Section 5.2 - The Definite Integral - p. 324 Stewart, 4th Ed.
Instructor edition Recall: area under a curve $=$

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x,
$$

where x_{i}^{*} is any x-value you want between x_{i-1} and x_{i}. The sum $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ is called a Riemann sum.

The limit of the Riemann sum (the area) is called the definite integral of $f(x)$ from a to b, and it is denoted $\int_{a}^{b} f(x) d x$. We read: "The integral from a to b of $f(x), d x$." a is called the lower limit of integration; b is called the upper limit. $f(x)$ is called the integrand, and $d x$ is sometimes called the differential.

Example 1: I asserted that $\int_{1}^{4} x^{2} d x=21$.
Example 2: $\int_{-2}^{3} 10 d x=$ \qquad
Note that $\int_{a}^{b} f(x) d x$ is a number - it's an area, after all. So it does not depend on x :

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t=\int_{a}^{b} f(@) d @, \text { etc. }
$$

So far all of our integrands have been positive from a to b (above the x-axis). How do we interpret the area "under" a curve if the curve is below the x-axis?

Answer: it counts as negative area.
Example: Note that $f(x)=x^{3}-x^{2}-1$ is negative on the interval $[-1,1]$:

It turns out that

$$
\int_{-1}^{1} x^{3}-x^{2}-1 d x=-\frac{8}{3}
$$

(we will learn how to compute this).
Example: $\int_{-2}^{2} x^{3} d x=0$, since there is as much negative area as positive.
We add the areas above the x-axis, and subtract the areas below.

Example: Evaluate

$$
\int_{-2}^{1}(x+1) d x
$$

by interpreting in terms of areas.
Solution: Draw a picture:

We see that positive area $=\ldots$, negative area $=$ \qquad Therefore the integral is equal to

