\sqrt[3]{126.5}$ is closest to
(a) 5.01
(b) 5.02
(c) 5.03
(d) 5.04
9. The absolute minimum of $f(x)=-x^{2}+6 x+1$ on the interval $[0,5]$ is at $x=$
(a) 0
(b) 1
(c) 2
(d) 3
10. The graph of $g(x)=\frac{2}{3} x^{3}-2 x^{2}$ is (c) (see the practice exam for the graphs).
11. The function $f(x)=\cos x-x$
(a) is an even function
(b) is an odd function
(c) is neither an even nor an odd function
12. A box with no lid is to be made from a 12×12-inch piece of cardboard by cutting out a square from each corner and then folding along the dotted lines, as shown. How big should the cut-out squares be in order to maximize the volume of the resulting box?
(a) 1.5 inches
(b) 2 inches
(c) 2.5 inches
(d) 3 inches
13. The function $f(x)=x^{4}-6 x^{2}$ is increasing on the intervals
(a) $(0, \sqrt{3})$ only
(b) $(-\infty,-\sqrt{3})$ and $(0, \sqrt{3})$ only
(c) $(\sqrt{3}, \infty)$ only
(d) $(-\sqrt{3}, 0)$ and $(\sqrt{3}, \infty)$ only
14. The function $f(x)=x^{4}-6 x^{2}$ is concave down on the intervals
(a) $(-1,1)$ only
(b) $(-\sqrt{3}, \sqrt{3})$ only
(c) $(-\infty,-1)$ and $(1, \infty)$ only
(d) $(1, \sqrt{3})$ only
15. If $x_{1}=1$ is a first approximation of a solution to the equation $x^{4}=6-3 x$, then using Newton's Method the second approximation is $x_{2}=$
(a) $\frac{9}{7}$
(b) $\frac{5}{7}$
(c) $\frac{9}{2}$
(d) $-\frac{5}{2}$
