Math 75 Practice for Quiz 3 - Solutions Sections 4.10, 5.1-5.5

- 1. Multiple Choice. Circle the letter of the best answer. The general antiderivative of $f(x) = \sin x \frac{1}{x^2}$ is
 - (a) $\cos x + \frac{1}{x} + C$
 - (b) $-\cos x + \frac{1}{x} + C$
 - (c) $\cos x \frac{1}{x} + C$
 - (d) $-\cos x \frac{1}{x} + C$

 $\sin x - \frac{1}{x^2} = \sin x - x^{-2}$, so the general antiderivative is $-\cos x + x^{-1} + C = -\cos x + \frac{1}{x} + C$. To check, note that

$$\frac{d}{dx}\left(-\cos x + \frac{1}{x} + C\right) = \frac{d}{dx}\left(-\cos x + x^{-1} + C\right)$$
$$= \sin x - x^{-2}$$
$$= \sin x - \frac{1}{x^2}.$$

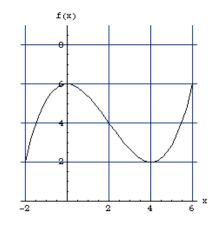
- 2. Multiple Choice. Circle the letter of the best answer. The area under the graph of $f(x) = \frac{\sin x}{x}$ is
 - (a) $\sum_{i=1}^{n} \frac{\sin x_i}{x_i} \Delta x$ (b) $\sum_{i=1}^{n} \frac{x_i \cos x_i - \sin x_i}{x_i^2} \Delta x$ (c) $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\sin x_i}{x_i} \Delta x$

(d)
$$\lim_{n \to \infty} \sum_{i=1}^{\infty} \frac{x_i \cos x_i - \sin x_i}{x_i^2}$$

The formula is $\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$, and the function is $f(x) = \frac{\sin x}{x}$. So $f(x_i) = \frac{\sin x_i}{x_i}$, and therefore the area is $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\sin x_i}{x_i} \Delta x$.

3. Estimate the area under the graph of f(x) from x = -2 to x = 6 with 4 rectangles using right endpoints.

The interval [-2, 6] is 8 units wide, and we are using 4 rectangles. Therefore each rectangle is 2 units wide. The right endpoints of the bases of the 4 rectangles are 0, 2, 4, and 6. We have f(0) = 6, f(2) = 4, f(4) = 2, and f(6) = 6. Therefore the areas of the rectangles are $6 \cdot 2$, $4 \cdot 2$, $4 \cdot 2$, and $6 \cdot 2$. Since f(x) is above the x-axis on all of [-2, 6], we add these areas to get the estimate:



Area
$$\approx 6 \cdot 2 + 4 \cdot 2 + 2 \cdot 2 + 6 \cdot 2 = 12 + 8 + 4 + 12 = 36.$$

4. Evaluate $\int_0^3 \sqrt{9-x^2} \, dx$ by interpreting it in terms of areas.

The graph of $y = \sqrt{9 - x^2}$ is the upper half of a circle of radius 3 centered at (0, 0). Therefore $\int_0^3 \sqrt{9 - x^2} \, dx$ represents the area of half of this half, or one quarter of the circle. Therefore the answer is

$$\int_0^3 \sqrt{9 - x^2} \, dx = \frac{1}{4}\pi \cdot 3^2 = \frac{9\pi}{4}$$

5. Evaluate $\int_1^3 \frac{1}{x-2} dx$.

This integral is undefined, because $\frac{1}{x-2}$ is not defined at x = 2 (a number in the interval [1,3]).

6. Evaluate $\int \frac{x^5}{(x^6 - 2)^3} dx.$

Let $u = x^6 - 2$. Then $du = 6x^5 dx$.

Using the "futzing the constant" method, we have

$$\int \frac{x^5}{(x^6 - 2)^3} dx = \frac{1}{6} \int \frac{6x^5}{(x^6 - 2)^3} dx$$
$$= \frac{1}{6} \int \frac{1}{u^3} du$$
$$= \frac{1}{6} \int u^{-3} du$$
$$= \frac{1}{6} \cdot \frac{u^{-2}}{-2} + C$$
$$= -\frac{1}{12u^2} + C$$
$$= -\frac{1}{12(x^6 - 2)^2} + C.$$

Checking, we get

$$\frac{d}{dx}\left(-\frac{1}{12(x^6-2)^2}+C\right) = \frac{d}{dx}\left(-\frac{1}{12}(x^6-2)^{-2}+C\right)$$
$$= -\frac{1}{12}(-2)(x^6-2)^{-3}(6x^5)$$
$$= \frac{2\cdot 6x^5}{12(x^6-2)^3}$$
$$= \frac{x^5}{(x^6-2)^3}.$$