Section 5.1 - Areas and Distances - lecture 2, p. 313 Stewart, 4th Ed.
Recall. Estimating the "area under a curve" using rectangles.
Example. Find the area under $f(x)=x^{2}$ from $x=1$ to $x=4$.

Recall that we used three rectangles and right endpoints to get an (over)estimate of the area of $4+9+16=29$.
(Actual area: 21.)
Question. If we increase the number of rectangles to 6 , will we get a better estimate? Let's compute: width of each rectangle $=\frac{1}{2}$.
Area \approx
Area \approx \qquad
\qquad . \qquad . \qquad $+$ \qquad - \qquad

$$
\begin{aligned}
& =(\boxed{\square}+\square \\
& =
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad - \qquad

Closer than 29!
Idea. If we keep increasing the number of rectangles, then we will get better and better estimates of the actual area.

n	$\frac{b-a}{n}$	Area
3	1	29
6	$\frac{1}{2}$	
12	$\frac{1}{4}$	≈ 22.906
24	$\frac{1}{8}$	≈ 21.945

Does this limiting process sound familiar?
Let's derive a formula for the exact area under a curve using limits.
We will need some notation:

Recall. Summation notation: $\sum_{i=1}^{10} 2 i$ means $2(1)+2(2)+2(3)+\ldots+2(10)$.
Example. $\sum_{i=1}^{n}(3 i-2)^{2}=$

Now look at the area under a curve $f(x)$ from $x=a$ to $x=b$. If we have n rectangles (right endpoints), what is the width of each rectangle?

The book calls this Δx.

Call the x-coordinates of the right endpoints $x_{1}, x_{2}, \ldots, x_{n}$. Then the heights of the rectangles are $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$.

In our previous example, when $n=6$, we had $x_{1}=1.5, x_{2}=2$, etc.

What are the areas of the rectangles?
$f\left(x_{1}\right) \Delta x, \ldots, f\left(x_{n}\right) \Delta x$.
So with n rectangles, the area estimate is

Picture:

Picture

