Section 5.1 - Areas and Distances - lecture 1, p. 313 Stewart, 4th Ed.

The distance problem.

Question. If we know the velocity of an object for a certain length of time, can we figure out how far it goes in that time?

Sure, you say: rate \times time $=$ distance. But wait! This only works if the velocity (rate) is constant. What to do if it isn't?

We can estimate the distance with "rectangles."
Example 4, p. 374. Suppose the odometer on our car is broken and we want to estimate the distance driven over a 30 -second time interval. We take speedometer readings every five seconds and record them in the following table, along with conversions to $\mathrm{ft} / \mathrm{sec}$ to unify things:

Time (sec)	0	5	10	15	20	25	30
Velocity (mi/hr)	17	21	24	29	32	31	28
Velocity (ft/sec)	25	31	35	43	47	46	41

The trick to the estimation is to treat the velocity as constant over each 5 -second interval.
Left endpoints: between $t=0$ and $t=5$, assume $v=25$. Then distance traveled in the first 5 seconds is approximately \qquad ft. Computing similarly the rest of the distances, we get

$$
\begin{aligned}
& \text { total distance } \approx \\
& \text {. } \\
& \text { • } \\
& \text {. } \\
& + \\
& \text { • } \\
& =\left(\varlimsup_{\sim}+\ldots+\ldots+\ldots+\ldots\right. \\
& =\ldots \mathrm{ft} \text {. }
\end{aligned}
$$

Right endpoints: between $t=0$ and $t=5$, assume $v=31$. Then distance traveled in the first 5 seconds is approximately \qquad ft . Computing similarly the rest of the distances, we get

$$
\begin{aligned}
& \text { total distance } \approx \\
& \text {. } \\
& \text {. } \\
& + \\
& \text {. } \\
& =\left(\varlimsup_{\square}+\ldots+\ldots+\ldots+\ldots\right) \cdot \square \\
& =\ldots \mathrm{ft} \text {. }
\end{aligned}
$$

\qquad

The actual distance is probably somewhere between \qquad and \qquad ft . (unless we drove erratically!).

Pictures of these estimates:

In general, we can estimate the area under a curve using rectangles. And from the velocity/distance problem, we just might suspect that it has something to do with antiderivatives!

Example. Find the area under $f(x)=x^{2}$ from $x=1$ to $x=4$.
Idea: estimate using rectangles. Divide the area under x^{2} from 1 to 4 into 3 "rectangles."

Left endpoints (underestimate): area $=$ \qquad .

Right endpoints (overestimate): area $=$ \qquad
Midpoints (closer): area $=$ \qquad
Actual area: 21 (we will learn to compute this later).
Fact. Our knowledge of antiderivatives will enable us to calculate the exact area using a limiting process.

