Math 75 Worksheet 1 Solutions
Section 1.1

Part 1.

For problems 1 through 5, determine the domain of each function.

1. $f(x)=\frac{1}{x^{2}+1} \quad$ Domain: \mathbb{R} (all real numbers)
2. $f(x)=\frac{1}{x^{2}-1} \quad$ Domain: $x \neq \pm 1$
3. $f(x)=\frac{1}{x^{3}+1} \quad$ Domain: $x \neq-1$
4. $f(x)=\frac{1}{\sqrt{x+1}} \quad$ Domain: $x>-1$
5. The population of ants in an ant farm t months after July 1.

Domain: $t \geq 0$

For problems 6 through 8, determine the domain and range of each function.
6. Dr. Jasquirt's chemistry quiz has 5 points possible. Dr. Jasquirt does not award fractions of points. The grade for each score is as follows:

Score	Grade
5	A
4	B
3	C
2	D
1	F
0	F

Domain: $\{0,1,2,3,4,5\}$

Note that $[0,5]$ is not correct for the domain, since fractions of points are not possible. Also, $[A, F]$ does not have meaning in mathematics - it is better to write out each member of the set, as above.
7. (Refer to your worksheet for the graph)

Domain: $-3.5<x \leq 1.5,\{3\}$

$$
\text { Range: }-1<y \leq 2
$$

8. (Refer to your worksheet for the graph)

Domain: \mathbb{R}

Part 2.

Write each function as a piecewise function and then graph the function, as in the sample. (Refer to your worksheet for the sample) The graphs are on the next page.

1. $f(x)=|x-2|$

$$
f(x)=|x-2|= \begin{cases}x-2 & x \geq 2 \\ -x+2 & x<2\end{cases}
$$

2. $f(x)=|x|+3$

$$
f(x)=|x|+3= \begin{cases}x+3 & x \geq 0 \\ -x+3 & x<0\end{cases}
$$

3. $f(x)=|2 x|$

$$
f(x)=|2 x|= \begin{cases}2 x & x \geq 0 \\ -2 x & x<0\end{cases}
$$

4. $f(x)=|2 x+1|-4$

$$
f(x)=|2 x+1|-4= \begin{cases}2 x-3 & x \geq-\frac{1}{2} \\ -2 x-5 & x<-\frac{1}{2}\end{cases}
$$

Notice that in each problem, $|\boldsymbol{\&}|=\boldsymbol{\&}$ for $\boldsymbol{\&} \geq 0$ and $|\boldsymbol{\AA}|=-\boldsymbol{\infty}$ for $\boldsymbol{\&}<0$. You may set up the piecewise function this way first, then solve the inequalities $\boldsymbol{\&} \geq 0$ and $\boldsymbol{\AA}<0$ for x. For example, in $\# 4$ above we know that if $2 x+1$ is positive or 0 , then it will be equal to its absolute value. Solve the inequality $2 x+1 \geq 0$ for x; you should find that it holds for $x \geq-\frac{1}{2}$. Similarly, if $2 x+1$ is negative, then since its absolute value is always positive, $|2 x+1|$ will be the opposite of $2 x+1$. The inequality $2 x+1<0$ holds for $x<-\frac{1}{2}$, so that is what we write for the other piece of the piecewise function.

