Math 75 Quiz 3 - v. 1 Solutions

1. Multiple Choice. (5 points) Circle the letter of the best answer.
$\int_{-2}^{1} \frac{1}{x^{4}} d x=$
(a) $-\frac{3}{8}$
(b) $-\frac{33}{8}$
(c) does not exist
(d) none of these.
$\frac{1}{x^{4}}$ is not defined at $x=0$, which is in the interval $[-2,1]$. Therefore the integral is not defined.
2. Multiple Choice. (5 points) Circle the letter of the best answer.

If $F(x)=\int_{-\pi}^{x^{2}} \sin \left(t^{4}\right) d t$, then $F^{\prime}(x)=$
(a) $\sin \left(x^{4}\right)$
(b) $2 x \sin \left(x^{8}\right)$
(c) $2 x \cos \left(x^{8}\right)$
(d) $-2 x \cos \left(x^{8}\right)$

Using the Fundamental Theorem of Calculus (part 1) and the chain rule, we have

$$
\begin{aligned}
F^{\prime}(x) & =\sin \left(\left(x^{2}\right)^{4}\right) \cdot 2 x \\
& =2 x \sin \left(x^{8}\right) .
\end{aligned}
$$

3. Multiple Choice. (5 points) Circle the letter of the best answer.

If $\int_{3}^{5} f(x) d x=-1$ and $\int_{4}^{5} f(x) d x=-2$, then $\int_{3}^{4} f(x) d x=$
(a) 1
(b) -1
(c) 2
(d) -3

Notice that if we interpret the definite integral as an area, we see that

$$
\int_{3}^{4} f(x) d x=\int_{3}^{5} f(x) d x-\int_{4}^{5} f(x) d x
$$

Therefore

$$
\int_{3}^{4} f(x) d x=-1-(-2)=1
$$

4. (10 points) Evaluate $\int x \cos \left(5 x^{2}\right) d x$.

Let $u=5 x^{2}$. Then $d u=10 x d x$. Therefore

$$
\begin{aligned}
\int x \cos \left(5 x^{2}\right) d x & =\frac{1}{10} \int 10 x \cos \left(5 x^{2}\right) d x \\
& =\frac{1}{10} \int \cos u d u \\
& =\frac{1}{10} \sin u+C \\
& =\frac{1}{10} \sin \left(5 x^{2}\right)+C .
\end{aligned}
$$

5. (10 points) Evaluate $\int_{1}^{2} \sqrt{3 t-2} d t$.

The domain of $\sqrt{3 t-2}$ is $t \geq \frac{2}{3}$ and $\sqrt{3 t-2}$ is continuous on its domain. Therefore the integral is defined, and the Fundamental Theorem of Calculus (part 2) applies.
Let $u=3 t-2$. Then $d u=3 d t$.
"Ignore-the-Problem" Method.

$$
\begin{aligned}
\int_{1}^{2} \sqrt{3 t-2} d t & =\frac{1}{3} \int_{1}^{2} 3 \sqrt{3 t-2} d t \\
& =\frac{1}{3} \int_{?}^{?} \sqrt{u} d u \\
& =\left.\frac{1}{3} \cdot \frac{2}{3} u^{3 / 2}\right|_{?} ^{?} \\
& =\left.\frac{2}{9}(3 t-2)^{3 / 2}\right|_{1} ^{2} \\
& =\frac{2}{9}\left((3(2)-2)^{3 / 2}-(3(1)-2)^{3 / 2}\right) \\
& =\frac{2}{9}\left(4^{3 / 2}-1^{3 / 2}\right) \\
& =\frac{2}{9}(8-1) \\
& =\frac{14}{9}
\end{aligned}
$$

"Change-the-Limits" Method.
When $t=1, u=3(1)-2=1$.
When $t=2, u=3(2)-2=4$.
Therefore

$$
\begin{aligned}
\int_{1}^{2} \sqrt{3 t-2} d t & =\frac{1}{3} \int_{1}^{2} 3 \sqrt{3 t-2} d t \\
& =\frac{1}{3} \int_{1}^{4} \sqrt{u} d u \\
& =\left.\frac{1}{3} \cdot \frac{2}{3} u^{3 / 2}\right|_{1} ^{4} \\
& =\frac{2}{9}\left(4^{3 / 2}-1^{3 / 2}\right) \\
& =\frac{2}{9}(8-1) \\
& =\frac{14}{9}
\end{aligned}
$$

6. BONUS. (2 points) Evaluate $\int_{-1}^{1} \frac{x^{5}}{\cos x} d x$.
$f(x)$ is defined on the interval $[-1,1]$ since $\cos x$ is not equal to 0 for any x in that interval. Notice that $f(x)=\frac{x^{5}}{\cos x}$ is an odd function, since

$$
\begin{aligned}
f(-x) & =\frac{(-x)^{5}}{\cos (-x)} \\
& =\frac{(-x)^{5}}{\cos x} \quad \quad \text { (Since } \cos x \text { is an even function) } \\
& =-\frac{x^{5}}{\cos x} \\
& =-f(x) .
\end{aligned}
$$

The regions under the graph of $f(x)$ between -1 and 1 have the same area above the x-axis as below. Therefore the net area is $\int_{-1}^{1} \frac{x^{5}}{\cos x} d x=0$.

