Section 5.5 - The Substitution Rule - p. 356 Stewart, 4th Ed.
The substitution rule is the opposite of the chain rule. Consequently, it will be your most important integration tool.

Recall. $\frac{d}{d x}\left(x^{2}-5\right)^{3}=3\left(x^{2}-5\right)^{2}(2 x)$. This is because the chain rule states that

$$
[f(g(x))]^{\prime}=f^{\prime}(g(x)) g^{\prime}(x) .
$$

To go backwards, we will have to look for something like $f^{\prime}(g(x)) g^{\prime}(x)$ in the integrand. That's the substitution rule.

Example. $\int 3\left(x^{2}-5\right)^{2}(2 x) d x=\left(x^{2}-5\right)^{3}+C$, of course.
Study the following example on your own to see how it works. In class I'll show how we really do these problems.

Example. $\int 2 x \sqrt{1+x^{2}} d x$.
Can we find $f^{\prime}(g(x))$ and $g^{\prime}(x)$ in there somewhere?
Idea: $g(x)=1+x^{2}$. Then $g^{\prime}(x)=2 x$, and we have $\int g^{\prime}(x) \sqrt{g(x)} d x=\int g^{\prime}(x) f^{\prime}(g(x)) d x$, where $f^{\prime}(x)=\sqrt{x}$. If $f^{\prime}(x)=\sqrt{x}$, then $f(x)=\frac{2}{3} x^{3 / 2}+C$, so the antiderivative is

$$
f(g(x))+C=\frac{2}{3}\left(1+x^{2}\right)^{3 / 2}+C
$$

Check: $\frac{d}{d x}\left(\frac{2}{3}\left(1+x^{2}\right)^{3 / 2}+C\right)=\left(1+x^{2}\right)^{1 / 2}(2 x)$. Huzzah!

Here's how we really do these: $u$-substitution.
Example. $\int 2 x \sqrt{1+x^{2}} d x$.
Let $u=1+x^{2}$. Then $\frac{d u}{d x}=2 x$ (here $u=g(x)$ in the chain rule).
Recall. "Cheating with differentials": multiply both sides by $d x$. We get

$$
d u=2 x d x
$$

Then what we have for the integral is $\int \sqrt{u} d u$, which looks a lot easier to solve!
Procedure: find an antiderivative in $u$, then "back-substitute" to get back to $x$ 's.

$$
\begin{aligned}
\int \sqrt{u} d u & =\int u^{1 / 2} d u \\
& =\frac{2}{3} u^{3 / 2}+C
\end{aligned}
$$

(Here's the back-substitution part: we know $u=x^{2}+1$.)

$$
=\frac{2}{3}\left(x^{2}+1\right)^{3 / 2}+C .
$$

Again you see why Leibniz's notation is useful!
So the substitution rule says, " $u$-substitution works." Or, "We can cheat with differentials" because it amounts to reversing the chain rule.

Example. $\int 3 x^{2}\left(x^{3}+1\right)^{4} d x$.
Let $u=$ $\qquad$ . Then $d u=$ $\qquad$ , and we are home free.

Fill in your complete solution:

What to substitute? This is always the toughest question to answer. You should try for

- something that will make the problem simpler
- something whose derivative (up to a constant multiple) appears in the integrand.

Example. $\int \sin (2 x+1) d x$.
We really want $u=2 x+1$. But then $d u=2 d x$. How are we going to get the extra " 2 "?
Answer: just put it in, then multiply by $\frac{1}{2}$ to compensate (I call this "futzing with the constant").
$\int \sin (2 x+1) d x=$

If "futzing with the constant" is too strange, you can also try the "solving for what you want" method:

Example. $\int t\left(4 t^{2}-5\right)^{3} d t$
Let $u=4 t^{2}-5$. Then
$d u=8 t d t$.
We want $t d t$. So divide both sides by 8: $\frac{d u}{8}=t d t$. Then put it in:
$\int t\left(4 t^{2}-5\right)^{3} d t=$

Use whichever method works best for you.
Definite integrals with $u$-substitution: be careful!
Example. What is wrong with the following calculation:

$$
\begin{aligned}
\int_{0}^{2} t^{2} \cos \left(t^{3}\right) d t & =\frac{1}{3} \int_{0}^{2} 3 t^{2} \cos \left(t^{3}\right) d t \\
& =\frac{1}{3} \int_{0}^{2} \cos u d u \\
& =\left.\frac{1}{3} \sin u\right|_{0} ^{2} \\
& =\frac{1}{3}(\sin 2-\sin 0)=\frac{\sin 2}{3}
\end{aligned}
$$

Answer: we plugged $x$-limits in for $u!$ Remember, we must either

- back-subsitute or
- change $x$-limits into $u$-limits
before we can use the F.T.C.
What does "change $x$-limits into $u$-limits" mean?
It means figuring out what $u$ is when $x$ is the upper and lower limits.
In the above example, $u=t^{3}$. What is $u$ when $x$ is 0 ? When $x$ is 2 ?
Lower limit: $u=0^{3}=0$.
Upper limit: $u=2^{3}=8$.
So the correct answer is

