Section 5.3 - The Fundamental Theorem of Calculus - p. 337 Stewart, 4th Ed.
Read p. 337 paragraph.
Fundamental Theorem of Calculus (part 1): The area under $f(x)$ from a to x is an antiderivative of $f(x)$. (we'll come back to this)

Fundamental Theorem of Calculus (part 2): If $f(x)$ is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)$ is any antiderivative of $f(x)$.
Example. $\int_{1}^{4} x^{2} d x$.
Let $f(x)=x^{2}$. An antiderivative is $F(x)=\frac{1}{3} x^{3}$.
$F(4)=\square, F(1)=\square$. So $\int_{1}^{4} x^{2} d x=F(4)-F(1)=\square-\quad=-\quad$.
Example. $\int_{-1}^{1}\left(x^{3}-x^{2}-1\right) d x$.

$$
\int_{-1}^{1}\left(x^{3}-x^{2}-1\right) d x=\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-\left.x\right|_{-1} ^{1}
$$

(note the notation - one also sees $]_{-1}^{1}$ or []$_{-1}^{1}$)

Example. $\int_{0}^{\pi} 2 \cos t d t$.
Solution:

Example. $\int_{-1}^{1} \frac{1}{x^{2}} d x=$?
Careful! The answer is not $\left[-\frac{1}{x}\right]_{-1}^{1}$!
In fact, $\int_{-1}^{1} \frac{1}{x^{2}} d x$ "does not exist"! (Technically it's called "improper," but for Math 75 we'll say D.N.E.)

Notes:

Fact. Using F.T.C. (Fundamental Theorem of Calculus), we get $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.

This fact is especially good when dealing with F.T.C, part 1:
F.T.C., part 1. If $f(x)$ is continuous on $[a, b]$, then $f(x)$ has an antiderivative function which is the area under $f(x)$ from a to x, as long as x represents a number between a and b.

Example. If $F(x)=\int_{45}^{x} 3 t^{2} d t$, then $F^{\prime}(x)=3 x^{2}$.
Check: $F(x)=\left.t^{3}\right|_{45} ^{x}=x^{3}-(45)^{3}+C$, so $F^{\prime}(x)=3 x^{2}$ since C is a constant.
Notice that the ' 45 ' did not affect the answer!
Example. If $F(x)=\int_{a}^{x} \sqrt{1+2 t} d t$, then $F^{\prime}(x)=\square$, no matter what a is.
Nice to know, since we do not yet know how to evaluate the antiderivative of $\sqrt{1+2 t}$!
Example. If $F(x)=\int_{x}^{b} \cos t d t$, what is $F^{\prime}(x)$?
Careful! The answer is not $\cos x$! It is $-\cos x$!
Reason:

Example. If $F(x)=\int_{a}^{x^{2}} 3 t^{2} d t$, what is $F^{\prime}(x) ?$
Ack! What to do with the x^{2} ??
Since we're actually taking a derivative, the chain rule comes into play here.
Recall the chain rule: $[G(u(x))]^{\prime}=G^{\prime}(u(x)) \cdot u^{\prime}(x)$. We will use this as follows: let $u=x^{2}$. Then $u^{\prime}=2 x$. Also let

$$
G(u)=\int_{a}^{u} 3 t^{2} d t
$$

so $G^{\prime}(u)=3 u^{2}$ by F.T.C. (part 1). Notice that $F(x)=G(u(x))$. Thus by the chain rule we have

$$
\begin{gathered}
F^{\prime}(x)=[G(u(x))]^{\prime}=G^{\prime}(u(x)) \cdot u^{\prime}(x) \\
=3 u^{2} \cdot 2 x=3 x^{4} \cdot 2 x=6 x^{5} .
\end{gathered}
$$

Moral: whenever there is something other than x as one of the limits of integration, "treat it like an x " in the chain rule sense (replace all x 's in the first part of your answer by whatever it is), and then tack on the derivative of whatever of it is.
"Quick and dirty" method for the above example:

1. The x^{2} is in the upper limit, so we don't have to worry about negatives.
2. $F^{\prime}(x)=3\left(x^{2}\right)^{2} \cdot\left(x^{2}\right)^{\prime}=3 x^{4} \cdot 2 x=6 x^{5}$.
