1. $\int \frac{3}{t^{2}} d t=$
(a) $-\frac{6}{t^{3}}+C$
(b) $\frac{6}{t^{3}}+C$
(c) $-\frac{3}{t}+C$
(d) $\frac{3}{t}+C$

We have

$$
\begin{aligned}
\int \frac{3}{t^{2}} d t & =\int 3 t^{-2} d t \\
& =\frac{3}{-1 t^{-1}}+C \\
& =-\frac{3}{t}+C
\end{aligned}
$$

2. The area under the graph of $f(x)=\sqrt[3]{x}$ from $x=2$ to $x=5$ is
(a) $\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \sqrt[3]{x_{i}} \cdot \frac{3}{n}\right)$
(b) $\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \sqrt[3]{x_{i}} \cdot \frac{2}{n}\right)$
(c) $\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \sqrt[3]{x_{i}} \cdot \frac{5}{n}\right)$
(d) $\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \sqrt[3]{x_{i}}\right)$

The formula for the area under $f(x)$ from $x=a$ to $x=b$ is

$$
\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \sqrt[3]{x_{i}} \Delta x\right)
$$

where $\Delta x=\frac{b-a}{n}$. In this case $\Delta x=\frac{5-2}{n}=\frac{3}{n}$, so the formula is $\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \sqrt[3]{x_{i}} \cdot \frac{3}{n}\right)$.
3. $\int_{0}^{4}|x-2| d x=$
(a) 4
(b) 0
(c) 2
(d) does not exist.
$\int_{0}^{4}|x-2| d x$ represents the combined area of the regions shown at right, which is 4 (each triangle has area 2).

4. $\int_{0}^{\pi / 2} 5 \sin \theta d \theta=$
(a) 10
(b) 5
(c) 0
(d) -5

We have

$$
\begin{aligned}
\int_{0}^{\pi / 2} 5 \sin \theta d \theta & =-\left.5 \cos \theta\right|_{0} ^{\pi / 2} \\
& =-5\left(\cos \left(\frac{\pi}{2}\right)-\cos 0\right) \\
& =-5(0-1)=5
\end{aligned}
$$

5. $\int_{0}^{1} x^{2}\left(1+x^{3}\right)^{4} d x=$
(a) $\frac{31}{5}$
(b) $\frac{32}{5}$
(c) $\frac{31}{15}$
(d) $\frac{32}{15}$

Let $u=1+x^{3}$. Then $d u=3 x^{2} d x$, and we get

$$
\begin{aligned}
\int_{0}^{1} x^{2}\left(1+x^{3}\right)^{4} d x & =\frac{1}{3} \int_{0}^{1} 3 x^{2}\left(1+x^{3}\right)^{4} d x \\
=\frac{1}{3} \int_{?}^{?} u^{4} d u & =\left.\frac{1}{3} \cdot \frac{u^{5}}{5}\right|_{?} ^{?} \\
& =\left.\frac{1}{15}\left(1+x^{3}\right)^{5}\right|_{0} ^{1} \\
& =\frac{1}{15}\left(\left(1+1^{3}\right)^{5}-\left(1+0^{3}\right)^{5}\right) \\
& =\frac{1}{15}(32-1)=\frac{31}{15}
\end{aligned}
$$

6. The area of the region shown is
(a) $\frac{1}{6}$
(b) $\frac{1}{9}$
(c) $\frac{1}{4}$
(d) $\frac{1}{7}$

Since $y=x$ is the curve on top and $y=x^{2}$ is the curve on the bottom, the area is

$$
\begin{aligned}
\int_{0}^{1}\left(x-x^{2}\right) d x & =\frac{x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{1} \\
& =\frac{1}{2}-\frac{1}{3}=\frac{1}{6} .
\end{aligned}
$$

7. The volume of the solid formed by rotating the region enclosed by the curves $y=x^{2}$ and $y=3 x-2$ about the x-axis is
(a) $\pi \int_{1}^{2}\left(x^{4}-(3 x-2)^{2}\right) d x$
(b)
$\pi \int_{1}^{2}\left((3 x-2)^{2}-x^{4}\right) d x$
(c) $2 \pi \int_{1}^{2} x\left(x^{2}-(3 x-2)\right) d x$
(d) $2 \pi \int_{1}^{2} x\left(3 x-2-x^{2}\right) d x$

The region is shown above. From the answer choices you can see that the curves intersect at $x=1$ and $x=2$ (or you can set $x^{2}=3 x-2$ and solve for x). Since we are rotating a region formed by functions of x about a horizontal axis, we should use the disk method. Therefore we have $R=3 x-2$ and $r=x^{2}$, and the volume is

$$
V=\pi \int_{1}^{2}\left((3 x-2)^{2}-\left(x^{2}\right)^{2}\right) d x
$$

8. The volume of the solid formed by rotating the region enclosed by the curves $y=x^{2}$ and $y=3 x-2$ about the y-axis is
(a) $\frac{\pi}{2}$
(b) π
(c) $\pi\left(7-\frac{33}{5}\right)$
(d) $\pi\left(15-\frac{33}{5}\right)$

This is the same region as in $\# 7$, but this time we are rotating about a vertical axis. So we use the shell method, and the volume is

$$
\begin{aligned}
V & =2 \pi \int_{1}^{2} x\left(3 x-2-x^{2}\right) d x \\
& =2 \pi \int_{1}^{2}\left(3 x^{2}-2 x-x^{3}\right) d x \\
& =\left.2 \pi\left(x^{3}-x^{2}-\frac{1}{4} x^{4}\right)\right|_{1} ^{2} \\
& =2 \pi\left((8-4-4)-\left(1-1-\frac{1}{4}\right)\right) \\
& =2 \pi\left(0-\left(-\frac{1}{4}\right)\right) \\
& =\frac{\pi}{2} .
\end{aligned}
$$

9. If 24 lbs . of force are required to stretch a spring 18 in . (=1.5 ft.) beyond its natural length, which expression best represents the work done in stretching the spring 10 ft . beyond its natural length? Hint. Remember Hooke's Law: $F(x)=k x$.
(a) $\int_{0}^{10} \frac{4}{3} x d x$
(b) $\int_{0}^{1.5} 10 x d x$
(c) $\int_{0}^{1.5} 8 x d x$
(d) $\int_{0}^{10} 16 x d x$

By Hooke's Law, $24=k \cdot 1.5$ for this spring, so the spring constant is $k=\frac{24}{1.5}=\frac{48}{3}=16$. Therefore the force on the spring when stretched x units beyond its natural length is $F(x)=16 x$, and the work done to stretch it 10 ft . is $\int_{0}^{10} 16 x d x$.
10. The average value of the function $f(x)=\sin \left(\frac{\pi}{2} x\right)$ on the interval $[0,2]$ is
(a) $\frac{3}{\pi}$
(b) $\frac{4}{\pi}$
(c) $\frac{1}{\pi}$
(d) $\frac{2}{\pi}$

The average value of $f(x)=\sin \left(\frac{\pi}{2} x\right)$ on the interval $[0,2]$ is

$$
\frac{1}{2} \int_{0}^{2} \sin \left(\frac{\pi}{2} x\right) d x=\left.\frac{1}{2} \cdot \frac{2}{\pi}\left(-\cos \left(\frac{\pi}{2} x\right)\right)\right|_{0} ^{2}
$$

use a u-substitution with $u=\frac{\pi}{2} x$ as in the practice midterm, $\# 13$.

$$
\begin{aligned}
& =-\frac{1}{\pi}(\cos \pi-\cos 0) \\
& =-\frac{1}{\pi}(-1-1)=\frac{2}{\pi} .
\end{aligned}
$$

BONUS. (5 points) The volume of the solid formed by rotating the rectangle with vertices $(2,2)$, $(3,3),(5,1)$, and $(4,0)$ about the line $y=-x+2$ is
(a) 8π
(b) 4π
(c) $8 \pi \sqrt{2}$
(d) $12 \pi \sqrt{2}$
(e) $4 \pi \sqrt{2}$

The rectangle is shown along with the line $y=-x+2$. When rotated about the line, the rectangle makes a cylinder with inner radius $r=\sqrt{2}$, outer radius $R=2 \sqrt{2}$, and height $h=2 \sqrt{2}$. Therefore the volume is

$$
\begin{aligned}
V & =\pi\left(R^{2}-r^{2}\right) h \\
& =\pi\left((2 \sqrt{2})^{2}-(\sqrt{2})^{2}\right) 2 \sqrt{2} \\
& =\pi(8-2) 2 \sqrt{2}=12 \sqrt{2}
\end{aligned}
$$

